• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structurally modified RDX-A DFT study

    2017-12-20 03:04:47LemirkerSerhatVaris
    Defence Technology 2017年6期

    Lemi Türker,Serhat Varis?

    Middle East Technical University,Department of Chemistry,06800,Ankara,Turkey

    Structurally modified RDX-A DFT study

    Lemi Türker*,Serhat Varis?

    Middle East Technical University,Department of Chemistry,06800,Ankara,Turkey

    RDX Insensitivity Molecular structural modification Kamlet-Jacobs equations

    RDX is a nitramine type explosive which is widely employed in military and industrial applications.A hot topic in military area is lowering the sensitivity of explosives.Along this direction,one approach,which is still being applied,is to use coatings or additives for explosives,as in the example ofi-RDX(reduced sensitivity RDX).Another attitude would be to make some slight molecular level chemical modifications in the explosive structure that cause a diminished sensitivity without substantial loss in explosive impact.RDX has three nitro groups.We assumed that by the conversion of these nitro groups to nitroso and amino groups,it might be possible to lower the sensitivity somewhat.We have correlated the bond dissociation energies with impact sensitivity.Additionally,the ballistic properties,i.e.detonation velocity(D),and detonation pressure(P)have been examined by using Kamlet-Jacobs equations.We have shown that the above mentioned molecular modifications are a successful way of lowering the sensitivity of RDX.

    1.Introduction

    RDX,known as Research Department explosive,is a nitramine type explosive so long extensively employed in army and industrial applications[1].It was synthesized as an explosive more influential thanTNT,and it was broadlyused in World War II.RDX is also called cyclonite,hexogen and T4[2].Its chemical name is hexahydro-1,3,5-trinitro-1,3,5-triazine,(cyclotrimethylenetrinitramine).RDX is a white,crystalline solid in its pure synthesized state.RDX is accepted as one of the most powerful military high explosives and quite stable under storage conditions[3].It is frequently used as a component in mixtures including supplementary explosives and plasticizers,phlegmatizers or desensitizers.RDX is vital in the formulations of many well-known military explosives such as Composition A,B and C,CH-6,Torpex and particularly plastic bonded explosive(PBX)[4-9].

    Desensitization of explosives(reduction of their sensitivity)is a hot research topic in military area.One approach covers the usage of additives and coatings of explosives where surface may play a significant role.There are many examples in the literature,especially on RDX[10].

    Another approach,which is also adopted in the present study,is to apply some molecular level changes in the molecule structure of an explosive providing a decrease in impact sensitivityetc.,without notable decrease of power.RDX has three nitro(-NO2)groups in the form of nitramine.Presently,it is assumed that conversion of these nitro(-NO2)groups to nitroso(-NO)and amino(-NH2)groups(Fig.1)might lessen the sensitivity.Moreover,a comprehension of the tendency in energetic character in going from RDX to derivatives discloses the factors which can be used in altering the sensitivity of explosives via structural modification.Desensitization produces much safer explosives in comparison to their parental molecules and prevents some unintentional detonations initiated by several factors like thermal and/or mechanical shock,static electric discharging,etc.

    In the current article,some computational studies have been done on RDX itself and five dissimilar RDX derivatives.

    2.Theoretical methods

    The initial structure optimizations of RDX and further structures were accomplished following the basis set order:MM2 method,PM3 method,STO and HF/6-31G(d,p)and finally DFT,B3LYP/6-31G(d,p).There exists no imaginary frequency in the normal mode analysis of the molecules carried out at the same level of theory.The total electronic energies were calculated considering zero point vibrational energies(ZPE).The heats of formation of all the molecules were calculated by a T1 Thermochemical Recipe[11]implemented in Spartan’08.The computational calculations were done using Spartan’08 software in standard conditions(298.15 K and 1.00 atm)[12].Furthermore,the geometry optimizations and the single point calculations of all the structures were performed at UB3LYP/6-31G(d,p)theoretical level for bond dissociation energy(BDE)calculations.The basis set superposition error(BSSE)was achieved using the Boys and Bernardi counterpoise method in Gaussian 03 software package[13,14].

    Abbreviations

    B3LYP Becke,3-parameter,Lee-Yang-Parr

    BDE Bond Dissociation Energy

    BSSE Basis Set Superposition Error

    DFT Density Functional Theory

    HF Hartree Fock

    HMX Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine PBX Plastic Bonded Explosive

    PM3 Parametric Method

    RDX Research Department Explosive;1,3,5-Trinitroperhydro-1,3,5-triazine

    STO Slater-type orbital

    TNT 2-Methyl-1,3,5-trinitrobenzene

    T1 Thermochemical Recipe

    QCISD Quadratic configuration interaction

    3.Results and discussion

    3.1.The geometries

    All the structures considered in Fig.1 have been supposed to be the potential nominees of explosives.The geometry optimizations of the molecules in Fig.1 have been done at the B3LYP/6-31G(d,p)level.In the optimized structure,RDX has one nitro group in the axial and the other two in the equatorial positions.In structures 2-5,the conformational pattern of RDX is preserved,namely one axial and two equatorial positions occupied by the substituents.In structure-2 the nitro group is in the axial position.In structures-4 and-5 the axial position is occupied by the amino and nitro groups,respectively.Whereas in structure-6,the nitroso groups occupy the axial positions in that respect its conformation pattern is different from RDX.The amino and nitroso groups present in structure-3 prefer the equatorial positions.The calculated bond length data for the optimized geometries are shown in Table 1.The subscript numbers showing the bonds in Table 1 is arranged considering Fig.2.The experimental X-ray diffraction data for RDX[15]are shown in Table 1 as well.The similarity between the experimental and theoretical bond length data for RDX and the absence of imaginary frequency in the potential energy diagrams assure the true geometry optimization of the molecules.This compatibility also assures that bond length data of all the molecules are close to the real values.

