• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructural observations on the terminal penetration of long rod projectile

    2017-12-20 03:04:52KrushnaKumbharPonguruSenthilGogia
    Defence Technology 2017年6期

    Krushna Kumbhar,P.Ponguru Senthil,A.K.Gogia

    Armour Design and Development Division,Defence Metallurgical Research Laboratory,Hyderabad 500058,India

    Microstructural observations on the terminal penetration of long rod projectile

    Krushna Kumbhar*,P.Ponguru Senthil,A.K.Gogia

    Armour Design and Development Division,Defence Metallurgical Research Laboratory,Hyderabad 500058,India

    Long rod projectile Terminal penetration Shear localization Adiabatic shear band Tungsten heavy alloy Armour steel

    Present study focuses on the terminal penetration of tungsten heavy alloy(WHA)long rod penetrator impacted against armour steel at an impact velocity of 1600 m/s.The residual penetrator and armour steel target recovered after the ballistic test have been characterized using optical microscope,scanning electron microscope(SEM)and electron probe micro analyzer(EPMA).Metallurgical changes in target steel and WHA remnant have been analysed.Large shear stresses and shear localization have resulted in local failure and formation of erosion products.Severe plastic deformation acts as precursor for formation of adiabatic shear band(ASB)induced cracks in target steel.Recovered WHA penetrator remnant also exhibits severe plastic deformation forming localized shear bands,ASB induced cracks and shock induced cracks.

    1.Introduction

    Penetration of long rod projectile is a complex phenomenon which involves erosion and deceleration of the rod and erosion and acceleration of the target[1-3].The projectile material,density,impact velocity and the aspect ratio of the projectile are the main factors which affect performance of the projectile against a given target[4].Similarly target material properties and density also influence the penetration.Projectile erosion begins when impact velocity exceeds a critical velocity[2,3].In erosion regime,both the projectile and target are consumed during the course of penetration.Because of erosion,length of the projectile continuously decreases with increasing penetration.When the eroding projectile reaches a minimum L/D ratio,the projectile erosion comes to an end for a given impact velocity[3,5].After reaching this minimum L/D ratio,projectile penetrates the target as a rigid rod.Several experimental and simulation studies have been carried out with different combinations of target and projectile materials and impact velocity to understand the penetration of long rod projectiles[1-9].

    Penetration of long rod projectile in a target takes place mainly in three phases namely transient,steady state(primary)and non steady state(terminal)penetration[8].Transient phase occurs during the initial impact of the projectile with the target generating high pressure and shock waves and lasts for a very short time[3,8].Primary(steady state)penetration contributes almost the entire penetration of the projectile.In this regime,projectile kinetic energy is dissipated in the target as well as the projectile.Failure and flow of target and projectile materials(erosion)opposite to the direction of the penetration occurs creating the final crater.Both the penetration and projectile consumption occur at a constant rate resembling a steady state flow.However,experimental observations have concluded that while this stage is characterised by a steady state,it is not completely hydrodynamic[10].Though contribution of steady state penetration is dominant in long rod penetration,significant length of the penetrator undergoes rigid or terminal penetration at the end[11,12].In terminal phase,projectile erosion stops and the projectile penetrates as a rigid rod.Projectile deceleration occurs and the penetration continues until the projectile kinetic energy is consumed completely.Due to deceleration of the projectile,the pressure at target-projectile interface reduces continuously[3].When the pressure drops below the dynamic yield strength of the target material,penetration comes to an end.Strength of the material plays a major role in this phase of penetration.

    For projectiles with large aspect ratio,the transient phase can be neglected and total penetration can be given by Ref.[3].

    Psis the depth of penetration corresponding to the length(Ls)of the projectile that undergoes erosion andPris the depth of penetration corresponding to the rigid length of the projectile(Lr).At a given impact velocity,the projectile with a certain initial lengthL(L>Lr)starts eroding until it reduces to lengthLr.Upon its length reachingLr,it behaves as a rigid projectile.This rigid penetration resembles penetration of small arms projectiles where the penetration shows a high dependence on strength of the target.

    Though lot of studies have been carried out on steady state and terminal penetration using scaled down tests,experiments involving full scale tests are rare in open literature.Metallurgical changes that occur during penetration can give some insights and clues about the mechanisms of deformation and failure at such high rates of loading.The post ballistic metallurgical studies on the long rod penetration are also limited in literature[4,5,7,13].Present study describes metallurgical observations on recovered tungsten heavy alloy long rod remnant and target steel corresponding to terminal penetration and outlines possible deformation and failure mechanisms in both projectile and target.