    Overall,the experimental and theoretical bond length results for RDX are almostequivalent.Thereare slight differences between the experimental and calculated data.For instance,the X-ray bond length data for RDX has shorter nitramine N-NO2bonds approximately 0.01 ? than the computed values.These slight differences stem from the solid-state effect including the intermolecular interactions.These interactions are not available in the DFT computations employed presently[16].

    Table 1The bond length data(?)of the optimized RDX and its derivatives computed at(DFT)B3LYP/6-31G(d,p)level.

    3.2.Charges

    Fig.3 represents the electrostatic charge(in esu)development of the system computed at the B3LYP/6-31G(d,p)level and acquired in the direct output of the software.Moreover,the electrostatic potential VS(r)computed on the 0.001 au isodensity surface[17]has been superimposed on each structure(property range spans over-200 to 200 kJ/mol).As seen in Figs.1 and 3 the dipole moments in all the structures except 4 are oriented upward.Note that the dipole moments of structures 1,2,4 are inclined over the equatorial groups(in structure-4 it is almost in the ring plane)whereas in 5 its inclination is towards the axial group.Whereas,in 3 and 6 the dipole moment is almost vertical to the ring plane.The charges and bond lengths in the optimized geometries are arranged such that order of dipole moments (see Table 1) is 2<4<1=6<5<3.

    The orientation of the dipole moments indicate that the conformation of the substituents makes the bottom side of the molecules electron deficient contrary to the upper side.In structures-3 and-5 the region around the axial nitro group becomesrelativelyelectron rich(see Fig.3).In4 the relativelyelectron rich region is around one of the equatorial nitro groups.The electrostatic potential VS(r)on the isodensitysurface of 2 resembles the respective plot of RDX.Therefore it is not unexpected that most properties of 1 and 2 should be comparable.

    3.3.The bond dissociation energies(BDE)vs.impact sensitivity

    Numerous experimental studies show that nitramine(N-NO2)bond homolysis is the first step of thermal decomposition of RDX and other nitramines[18-21].In this article,for the comparison of the nitramine bond strengths of the compounds,homolytic bond dissociation energy(BDE)calculations considering the removal of nitrogen dioxidemoietyfrom theoriginalgeometrywere computed at UB3LYP/6-31G(d,p)level.The equalities for the homolytic nitro bond(nitramine)break and calculation of the BDE are shown below

    R-NO2stands for the neutral molecule and R·and NO2·stands for the radicals occurring after the nitramine bond dissociation;BDE(R-NO2)denotes the bond dissociation energy of nitro bond;E(R-NO2),ER·,and ENO2·are the ZPE added total energies of the compounds and the radicals,respectively[22-24].Additionally,the basis set superposition error(BSSE)analyses were carried out.

    The sensitivity behavior of an explosive under different heat,impact,friction conditions may vary.In this work,the “sensitivity”term designates the “impact sensitivity”of the focused explosive.Impact sensitivity behavior of explosives can be determined experimentally by the drop height test.The impact sensitivity can also be examined by theoretical methods.Murray et al.[25]have put out an association between the BDEs of the nitro bonds and the electrostatic potentials on the molecular surfaces of some energetic molecules.The several appreciated studies in the references[26-29]have indicated that there is a parallel correlation between the BDE for the weakest nitro bond of the molecule and its impact sensitivity.The typical tendency is that the larger the BDE data of nitro bond,the lower the sensitivity is.

    Desensitization of explosives(reducing their vulnerability)becomes more of an issue in military applications.Our methodology in the current work is to apply small structural changes in the explosive that lead to the probable decrease in impact sensitivity without substantial loss of explosive power.RDX has three nitro groups.We foresaw that the conversion of nitro(-NO2)groups to nitroso(-NO)and amino(-NH2)groups might enable a decrease in the impact sensitivity.The lowest sensitivity has been attributed to the highest nitramine(N-NO2)bond dissociation energy.Also,a comprehension of the tendency of energetic character in going from RDX to the derivatives might reveal the features which can be used in changing the impact sensitivity of explosives via structural modification.Table 2 shows the computed BDE data.The consistency of our BDE value(without BSSE)and the calculated literature data(the datum excerpted from the reference is without BSSE)[30]for RDX increases the reliability of the technique adopted in the current article(see Table 2).

    We have compared the impact sensitivity of explosives in the present study on the basis of BDE values such that attributing the highest sensitivity to the lowest nitramine bond dissociation energy value.We have changed the nitro groups with amino and/or nitroso group(s)and examined the nitramine BDE values.An increase in the nitro BDE has been interpreted as a more insensitive explosive,and a decrease in nitro BDE has been evaluated as a more sensitive explosive.When a nitro group of RDX is changed with nitroso group(structure-2),the BDE for nitramine bond decreases by 2.69 kJ/mol,resulting in a more sensitive explosive.However,replacement of both of the nitro groups by nitroso groups(structure-6)creates a more insensitive explosive compared to RDX that is,BDE value of nitramine bond increases by 7.92 kJ/mol.

    Likewise,the replacement of one nitro group with an amino group(structure-4)induces an increase in nitramine BDE by 10.83 kJ/mol.The substitution of both nitro groups byamino groups(structure-5)increases the BDE value by 26.89 kJ/mol.The results showed that amino replacements produce the most insensitive explosives of all.The amino groups balance the electron demand of nitro groups existing in the system.

    The introduction of one nitroso and one amino groups instead of nitro groups of RDX accomplishes structure-3.Meanwhile,the BDE increases by 15.55 kJ/mol in going from RDX to structure-3,resulting in a more insensitive explosive.

    All the conversions considered,except for structure-2,cause a notable increase in BDEs,therefore an effective decrease in impact sensitivity is expected theoretically.This type of variation of functional groups of RDX is very supportive for decreasing the sensitivity.

    Table 2The homolytic bond dissociation energies,BSSE and corrected BDEs of N-NO2bonds of RDX and other derivatives calculated at(DFT)UB3LYP/6-31G(d,p)theoretical level.

    Insensitivityconcept has been correlated with Bond dissociation energy(BDE).The higher the BDE,the more insensitive the explosive is.Since the BDE values are in the following order:2<1<6<4<3<5(as seen from the chart in Fig.3 and Table 2);the insensitivity is in the same order.For structures 2-6,there exists an inverse relationship between the BDE and detonation velocity.The structure-5 has been assigned as the most insensitive RDX derivative and the structure-2 has been identified as the most sensitive RDX derivative.

    3.4.Explosive properties

    Explosive effects of energetic materials can be assessed by the determination of the ballistic properties,especially detonation velocity(D)and detonation pressure(P).The use of empirical Kamlet-Jacobs[31-34]equations enables one to calculate these properties by means of Eqs.(3)and(4).

    The terms in Kamlet Jacobs Equations(3)and(4)are shown as:D,detonation velocity(km/s);P,detonation pressure(GPa);ρ,density of a compound(g/cm3);N,moles of gaseous detonation products per gram of explosive;Mav,average molecular weight of gaseous products;Q,chemical energy of detonation(kcal/g).The parametersN,Mav,andQare calculated according to the chemical composition of each explosive as revealed in Ref.[16].For a CaH-bOcNdtype explosive,if 2a+b/2>c≥b/2 equality is fulfilled,N is calculated using (b+2c+2d)/4M,Mavis calculated as(56d+88c-8b)/(b+2c+2d),andQis calculated as[28.9b+94.05(c/2-b/4)+0.239ΔHof]/M.Ifb/2>cequality is satisfied,Nis calculated as(b+d/2M),Mavis calculated as(2b+28d+32c)/(b+d),Qis calculated as[(57.8c+0.239ΔHof)/M].The coefficient(0.239)of ΔHofin the relations is a conversion factor from kJ/mol to kcal/mol.“M”is the molecular weight of the compound(in g/mol);ΔHofis the standard heat of formation of the compound(in kJ/mol).The standard heat of formation(ΔHof)was calculated usingT1 Thermochemical Recipe.This recipe follows the G3(MP2)recipe,by replacing HF/6-31G(d)for the MP2/6-31G*geometry,omitting both the HF/6-31G(d)frequency and QCISD(T)/6-31G(d)energy and approximating the MP2/G3MP2 large energy using dual basis set RI-MP2 techniques[35].The density(ρ)of each compound is calculated by ratio of molecular weight to the molar volume.The statistical average of hundred single-point molar volume calculations results in the molecular volume of each optimized molecule.The Monte Carlo integration in the Gaussian 03 software package was used for molar volume calculations[14].The density of each compound was anticipated from the molecular volume divided by molecular weight.Structures 1,2,4,and 6 are in accordance with 2a+b/2>c≥b/2 relation,whereas,structures-3 and-5 are in accordancewithb/2>crelation.The calculatedoxygen balance(Ω),heat of formation(ΔHof),the chemical energy of detonation(Q),density(ρ)and detonation velocity(D)and pressure(P)are listed in Table 3.It also includes experimentalvalues of RDX[16,36,37]taken from the literature.

    Table 3 shows the oxygen balance(Ω%)values of the explosives considered in the present study.For a CaHbOcNdtype explosive,%Ω is calculated as 1600(2a+b/2-c)/M.It is an expression that indicates the degree to which an explosive can be oxidized.If an explosive molecule has sufficient amount of oxygen to produce CO2from carbon,H2O from hydrogen molecules,sulfur dioxide from all of its sulfur,and all metal oxides from metals with no excess,the molecule is supposed to have a zero oxygen balance.The molecule is supposed to have a positive oxygen balance if it has more oxygen than is required and a negative oxygen balance if it contains less oxygen than needed.In this work,all the considered molecules have negative oxygen balances,like a well-known explosive,TNT.

    The heat of formation(ΔHof)values of all molecules was calculated with a thermochemical recipe,T1.The comparability of the calculated(ΔHof)value of RDX and the literature value[16]raises the credibilityof the method.When density(ρ)data are considered,replacement of the nitro groups with amine groups(structures 4 and 5)causes a dramatic decrease in the density.The nitroso group substitutions(structures 2 and 6)also cause a slight decrease in the density.

    The detonation velocity and detonation pressure values for RDX both agree well with the experimental literature data[2,16,36].When Table 3 is considered,it is obvious that the explosive performances of all molecules are superior to the well-known explosive,TNT.The performances of RDX and other derivatives are in the following manner(See Fig.4):TNT<5<3<4<6<2<RDX.The replacement of nitro groups with nitroso groups(on going from RDX to structures 2 and 6)slightly decreases the ballistic properties.Similarly,the amino group substitutions(from RDX to structures 4 and 5)lead to an average decrease in detonation velocity and pressure.The structure-3 has one nitro,one nitroso and one amino group.The presence of the nitro and nitroso groups instead of nitro groups also lowers the detonationproperties inappreciably.

    The explosive properties and sensitivity characteristics of the structures considered should be evaluated together.Amino group replacement(structures 4 and 5)is an effective method in decreasing sensitivity;however,these replacements deteriorate the detonation properties.Also,nitroso substitutions(structures 2 and 6)bring about higher BDEs than RDX(more insensitive compounds)with lower detonation velocity values.Similarly,conversion of RDX to structure-3 results in decreasing the sensitivity with worsedetonation properties.Amongthem,structure-6(themolecule having two nitroso and one nitro group)is the optimum.It is not only more insensitive than RDX,but also as good as RDX in performance.

    Table 3Anticipated density data and detonation properties of RDX and its derivatives at B3LYP/6-31G(d,p)level.