    2.Materials and experimental procedure

    Armour steel used in the present study is a medium carbon low alloy steel.The chemical composition of the steel is given inTable 1.Mechanical properties of the steel are shown in Table 2.Projectile used in the test is made of tungsten heavy alloy(WHA)projectile with anL/Dratio of 16.Density and hardness of the WHA projectile are 17.5 g/cc and 510 VHN respectively.The ballistic test was conducted at an impact velocity of 1600 m/s and zero degree angle of attack.Target was a composite of ceramic(Alumina)and steel in front followed by stack of armour steel plates at back.The steel plates in the stack were sufficient in number to provide semiinfinite thickness.The thickness of the composite was kept such that the stack of armour plate at the back side was able to experience steady state penetration.It was also ensured that the transition from steady state to terminal phase occurs in the semi-infinite backing of armour steel.Residual penetrator and the steel crater were cut longitudinally and prepared for metallurgical characterization.2%Nital was used as etchant for etching steel.Different locations in residual penetrator and armour steel crater were observed using optical microscope(OLYMPUS GS-51)and Scanning Electron Microscope)(FEI QUANTA 400)to understand the deformation and failure mechanism.Electron probe micro analysis(EPMA)also has been carried out to understand the compositional changes caused by the penetration in WHA.Micro hardness has been measured with OMNI TECH(MVH-SAUTO-550)at a load of 300 gm.

    3.Results and discussion

    3.1.Initial microstructure of WHA projectile and target steel

    The initial microstructure of the WHA projectile is shown in Fig.1.It consists of tungsten particles embedded in a ductile matrix of W-Ni-Fe-Co.Average size of tungsten particles distributed in the matrix has been estimated as 46±13μm by utilising the image analysis software Image tool 2.0.The average chemical composition of the WHA is given in Table 3.The SEM microstructure of armour steel used for this study is shown in Fig.2.The microstructure exhibits tempered martensite which is characteristic of quenched and tempered heat treatment condition.Fine cementite particles precipitated in the decomposed martensite matrix caused by tempering can also be seen.

    Table 2Mechanical properties of armour steel.

    Table 3Chemical composition of WHA(wt%).

    Table 1Chemical composition of armour steel.

    3.2.General observations at terminal phase

    The cross-section of the crater corresponding to the terminal phase of penetration is shown in Fig.3.It can be seen that the major part of the projectile has been consumed by erosion and a small part of the tail end is left in the crater.TheL/Dratio of the remnant projectile is 1.77.The region of crater surrounding the remnant has been filled with fragments of WHA and steel along with the residues of the fin of projectile.The diameter of the crater surrounding the remnant is smaller compared to the steady state crater diameter.The ratio of crater diameter to that of projectile diameter(Dc/Dp)is observed to be 2.11 and 1.76 for steady state and terminal phase respectively.The stress at the target-projectile interface during steady state penetration is very high and the stress field extends to large distance surrounding the interface leading to target material failure over a large radius and correspondingly increased crater radius.The reduction in crater diameter in terminal phase is due tothe commencement of deceleration of tail end of the projectile and consequent drop in stress at the target-projectile interface[3].This drop leads to reduction in the target erosion and reduced crater diameter.

    For better understanding of projectile-target interaction and failure mechanism in terminal phase,crater has been divided into three different zones for observations as shown in Fig.3.The remnant projectile zone,fragmentation or interaction zone and target deformation zone.The fragmentation zone consists of a mixture of target and projectile fragments.The projectile fragments are the residues of the mushroom head that has formed at the end of the steady state or at the transition from steady state to terminal phase penetration.The detailed microstructural analysis of each zone has been carried out and is discussed below.

    3.3.Microstructure of WHA remnant

    The remnant WHA projectile recovered from the crater is shown in Fig.4(a).Two types of failure mechanisms have been observed in remnant projectile,one due to severe plastic deformation and another due to shock wave propagation.

    3.3.1.Severe plastic deformation and adiabatic shear band induced failure

    The remnant has undergone bulk deformation at the front due to the interaction with the target.Going away from the head,the deformation gradually reduces reaching initial microstructure of the WHA.Fig.4(b)-(e)shows the enlarged view of deformation at different locations of the remnant.The spherically shaped tungsten particles have deformed and elongated into a fibrous shape in the regions of heavy plastic flow.These observations are comparable to the results reported by other investigators[5,9,14,15].

    There were also regions of shear localization in the deformed remnant.Fig.4(b)shows the regions of shear localization in WHA wherelargelocalized strainhas been observed.Many of these shear localized regions have undergone further plastic straining and resulted in adiabatic shear bands as shown in Fig.5.The crack nucleation and propagation in adiabatic shear bands have resulted in fragmentation of the WHA.Similar adiabatic shear band formation has been observed in high strain rate deformation of WHA[16-18].High velocity penetration has induced high strain rate deformation leading to adiabatic shear localization and cracking in remnant WHA.

    Electron Probe Micro Analysis(EPMA)has been done in deformed regionsof WHA remnant.Elemental mappingof different alloying elements in the deformed region of the remnant is shown in Fig.6.The distribution of W,Fe,Ni and Co is given in Fig.6(b)and(c),(d)and(e)respectively.It can be seen that the matrix is made of Fe,Ni,Co and small amount of W which illustrates that there is no change in composition of WHA after severe plastic deformation.Thin layer of Fe rich regions in the front end of the remnant have been observed as shown in Fig.6(c)This is perhaps due to the interaction of the WHA and steel target during penetration.Elemental mapping also helps to visualize the deformation of matrix and tungsten particles separately.The flow of tungsten and matrix can be clearly observed.

    3.3.2.Shock induced cracking and failure

    Fig.7 show cracks which are different from the shear band induced cracks.These cracks have been initiated at the surface of the remnant projectile and propagated inward.They have propagated through the matrix as well as tungsten particles by nucleation and coalescence of voids.This type of failure is observed during shock wave propagation where there is a sudden rise of stress to values higher than the strength of both the tungsten particle and the matrix.These observations are similar to the spall failure observed during shock loading experiments[19].It is likely that the shock waves generated during the initial impact of the projectile on target have travelled along the projectile length and caused this shock induced cracking.The stress decreases during subsequent reverberations of thewave.Similar shock wave induced cracks have also been observed to originate from the tail of the remnant.These cracks are much larger than the cracks that are originating from the sides of the projectile.

    Nucleation of voids during spall failure has been divided in to homogeneous and heterogeneous.Heterogeneous nucleation occurs at heterogeneities in the microstructure such as inclusions,second phase particles etc.The nucleation can happen by fracture of the inclusion,separation of the interface between the matrix and second phase and by fracture or void nucleation in the matrix.Homogeneous nucleation happens at sub microscopic heterogeneities such as low-angle grain boundaries,dislocation tangles etc[20].

    The threshold stress required for heterogeneous nucleation is lower than that of homogeneous nucleation but if the stress is sufficiently high both type of nucleation can occur simultaneously[20].In WHA remnant voids and cracks have been observed in both tungsten particle and matrix.So it is apparent that stress has been high enough to nucleate crack in both tungsten particle and matrix.When the stress drops the failure happens by void nucleation in matrix.Crack propagation takes place by void coalescence.

    3.4.Microstructural changes in penetration debris

    Theregionin-betweentheremnantpenetratorandthe deformed steel target have been filled with WHA and steel fragments as shown in Fig.8.These are erosion debris and have formed at the target projectile interface during steady state erosion and transition from steady state to terminal penetration.

    Comparatively much larger WHA particles were found in the erosion debris than those observed during steady state penetration debris reported[6].This may be due tothe fact that during terminal penetration WHA fragments were seized immediately after it got detached from the WHA rod and did not undergo further flow.The WHA fragments in the debris have shear localized regions,adiabatic shear bands and cracks.These confirm that shear localization occurred in WHA before separation from the main body of penetrator in fragmentation process.There are also steel fragments surrounding the remnant projectile with large deformations which are shown in Fig.8(a)-(d).Severely deformed and disintegrated tungsten particles are present in the interface between fragments as shown in Fig.8(e)and(f).The deformation of steel fragments after etching is shown in Fig.9.Heavy plastic flow has been observed in the steel fragments.The high magnification BSE image of the deformed region is shown in Fig.9(f).Very fine grains have been observed with grain size< 2μm.The large plastic strain associated with temperature rise would have caused dynamic recrystalization leading to grain refinement[13].