    Table 4The number of moles of gaseous decomposition products of RDX and its derivatives using the Kistiakowsky-Wilson Rules.

    3.5.Detonation products and explosive power

    The small molecules,i.e.,CO2,CO,H2O,etc.are the main detonation products of CaHbOcNdtype explosives.In order to elucidate the number and type of the decomposition products,a series of rules was proposed by Kistiakowsky and Wilson[37,38].Table 4 displays the moles of detonation products of the compounds investigated in this article.

    The total quantity of gas produced upon detonation has been found by adding the moles of H2O,N2,CO and H2,except for the moles of solid C.When total amount of gas is measured,the structures 2-6 produce 7-8 mol of gas upon detonation.

    The main products of an explosive reaction are heat and hot gases.The volume of produced gas gives information on how much work done by the energetic materials.Standard conditions should be adopted to calculate the volume of generated gas,because the volume of gas changes with the changing temperature.The standard conditions(273 K,1 atm)also enable the scientist to make comparisons among different explosives.Division of the value of total volume of gas produced upon detonation by the molecular weight gives an idea of how much gas is released per gram of explosive[39-42].

    The heat of explosion “Q”and the volume of produced gas“V”can be combined to obtain the explosive power data as indicated below[36]

    Table 5The power index data of RDX,its derivatives,Picric Acid,TNT and HMX.

    The value for the explosive power is then compared with the explosive power of a standard explosive,namely Picric Acid(PA),to obtain power index,as shown in the following equation

    Table 5 displays the power index values of RDX,the other RDX derivatives,Picric Acid,TNT,and HMX.The power index values of RDX and RDX derivatives presently considered are in between 106 and 127% and in the subsequent manner:HMX~RDX>2>5>6>3>4>PA>TNT.The structure-2 has the highest power index value after RDX.All the structures(2-6)are better in terms of the power index than the well-known explosives PA and TNT.All the molecules in the present study can easily be employed when higher amount of gas is required as an alternate to RDX.

    4.Conclusion

    Currently,computational studies have been completed on RDX itself and five different RDX derivatives.The bond length data of the structurally optimized(at the theoretical level of DFT B3LYP/6-31G(d,p))RDX were compared to experimental values quite satisfactorily.The lowest bond dissociation energies of the nitramine bond were associated with impact sensitivity concept.The possibility of decreasing the sensitivity of an explosive without signif icant loss in power by the conversion of nitro groups of RDX to nitroso and amino groups has been proven.All the compounds were evaluated as a better explosive than TNT.The conversion of nitro groups to amino groups creates more insensitive explosive when compared to nitroso conversions.All the compounds examined in this article showed better explosive properties than TNT.They are all possible nominees for insensitive high explosives.Thereby,they are all alternative to renowned explosive RDX whenever lower sensitivity applications are required.This study has shown that molecular modification is an operative method in desensitization of RDX.

    [1]Partnership MacDonald Mack.Finalpropertiesreport:newportarmy ammunition plant.AD-A175818.National Park Service;1984.

    [2]Meyer R,K¨ohler J,Homburg A.Explosives.6th ed.Weinheim:Wiley-VCH;2007.

    [3]Agrawal JP,Hodgson R.Organic chemistry of explosives.New York:Wiley-VCH;2007.p.234-9.

    [4]Davis TL.The chemistry of powder and explosives II.New York:John Wiley&Sons Inc.;1943.p.396.

    [5]Superintendent AMPC,Sterling TS.Can J Chem Eng 1958;36:82-4.

    [6]Pesce-Rodriguez RA,Piraino SM.Characterization of cyclohexanone inclusions in class 1 RDX.ARL-TR-6962.Army National Laboratory;2014.

    [7]AD No:317-974 Development of RDX composition CH-6.Maryland:US Naval Ordnance Laboratory;1960.

    [8]Ravi P,Badgujar DM,Gore GM,Tewari SP,Sikder AK.Propellants Explos Pyrotech 2011;36:393-403.

    [9]Jadhav PM,Sarangapani R,Ghule VD,Prasanth H,Pandey RK.J Mol Model 2013;19:3027-33.

    [10]Nicolich S,Niles J,Ferlazzo P,Doll D,Braithwaite P,Rausmussen N,Ray M,Gunger M,Spencer A.Recent developments in reduced sensitivity melt pour explosives,In:34th Int.Annual Conference of ICT,Karlsruhe,Germany,24-27 June 2003.

    [11]Ohlinger WS,Klunzinger PE,Deppmeier BJ,Hehre WJ.J Phys Chem A 2009;113:2165-75.

    [12]SPARTAN’08.Irvine CA,USA:Wavefunction Inc.;2008.

    [13]Boys SF,Bernardi F.Mol Phys 1970;19:553-62.

    [14]Inc.,Wallingford CT Gaussian 03,revision C.02.2004.

    [15]Choi CS,Prince E.Acta Crystallogr 1972;B28:2857-62.

    [16]Qiu L,Xiao H,Gong X,Ju X,Zhu W.J Phys Chem 2006;A110:3797-807.

    [17]Politzer P,Murray JS,Koppes WM,Concha MC,Lane P.Cent Eur J Energ.Mater 2009;6(2):167-82.

    [18]Adams GF,Shaw Jr RW.Annu Rev Phys Chem 1992;43:311-40.

    [19]a)Zhao X,Hintsa EJ,Lee YT.J Chem Phys 1988;88:801-10.b)Chambers CC,Thompson DL.J Phys Chem 1995;99:15881-9.

    [20]Botcher TR,Wight CA.J Phys Chem 1994;98:5441-4.

    [21]Oxley JC,Kooh AB,Szekeres R,Zheng W.J Phys Chem 1994;98:7004-8.

    [22]Rice BM,Sahu S,Owens FJ.J Mol Struct(THEOCHEM)2002;583:69-72.