    3.5.Microstructural changes in target steel

    During penetration,the target material in front of the mushroom head experiences severe plastic flow and fragmentation leading to the formation of crater.However,target material surrounding the crater also has experienced substantial plastic deformation and it extended radially to a significant distance.This target material surrounding the craterhas undergone severe plastic deformation leading to shear localization and adiabatic shear band induced cracks.The regions immediatelyadjacent to the crater wall have experienced largest strain and going awayfromthe crater wall the target deformation gradually reduces.The optical microstructure of the deformed target is given in Fig.10.The cracks are predominantly initiated due to adiabatic shear bands.Adiabatic shear bands have been observed in high rate loading of high strength steels[21-23].

    Hardness measurements have been taken from the target steel adjacent to the crater wall.In deformed steel the hardness has increased from 320 VHN to 410 VHN.It confirms severe plastic deformation and strain hardening of target steel due to the penetration.Hardness of the adiabatic shear band(ASB)has been measured to be around 520(SD:13)VHN.These adiabatic shear bands does not get etched and thus appear white after etching because of the very fine grains caused by the localized deformation.Similar observations have been reported with AISI 4340 steel during high strain rate testing[24].Existence of very fine grain size caused by the large deformation leads to increase in hardness within the adiabatic shear band due to higher dislocation density and grain boundary area[24].

    4.Conclusion

    Terminal penetration of a tungsten heavy alloy against armour steel has been investigated using remnant projectile and debris recovered from the crater bottom.The metallurgical observations on the terminal penetration is summarised below.

    1)Crater diameter reduced upon entering in to terminal phase from steady state and ratio of crater diameter to that of projectile diameter is 2.11 and 1.76 for steady state and terminal phase respectively.

    2)Crater can be considered to be composed of three different zones such as remnant projectile,fragmentation zone(consisting mixture of WHA and steel debris)and target deformation zone.

    3)In remnant projectile adiabatic shear band induced cracks and shock wave induced crack propagation are the major failure mechanisms.

    4)Fragmentation zone consists of mixture of WHA and steel fragments.LargeWHA fragments arepresent in both sides of the projectile which have probably been part of mushroom head and later got disintegrated into fragments.

    5)The WHA debris in fragmentation zone containing adiabatic shear bands and cracks suggests adiabatic shear induced failure tobeaprominentprojectilefailuremechanism during mushrooming.

    6)Target steel microstructure in fragmentation zone shows evidence of dynamic recrystalization.Target material adjacent to the crater wall experienced heavy plastic deformation and fragmentation due to adiabatic shear band induced cracking.

    Acknowledgements

    The authors are grateful to Defence Research Development Organization(DRDO)for financial support to carry out this work at Defence Metallurgical Research Laboratory,Hyderabad.Also the authors wish to express their gratitude to the Director,DMRL for granting permission to publish this paper.

    [1]Grace FI.Long rod penetration in to targets of finite thickness at normal impact.Int J Impact Eng 1995;16:419-33.

    [2]Tate A.A theory for the deceleration of long rods after impact.J Mech Phys Solids 1967;15:387-99.

    [3]Anderson Jr CE.Dennis Orphal.Analysis of terminal phase of penetration.Int J Impact Eng 2003;29:69-80.

    [4]Gerlach U.Microstructural analysis of residual projectiles-a new method to explain penetration mechanisms.Metall Trans A 1986;17A:435-42.

    [5]Lankford J,Anderson Jr CE,Royal SA,Reigel III JP.Penetration erosion phenomenology.Int J Impact Eng 1996;18:565-78.

    [6]Ponguru Senthil P,Bhav Singh B,Siva Kumar K,Gogia AK.Effect of heat treatment on ballistic performance of an armour steel against long rod projectile.Int J Impact Eng 2015;80:13-23.

    [7]Chen XW,Wei LM,Li JC.Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target.Int J Impact Eng 2015;79:102-16.

    [8]Cristman DR,Gehring JW.Analysis of high-velocity projectile penetration mechanics.J Appl Phys 1996;37:1579-87.

    [9]Magness Jr LS.High strain rate deformation behaviours of kinetic energy penetrator materials during ballistic impact.Mech Mater 1994;17:147-54.

    [10]Stenberg J,Orphal DL.A note on the high velocity penetration of aluminum nitride.Int J Impact Eng 1997;19:647-51.