    [23]Shao J,Cheng X,Yang X.J Mol Struct(THEOCHEM)2005;755:127-30.

    [24]Young DC.Computational chemistry:a practical guide for applying techniques to real World problems.John Wiley&Sons.Inc;2001.

    [25]Murray JS,Concha MC,Politzer P.Mol Phys 2009;107:89-97.

    [26]Owens FJ.J Mol Struct(THEOCHEM)1996;370:11-6.

    [27]Politzer P,Murray JS.J Mol Struct(THEOCHEM)1996;37:419-24.

    [28]Politzer P,Lane PJ.Mol Struct(THEOCHEM)1996;388:51-5.

    [29]Harris NJ,Lammertsma K.J Am Chem Soc 1997;119:6583-9.

    [30]Song X,Cheng X,Yang X.Propellants Explos Pyrotech 2006;31:306-10.

    [31]Kamlet MJ,Jacobs SF.J Chem Phys 1968;48:23-5.

    [32]Kamlet MJ,Ablard JE.J Chem Phys 1968;48:36-42.

    [33]Kamlet MJ,Dickenson C.J Chem Phys 1968;48:43-51.

    [34]Kamlet MJ,Hurwitz HJ.J Chem Phys 1968;48:3685-92.

    [35]Ohlinger WS,Klunzinger PE,Deppmeier BJ,Hehre WJ.J Phys Chem A 2009;113(10):2165-75.

    [36]Akhavan J.The chemistry of explosives.2nd ed.Cambridge:The Royal Society of Chemistry;1998.

    [37]Cowan RD,Fickett W.J Chem Phys 1956;24:932-9.

    [38]Muthurajan H,Sivabalan R,Talawar MB,Asthana SN.J Hazard Mater 2004;A112:17-33.

    [39]Martin AR,Yallop HJ.J Appl Chem 1959;9:310-5.

    [40]Zel'dovich Y,Kompaneets AS.Theory of detonation.Academic Press;1960.p.208-10.

    [41]Hougen OA,Watson K,Ragatz R.Chemical process principles.John Wiley&Sons;1954.p.66-7.

    [42]Anderson HV.Chemical calculations.McGraw-Hill;1955.p.206.

    18 November 2016

    in revised form 9 February 2017 Accepted 20 February 2017 Available online 22 February 2017

    ?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Correspondingauthor.MiddleEastTechnicalUniversity,Departmentof Chemistry,06531,Ankara,Turkey.

    E-mail address:lturker@metu.edu.tr(L.Türker).