    [11]Anderson CE,Walker JD,Bless SJ,R Sharron T.On the velocity dependence of the L/D effect for long rod penetrators.Int J Impact Eng 1995;17:13-24.

    [12]Orphal DL,Franzen RR,Charters AC,Menna TL,Piekutowski AJ.Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5-5km/s.Int J Impact Eng 1997;19:15-29.

    [13]Murr LE,Trillo EA,Pappu S,Kennedy C.Adiabatic shear bands and examples of their role in severe plastic deformation.J Mater Sci 2002;37:3337-60.

    [14]Xiaoqing Z,Shukui Li.Liu Jinxu,Self sharpening behaviour during ballistic impact of the tungsten heavy alloy rod penetrators processed by hothydrostatic extrusion and hot torsion.Mater Sci Eng A 2010;527:4881-6.

    [15]Das Jiten,Appa Rao G,Pabi SK,Sankaranarayana M,Sarma Bijoy.Deformation behaviour of a newer tungsten heavy alloy.Mater Sci Eng A 2011;528:6235-47.

    [16]Kim DS,Nemat-Nasser S,Isaacs JB,Lischer D.Adiabatic shear band in WHA in high strain rate compression.Mech Mater 1998;28:227-36.

    [17]Wei Zhigang,Yu Jilin,Hu Shisheng,Li Yongchi.Influence of microstructure on adiabatic shear localization of pre-twisted tungsten heavy alloys.Int J Impact Eng 2000;24:747-58.

    [18]Wenqi Guo,Jinxu Liu,Jia Yang,Shukui Li.Effect of initial tempetature on dynamic recrystallization of tungsten and matrix within adiabatic shear band of tungsten heavy alloy.Mater Sci Eng A 2011;528:6248-52.

    [19]Bless SJ,Tarcza K,Chau R,Taleff E,Persad C.Dynamic fracture of tungsten heavy alloys.Int J Impact Eng 2006;33:100-8.

    [20]Meyers MA,Aimone CT.Dynamic fracture(spalling)of metals.Prog Mater Sci.1983;28:1-96.

    [21]Odeshi AG,Bassim MN,Al-Ameeri S.Effect of heat treatment on adiabatic shear bands in a high strength low alloy steel.Mater Sci Eng A 2006;419:69-75.

    [22]Meyers MA,Wittman CL.Effect of metallurgical parameters on shear band formation in low carbon(0.2 Wt Pct)steels.Metall Trans A 1990;21:3153-64.

    [23]Zurek AK.The study of adiabatic shear band instability in a pearlitic 4340 steel using a dynamic punch test.Metall Mater Trans A 1994;25A:2483-9.

    [24]Polyzois Ioannis.Nabil Bassim.An examination of the formation of adiabatic shear bands in AISI 4340 steel through analysis of grains and grain deformation.Mater Sci Eng A 2015;631:18-26.

    2 February 2017

    in revised form 30 April 2017 Accepted 23 May 2017 Available online 25 May 2017

    ?2017 Production and hosting by Elsevier B.V.on behalf of China Ordnance Society(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Armour Design and Development Division,Defence Metallurgical Research Laboratory,Kanchanbagh,Hyderabad 500058,India.

    E-mail address:krushna@dmrl.drdo.in(K.Kumbhar).

    Peer review under responsibility of China Ordnance Society.