    Peer review under responsibility of China Ordnance Society

    久久久精品欧美日韩精品| 国产成人一区二区三区免费视频网站| 琪琪午夜伦伦电影理论片6080| 午夜a级毛片| 久久欧美精品欧美久久欧美| 亚洲国产看品久久| 国产一卡二卡三卡精品| 午夜免费成人在线视频| 色在线成人网| 精品一区二区三区视频在线观看免费| 成人永久免费在线观看视频| 看免费av毛片| 天堂影院成人在线观看| 热re99久久国产66热| 亚洲欧洲精品一区二区精品久久久| 国产成人啪精品午夜网站| 高清在线国产一区| 国产成人啪精品午夜网站| 男女那种视频在线观看| 黄色a级毛片大全视频| 国产aⅴ精品一区二区三区波| 精品久久蜜臀av无| 最近最新免费中文字幕在线| 国产免费av片在线观看野外av| 日韩中文字幕欧美一区二区| 看黄色毛片网站| 久久草成人影院| 中文字幕人妻熟女乱码| 18禁美女被吸乳视频| 啦啦啦 在线观看视频| 精品久久蜜臀av无| 中文字幕人成人乱码亚洲影| 很黄的视频免费| 久久人人精品亚洲av| 九色国产91popny在线| 日本 欧美在线| 777久久人妻少妇嫩草av网站| 免费看十八禁软件| 日韩免费av在线播放| 99热这里只有精品一区 | 成人精品一区二区免费| 操出白浆在线播放| 一级片免费观看大全| 嫁个100分男人电影在线观看| 日韩欧美免费精品| 成人免费观看视频高清| 欧美激情 高清一区二区三区| 精品久久久久久,| 韩国精品一区二区三区| 欧美三级亚洲精品| 欧美激情久久久久久爽电影| 成人欧美大片| 日日爽夜夜爽网站| 精品久久久久久久久久免费视频| 欧美黄色淫秽网站| 国产色视频综合| 在线观看免费日韩欧美大片| 国产精品自产拍在线观看55亚洲| 母亲3免费完整高清在线观看| 久99久视频精品免费| 国产国语露脸激情在线看| 男人的好看免费观看在线视频 | 国产午夜精品久久久久久| 一进一出好大好爽视频| 嫩草影视91久久| 熟女电影av网| 在线十欧美十亚洲十日本专区| 久久青草综合色| 天堂影院成人在线观看| 亚洲第一欧美日韩一区二区三区| 中文字幕人妻熟女乱码| 夜夜爽天天搞| 老汉色av国产亚洲站长工具| 在线视频色国产色| 亚洲第一av免费看| 自线自在国产av| 欧美精品亚洲一区二区| 韩国av一区二区三区四区| 啦啦啦观看免费观看视频高清| 亚洲精品国产一区二区精华液| 国产成人av教育| 制服诱惑二区| 一个人观看的视频www高清免费观看 | 欧美国产日韩亚洲一区| 国产熟女午夜一区二区三区| 午夜福利在线观看吧| av在线播放免费不卡| 成人永久免费在线观看视频| 欧美一级a爱片免费观看看 | 亚洲片人在线观看| 少妇熟女aⅴ在线视频| 精品卡一卡二卡四卡免费| 久久热在线av| 午夜福利成人在线免费观看| 国产亚洲欧美98| 国产精品美女特级片免费视频播放器 | 国产精华一区二区三区| 性色av乱码一区二区三区2| 波多野结衣高清作品| 两个人免费观看高清视频| 日韩欧美国产一区二区入口| 午夜视频精品福利| 熟女电影av网| 曰老女人黄片| 好看av亚洲va欧美ⅴa在| 亚洲在线自拍视频| 老司机午夜福利在线观看视频| 99精品久久久久人妻精品| 日韩高清综合在线| 久久久久久九九精品二区国产 | 国产日本99.免费观看| 十八禁人妻一区二区| 叶爱在线成人免费视频播放| 亚洲成av片中文字幕在线观看| 午夜影院日韩av| 12—13女人毛片做爰片一| 动漫黄色视频在线观看| 一二三四在线观看免费中文在| 成人永久免费在线观看视频| 好看av亚洲va欧美ⅴa在| 中文字幕高清在线视频| 中文在线观看免费www的网站 | 18美女黄网站色大片免费观看| 国产精品av久久久久免费| www.999成人在线观看| 亚洲第一青青草原| 一进一出好大好爽视频| 久热这里只有精品99| 免费看a级黄色片| 伊人久久大香线蕉亚洲五| 一区二区三区激情视频| 亚洲精品一卡2卡三卡4卡5卡| 日本熟妇午夜| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品av在线| 欧美性长视频在线观看| 91九色精品人成在线观看| 一级毛片女人18水好多| 50天的宝宝边吃奶边哭怎么回事| 伦理电影免费视频| 级片在线观看| 中文在线观看免费www的网站 | 麻豆成人午夜福利视频| 午夜免费激情av| 一本一本综合久久| 大香蕉久久成人网| 久久天躁狠狠躁夜夜2o2o| 久久精品成人免费网站| 久久精品成人免费网站| 亚洲五月婷婷丁香| www.www免费av| 色精品久久人妻99蜜桃| 一个人观看的视频www高清免费观看 | 叶爱在线成人免费视频播放| 欧美性猛交╳xxx乱大交人| 极品教师在线免费播放| 成在线人永久免费视频| 狠狠狠狠99中文字幕| 久久久久久久精品吃奶| 一边摸一边抽搐一进一小说| 欧美日韩福利视频一区二区| 日本撒尿小便嘘嘘汇集6| 丰满人妻熟妇乱又伦精品不卡| e午夜精品久久久久久久| 精品第一国产精品| www日本在线高清视频| 久久国产精品影院| 亚洲 欧美 日韩 在线 免费| 欧美三级亚洲精品| 999久久久精品免费观看国产| 天天躁夜夜躁狠狠躁躁| 午夜福利高清视频| 99re在线观看精品视频| 岛国视频午夜一区免费看| 亚洲性夜色夜夜综合| 亚洲国产欧美一区二区综合| 成年人黄色毛片网站| 在线av久久热| 午夜成年电影在线免费观看| 日本三级黄在线观看| 波多野结衣巨乳人妻| 国产精品亚洲美女久久久| 久久精品91蜜桃| 亚洲成人久久性| 午夜影院日韩av| 久久国产乱子伦精品免费另类| 午夜免费观看网址| 国产欧美日韩精品亚洲av| 国产一区二区在线av高清观看| 19禁男女啪啪无遮挡网站| 国产三级黄色录像| 黑丝袜美女国产一区| 亚洲国产欧美一区二区综合| 免费在线观看亚洲国产| 午夜日韩欧美国产| 国产av在哪里看| 国内毛片毛片毛片毛片毛片| 99热6这里只有精品| 色综合婷婷激情| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久亚洲av鲁大| 91成人精品电影| 美女午夜性视频免费| 他把我摸到了高潮在线观看| 90打野战视频偷拍视频| 