    色哟哟哟哟哟哟| 美女xxoo啪啪120秒动态图 | 久久久久久九九精品二区国产| 少妇被粗大猛烈的视频| 国产精品自产拍在线观看55亚洲| 可以在线观看的亚洲视频| 真实男女啪啪啪动态图| 亚洲精品在线美女| 日韩欧美一区二区三区在线观看| 亚洲精品久久国产高清桃花| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 丰满人妻一区二区三区视频av| 丝袜美腿在线中文| 久久草成人影院| 18+在线观看网站| 国产精品亚洲一级av第二区| 欧美黄色片欧美黄色片| 欧美成狂野欧美在线观看| 黄色丝袜av网址大全| 少妇高潮的动态图| av欧美777| 嫩草影院新地址| 午夜激情欧美在线| 搡老熟女国产l中国老女人| 好男人电影高清在线观看| 精品午夜福利在线看| 18禁裸乳无遮挡免费网站照片| 欧美高清性xxxxhd video| 内射极品少妇av片p| 亚洲精品一区av在线观看| 90打野战视频偷拍视频| 欧美中文日本在线观看视频| 黄色配什么色好看| 久久99热这里只有精品18| 欧美激情在线99| 国产中年淑女户外野战色| 国产探花在线观看一区二区| 国产黄片美女视频| 香蕉av资源在线| 色精品久久人妻99蜜桃| 乱码一卡2卡4卡精品| 变态另类成人亚洲欧美熟女| 久久精品国产清高在天天线| 麻豆国产av国片精品| av在线老鸭窝| 91久久精品电影网| 成年女人永久免费观看视频| 一进一出抽搐动态| 欧美乱色亚洲激情| 久久精品夜夜夜夜夜久久蜜豆| av视频在线观看入口| 午夜激情欧美在线| 天天一区二区日本电影三级| 亚洲美女视频黄频| 亚洲五月天丁香| 亚洲人成网站在线播| 亚洲欧美日韩东京热| 精品人妻视频免费看| 制服丝袜大香蕉在线| 亚洲一区高清亚洲精品| 亚洲国产日韩欧美精品在线观看| 91av网一区二区| 观看美女的网站| 夜夜夜夜夜久久久久| 亚洲无线观看免费| 久久亚洲精品不卡| 99riav亚洲国产免费| 国产 一区 欧美 日韩| 国产视频一区二区在线看| 国产精品久久久久久精品电影| 精品久久久久久久末码| 看免费av毛片| 精品人妻偷拍中文字幕| 深爱激情五月婷婷| 久久伊人香网站| 国语自产精品视频在线第100页| 男女下面进入的视频免费午夜| 亚洲国产精品成人综合色| 国产成人啪精品午夜网站| 网址你懂的国产日韩在线| 久久久久亚洲av毛片大全| 美女高潮喷水抽搐中文字幕| 日韩精品中文字幕看吧| 欧美国产日韩亚洲一区| 欧美高清性xxxxhd video| 高清在线国产一区| 简卡轻食公司| 国产亚洲精品久久久com| 亚洲人与动物交配视频| 久久久国产成人免费| 无人区码免费观看不卡| 欧美zozozo另类| 男人的好看免费观看在线视频| 亚洲五月婷婷丁香| 亚洲人与动物交配视频| 免费在线观看亚洲国产| 99久国产av精品| 乱码一卡2卡4卡精品| av在线老鸭窝| 国产成人a区在线观看| av专区在线播放| 变态另类成人亚洲欧美熟女| 老熟妇乱子伦视频在线观看| 婷婷色综合大香蕉| 亚洲av一区综合| 国产高清有码在线观看视频| 国产精华一区二区三区| 最新在线观看一区二区三区| 99热这里只有精品一区| 免费人成在线观看视频色| 99久久九九国产精品国产免费| 91久久精品电影网| 国产蜜桃级精品一区二区三区| 亚洲性夜色夜夜综合| 在现免费观看毛片| 久久国产精品人妻蜜桃| 看十八女毛片水多多多| 精品久久久久久,| 一区福利在线观看| 好男人电影高清在线观看| 99riav亚洲国产免费| 蜜桃亚洲精品一区二区三区| 级片在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美高清成人免费视频www| 麻豆成人av在线观看| 最好的美女福利视频网| 国产精品爽爽va在线观看网站| 99精品久久久久人妻精品| 中文在线观看免费www的网站| 看十八女毛片水多多多| 亚洲精品成人久久久久久| 中文字幕熟女人妻在线| bbb黄色大片| 色综合婷婷激情| ponron亚洲| 久久久久久久久大av| 亚洲狠狠婷婷综合久久图片| 18美女黄网站色大片免费观看| 99riav亚洲国产免费| 亚洲国产色片| 久久久久精品国产欧美久久久| 91在线观看av| 中文字幕av成人在线电影| 精品午夜福利在线看| 久久九九热精品免费| www.