亚洲精华国产精华精| 日韩有码中文字幕| 欧美另类亚洲清纯唯美| av超薄肉色丝袜交足视频| 久久久久久国产a免费观看| 国产精品久久久久久精品电影 | 999精品在线视频| 色综合婷婷激情| 国内久久婷婷六月综合欲色啪| 久9热在线精品视频| 日本a在线网址| 91成年电影在线观看| 精华霜和精华液先用哪个| 欧美成人午夜精品| 成人永久免费在线观看视频| 久久久久久久久中文| 我的亚洲天堂| 一卡2卡三卡四卡精品乱码亚洲| 成人手机av| 国产极品粉嫩免费观看在线| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲欧美精品永久| 黄色毛片三级朝国网站| 免费无遮挡裸体视频| 欧美日韩黄片免| 悠悠久久av| 韩国精品一区二区三区| 亚洲成人久久性| 国产精品久久久av美女十八| 国产精品精品国产色婷婷| 色播亚洲综合网| 午夜成年电影在线免费观看| 久久久久免费精品人妻一区二区 | 99国产精品99久久久久| 午夜激情av网站| 18禁黄网站禁片免费观看直播| 国产av不卡久久| 国产精品久久久久久人妻精品电影| 欧美日韩一级在线毛片| 国产单亲对白刺激| 制服人妻中文乱码| 无限看片的www在线观看| 女人高潮潮喷娇喘18禁视频| 90打野战视频偷拍视频| 国产亚洲欧美98| 国产精品1区2区在线观看.| 男人舔奶头视频| 国产精品免费一区二区三区在线| 99国产综合亚洲精品| 国产成人影院久久av| 国产成人一区二区三区免费视频网站| 欧美大码av| 欧美精品啪啪一区二区三区| 亚洲成人久久性| 久久国产精品男人的天堂亚洲| www.999成人在线观看| 一夜夜www| 别揉我奶头~嗯~啊~动态视频| 国产精品 欧美亚洲| 人人妻人人看人人澡| 在线观看www视频免费| 丁香欧美五月| 中文字幕人妻丝袜一区二区| av视频在线观看入口| 精品一区二区三区四区五区乱码| 国产精品久久电影中文字幕| 人人妻人人看人人澡| 老司机靠b影院| 欧美激情 高清一区二区三区| 69av精品久久久久久| 非洲黑人性xxxx精品又粗又长| 国产精品电影一区二区三区| 亚洲国产欧美日韩在线播放| 免费电影在线观看免费观看| 国产av不卡久久| 国产成人影院久久av| 正在播放国产对白刺激| 久久人妻av系列| 不卡av一区二区三区| 熟女电影av网| 国产主播在线观看一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 高清在线国产一区| 又黄又爽又免费观看的视频| 亚洲精品在线观看二区| 亚洲黑人精品在线| 黄色a级毛片大全视频| 亚洲精品在线美女| 午夜福利免费观看在线| 俺也久久电影网| 啦啦啦观看免费观看视频高清| 精品电影一区二区在线| 国产欧美日韩精品亚洲av| 日本 欧美在线| 首页视频小说图片口味搜索| av电影中文网址| 好男人电影高清在线观看| 欧美黑人欧美精品刺激| 两个人视频免费观看高清| 久久这里只有精品19| 怎么达到女性高潮| 国产亚洲精品久久久久久毛片| 午夜a级毛片| 51午夜福利影视在线观看| 在线观看免费午夜福利视频| 啦啦啦观看免费观看视频高清| 亚洲自拍偷在线| 久久亚洲真实| av福利片在线| netflix在线观看网站| 美女大奶头视频| av在线天堂中文字幕| 免费在线观看黄色视频的| 精品欧美一区二区三区在线| 欧美日韩瑟瑟在线播放| 亚洲片人在线观看| 欧美色视频一区免费| 国产精品亚洲美女久久久| 国产精品久久久久久精品电影 | 可以在线观看毛片的网站| 一本大道久久a久久精品| 男人舔女人的私密视频| 国产成年人精品一区二区| 又大又爽又粗| 亚洲精品国产一区二区精华液| 好看av亚洲va欧美ⅴa在| 日韩精品青青久久久久久| 天堂√8在线中文| 亚洲五月婷婷丁香| 亚洲欧洲精品一区二区精品久久久| 色老头精品视频在线观看| 在线视频色国产色| 亚洲av电影在线进入| 在线观看免费午夜福利视频| 高潮久久久久久久久久久不卡| 国产精品亚洲一级av第二区| av欧美777| 亚洲aⅴ乱码一区二区在线播放 | 真人一进一出gif抽搐免费| 欧美国产日韩亚洲一区| 女性被躁到高潮视频| 91成人精品电影| 嫩草影院精品99| 99久久国产精品久久久| 99国产精品99久久久久| 每晚都被弄得嗷嗷叫到高潮| 在线免费观看的www视频| 在线观看午夜福利视频| 亚洲 欧美一区二区三区| 最好的美女福利视频网| 久久天躁狠狠躁夜夜2o2o| 免费看日本二区| 不卡av一区二区三区| 精品久久久久久,| 久久人妻福利社区极品人妻图片| 国产成人av教育| 中文字幕av电影在线播放| 亚洲全国av大片| 精品久久久久久久毛片微露脸| 午夜激情福利司机影院| 亚洲国产日韩欧美精品在线观看 | 精品一区二区三区视频在线观看免费| 国产精品,欧美在线| 男人的好看免费观看在线视频 | 熟女少妇亚洲综合色aaa.| av免费在线观看网站| 久久精品国产亚洲av香蕉五月| 色播亚洲综合网| 国产精品 欧美亚洲| 黄色成人免费大全| 午夜免费观看网址| 欧美成人一区二区免费高清观看 | 99re在线观看精品视频| 大型av网站在线播放| 国产亚洲欧美精品永久| 激情在线观看视频在线高清| 婷婷六月久久综合丁香| 老鸭窝网址在线观看| 午夜久久久在线观看| 成年版毛片免费区| 久久天堂一区二区三区四区| 视频在线观看一区二区三区| 日日爽夜夜爽网站| 欧美+亚洲+日韩+国产| 久久久国产精品麻豆| aaaaa片日本免费| 久久精品亚洲精品国产色婷小说| 国产成人系列免费观看| 人成视频在线观看免费观看| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲av高清不卡| www.999成人在线观看| 首页视频小说图片口味搜索| 岛国在线观看网站| АⅤ资源中文在线天堂| 成年免费大片在线观看| 12—13女人毛片做爰片一| 这个男人来自地球电影免费观看| 一本综合久久免费| 他把我摸到了高潮在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲精品不卡| 久9热在线精品视频| 国产熟女xx| 男女做爰动态图高潮gif福利片| 