熟女人妻精品国产| 夜夜看夜夜爽夜夜摸| 美女免费视频网站| 一夜夜www| 狂野欧美白嫩少妇大欣赏| 又爽又黄a免费视频| 99国产精品一区二区三区| 日本与韩国留学比较| 国产精品爽爽va在线观看网站| 国产精品美女特级片免费视频播放器| 91麻豆av在线| 日日夜夜操网爽| 韩国av一区二区三区四区| 不卡一级毛片| 长腿黑丝高跟| 久久九九热精品免费| 国产精品美女特级片免费视频播放器| 中文在线观看免费www的网站| 欧美激情国产日韩精品一区| avwww免费| 一夜夜www| 在现免费观看毛片| 色尼玛亚洲综合影院| 欧美高清成人免费视频www| 亚洲第一区二区三区不卡| 精品久久久久久,| 久久精品国产自在天天线| 最近视频中文字幕2019在线8| 禁无遮挡网站| 亚洲精品456在线播放app | 亚洲av中文字字幕乱码综合| .国产精品久久| 午夜免费成人在线视频| 亚洲av一区综合| 热99re8久久精品国产| 天堂av国产一区二区熟女人妻| 97碰自拍视频| 亚洲av日韩精品久久久久久密| 亚洲成人久久爱视频| 99热精品在线国产| 亚洲电影在线观看av| 少妇被粗大猛烈的视频| 嫩草影院新地址| 夜夜夜夜夜久久久久| 亚洲无线观看免费| 久久久久久九九精品二区国产| 成人三级黄色视频| 国产伦人伦偷精品视频| 免费在线观看成人毛片| 可以在线观看毛片的网站| 999久久久精品免费观看国产| 宅男免费午夜| 给我免费播放毛片高清在线观看| 级片在线观看| 国产精品亚洲一级av第二区| 午夜免费成人在线视频| 在线免费观看的www视频| 床上黄色一级片| 亚洲av第一区精品v没综合| 色播亚洲综合网| 美女 人体艺术 gogo| 国产大屁股一区二区在线视频| a级一级毛片免费在线观看| 亚洲 欧美 日韩 在线 免费| 日本免费一区二区三区高清不卡| 色综合亚洲欧美另类图片| 亚洲av电影在线进入| 最后的刺客免费高清国语| 久久99热6这里只有精品| 老女人水多毛片| 欧美三级亚洲精品| 有码 亚洲区| 亚洲精品色激情综合| 有码 亚洲区| 嫩草影院入口| 中文字幕精品亚洲无线码一区| 内地一区二区视频在线| 99久久99久久久精品蜜桃| 成人三级黄色视频| 18美女黄网站色大片免费观看| 欧美3d第一页| 国产av麻豆久久久久久久| 久久久久久九九精品二区国产| 免费av毛片视频| 51午夜福利影视在线观看| 欧美中文日本在线观看视频| 国产成+人综合+亚洲专区| 动漫黄色视频在线观看| 久久精品国产亚洲av香蕉五月| 制服丝袜大香蕉在线| 久久99热6这里只有精品| 午夜日韩欧美国产| 好男人电影高清在线观看| 床上黄色一级片| 精品一区二区三区视频在线| 午夜精品一区二区三区免费看| 久久香蕉精品热| 国产私拍福利视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品久久电影中文字幕| 白带黄色成豆腐渣| avwww免费| 俺也久久电影网| 欧美绝顶高潮抽搐喷水| or卡值多少钱| 国产高清三级在线| 久久99热这里只有精品18| 99久久精品国产亚洲精品| 国产精品亚洲一级av第二区| 欧美黑人巨大hd| 9191精品国产免费久久| 九九久久精品国产亚洲av麻豆| 俺也久久电影网| 成人鲁丝片一二三区免费| 在线国产一区二区在线| 精品一区二区三区人妻视频| АⅤ资源中文在线天堂| 熟女人妻精品中文字幕| 亚洲成av人片在线播放无| 色在线成人网| 男女之事视频高清在线观看| 国产精品一及| 观看美女的网站| 两人在一起打扑克的视频| 精品国内亚洲2022精品成人| 大型黄色视频在线免费观看| 亚州av有码| 男女视频在线观看网站免费| 91午夜精品亚洲一区二区三区 | 国产高清视频在线播放一区| 亚洲自偷自拍三级| 久久天躁狠狠躁夜夜2o2o| 