欧美人与性动交α欧美精品济南到| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产看品久久| 在线观看免费日韩欧美大片| 国产成人精品久久二区二区免费| 欧美日本亚洲视频在线播放| 免费女性裸体啪啪无遮挡网站| 两人在一起打扑克的视频| 精品福利观看| 国产精品日韩av在线免费观看| 亚洲第一欧美日韩一区二区三区| 精品福利观看| 亚洲精品美女久久av网站| 制服诱惑二区| 人人妻人人看人人澡| 国产又爽黄色视频| 日本 欧美在线| 免费观看精品视频网站| 亚洲美女黄片视频| www.www免费av| 韩国av一区二区三区四区| av欧美777| 99在线视频只有这里精品首页| 欧美 亚洲 国产 日韩一| 国产精品一区二区三区四区久久 | 国产久久久一区二区三区| 欧美亚洲日本最大视频资源| 制服丝袜大香蕉在线| 两个人看的免费小视频| 嫩草影视91久久| 欧美成人性av电影在线观看| 精品第一国产精品| 草草在线视频免费看| av片东京热男人的天堂| 丰满人妻熟妇乱又伦精品不卡| 中文资源天堂在线| 美女高潮喷水抽搐中文字幕| 可以在线观看的亚洲视频| 黑人巨大精品欧美一区二区mp4| av有码第一页| 99精品久久久久人妻精品| 国产免费男女视频| 亚洲av电影在线进入| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美又色又爽又黄视频| 一a级毛片在线观看| 免费看日本二区| 亚洲一区二区三区色噜噜| 免费女性裸体啪啪无遮挡网站| 91在线观看av| 极品教师在线免费播放| 精品卡一卡二卡四卡免费| 欧美性猛交黑人性爽| 亚洲精品av麻豆狂野| 天堂√8在线中文| 一级毛片高清免费大全| 91av网站免费观看| 中文字幕精品免费在线观看视频| 欧美性猛交╳xxx乱大交人| 窝窝影院91人妻| 嫩草影院精品99| 91在线观看av| 老鸭窝网址在线观看| 久久久久国产精品人妻aⅴ院| 啪啪无遮挡十八禁网站| 又紧又爽又黄一区二区| 这个男人来自地球电影免费观看| 777久久人妻少妇嫩草av网站| 丝袜人妻中文字幕| 成人特级黄色片久久久久久久| 国产精品 国内视频| 女同久久另类99精品国产91| 99久久无色码亚洲精品果冻| 色哟哟哟哟哟哟| 免费在线观看亚洲国产| 久久狼人影院| 久久热在线av| 国产精品爽爽va在线观看网站 | 国产又爽黄色视频| 中文字幕最新亚洲高清| 88av欧美| 国产成+人综合+亚洲专区| 免费搜索国产男女视频| 身体一侧抽搐| 很黄的视频免费| 精品国产一区二区三区四区第35| www.熟女人妻精品国产| 日韩三级视频一区二区三区| 久久精品国产综合久久久| 亚洲aⅴ乱码一区二区在线播放 | 美女高潮喷水抽搐中文字幕| 真人做人爱边吃奶动态| 最近最新中文字幕大全免费视频| 精品不卡国产一区二区三区| 女警被强在线播放| 日本五十路高清| 亚洲欧美精品综合久久99| 日韩精品免费视频一区二区三区| 久久久久精品国产欧美久久久| 啦啦啦 在线观看视频| 国产精品亚洲美女久久久| 久久精品91无色码中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕高清在线视频| 大型av网站在线播放| 精品一区二区三区视频在线观看免费| 日韩一卡2卡3卡4卡2021年| 男女下面进入的视频免费午夜 | 两个人免费观看高清视频| 中文字幕久久专区| 最近最新中文字幕大全免费视频| 老汉色∧v一级毛片| aaaaa片日本免费| 亚洲片人在线观看| 窝窝影院91人妻| 51午夜福利影视在线观看| 精品少妇一区二区三区视频日本电影| 可以在线观看的亚洲视频| 久久国产精品男人的天堂亚洲| 亚洲欧美日韩高清在线视频| 免费女性裸体啪啪无遮挡网站| 日本黄色视频三级网站网址| 日韩一卡2卡3卡4卡2021年| 精品国产美女av久久久久小说| 可以在线观看毛片的网站| 少妇裸体淫交视频免费看高清 | 国产精品影院久久| 日韩欧美国产在线观看| 免费高清在线观看日韩| 久热爱精品视频在线9| 日本一区二区免费在线视频| 久久婷婷人人爽人人干人人爱| 日日爽夜夜爽网站| cao死你这个sao货| 午夜视频精品福利| 人妻久久中文字幕网| 国产欧美日韩精品亚洲av| 岛国在线观看网站| 国产熟女午夜一区二区三区| 97人妻精品一区二区三区麻豆 | 亚洲片人在线观看| 亚洲中文日韩欧美视频| 国产熟女xx| 精品久久久久久久末码| 国内少妇人妻偷人精品xxx网站 | 两人在一起打扑克的视频| 日韩欧美一区二区三区在线观看| 国产1区2区3区精品| 亚洲国产精品成人综合色| 一区二区三区高清视频在线| 国产成人啪精品午夜网站| 国产午夜精品久久久久久| 久久久久国产精品人妻aⅴ院| 一级作爱视频免费观看| av在线播放免费不卡| 可以在线观看毛片的网站| 一级片免费观看大全| 人人妻,人人澡人人爽秒播| www.熟女人妻精品国产| 久久中文字幕一级| 日本黄色视频三级网站网址| 中出人妻视频一区二区| 亚洲精品国产精品久久久不卡| 亚洲一区中文字幕在线| 午夜老司机福利片| 国产精品久久久久久精品电影 | 最近最新免费中文字幕在线| 日韩精品青青久久久久久| 国产av一区在线观看免费| 国产精品爽爽va在线观看网站 | 丝袜美腿诱惑在线| 在线观看66精品国产| 亚洲欧美激情综合另类| 99精品欧美一区二区三区四区| 中文字幕精品免费在线观看视频| 国产真实乱freesex| 18禁黄网站禁片免费观看直播| 男女那种视频在线观看| 久久香蕉国产精品| 在线观看免费视频日本深夜| e午夜精品久久久久久久| 免费在线观看完整版高清| 中文字幕精品免费在线观看视频| 中文字幕人妻熟女乱码| 日本 av在线| 亚洲av片天天在线观看| 99riav亚洲国产免费| 久久久国产欧美日韩av| 夜夜躁狠狠躁天天躁| 性色av乱码一区二区三区2| 日韩免费av在线播放| 中文在线观看免费www的网站 | 精品午夜福利视频在线观看一区| 日韩欧美三级三区| 天天一区二区日本电影三级| 欧美日韩一级在线毛片| 欧美黑人精品巨大| 91在线观看av| 久久久国产成人免费| 欧美午夜高清在线| 熟妇人妻久久中文字幕3abv| 久久久国产成人免费| 亚洲激情在线av| 久久久久国产精品人妻aⅴ院|