51国产日韩欧美| 国产精品久久视频播放| 99久国产av精品| 少妇高潮的动态图| 亚洲欧美日韩东京热| 美女被艹到高潮喷水动态| 精品一区二区三区人妻视频| 深夜精品福利| 99久久精品国产亚洲精品| 欧美绝顶高潮抽搐喷水| 精品久久久久久久久亚洲 | 宅男免费午夜| 99热这里只有是精品在线观看 | 欧美性猛交黑人性爽| 午夜激情欧美在线| 黄色配什么色好看| 欧美精品国产亚洲| 18禁黄网站禁片午夜丰满| 亚洲三级黄色毛片| 国产爱豆传媒在线观看| 嫩草影院精品99| 欧美3d第一页| 亚洲精品在线美女| 性色av乱码一区二区三区2| 欧美日韩亚洲国产一区二区在线观看| 婷婷亚洲欧美| 美女高潮喷水抽搐中文字幕| 欧美日韩福利视频一区二区| 亚洲av五月六月丁香网| 男女床上黄色一级片免费看| bbb黄色大片| 国产高清三级在线| 老熟妇仑乱视频hdxx| 99国产精品一区二区蜜桃av| 久久人妻av系列| 亚洲一区二区三区色噜噜| 男女之事视频高清在线观看| av专区在线播放| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| 在线观看免费视频日本深夜| 久久精品国产清高在天天线| 一进一出抽搐动态| 日韩国内少妇激情av| 国产免费av片在线观看野外av| 亚洲欧美日韩高清专用| 一个人看的www免费观看视频| 亚洲无线在线观看| 国产精品伦人一区二区| 亚洲中文字幕日韩| 欧美性感艳星| 国产精品电影一区二区三区| 欧美最新免费一区二区三区 | 欧美日韩国产亚洲二区| 97人妻精品一区二区三区麻豆| 色播亚洲综合网| 99精品在免费线老司机午夜| 美女免费视频网站| 亚洲成av人片免费观看| 国产亚洲精品综合一区在线观看| 一级a爱片免费观看的视频| 一区二区三区免费毛片| 国产伦精品一区二区三区四那| 搡女人真爽免费视频火全软件 | 国产精品亚洲一级av第二区| 极品教师在线免费播放| 欧美日韩国产亚洲二区| 高清日韩中文字幕在线| 成人亚洲精品av一区二区| 人妻夜夜爽99麻豆av| 在线观看美女被高潮喷水网站 | 人妻制服诱惑在线中文字幕| 久久中文看片网| 97超级碰碰碰精品色视频在线观看| 精品福利观看| 国产av不卡久久| 亚洲成a人片在线一区二区| 国产成+人综合+亚洲专区| 国产免费av片在线观看野外av| 午夜精品久久久久久毛片777| 黄色配什么色好看| 十八禁网站免费在线| 夜夜夜夜夜久久久久| 国产精品99久久久久久久久| 国产精品免费一区二区三区在线| 97超级碰碰碰精品色视频在线观看| 日本成人三级电影网站| 国产高清有码在线观看视频| 日韩欧美国产在线观看| 午夜福利在线在线| 在现免费观看毛片| 黄色配什么色好看| 俄罗斯特黄特色一大片| 久久人妻av系列| 日韩欧美精品v在线| 欧美乱妇无乱码| 欧美乱色亚洲激情| 国产欧美日韩精品亚洲av| 婷婷丁香在线五月| 1000部很黄的大片| 久久久久久久精品吃奶| 99久久99久久久精品蜜桃| 久久中文看片网| 中出人妻视频一区二区| 成人毛片a级毛片在线播放| 91久久精品国产一区二区成人| 亚洲午夜理论影院| 久久久久久久久久黄片| 蜜桃亚洲精品一区二区三区| 一区二区三区高清视频在线| 久久午夜福利片| 内射极品少妇av片p| АⅤ资源中文在线天堂| 蜜桃久久精品国产亚洲av| 日本免费一区二区三区高清不卡| 99久久无色码亚洲精品果冻| 免费人成在线观看视频色| 精品久久久久久久久亚洲 | 日本免费a在线| 亚洲av一区综合| 亚洲男人的天堂狠狠| 波多野结衣高清无吗| 日本 欧美在线| 午夜日韩欧美国产| 亚洲18禁久久av| 欧美另类亚洲清纯唯美| 91字幕亚洲| 最近视频中文字幕2019在线8| 最近最新中文字幕大全电影3| 无遮挡黄片免费观看| 99在线视频只有这里精品首页| 亚洲欧美日韩东京热| 国产精品自产拍在线观看55亚洲| 国产欧美日韩精品一区二区| 亚洲美女视频黄频| 久久久久性生活片| 欧美区成人在线视频| 两个人视频免费观看高清| 国产亚洲精品av在线| 国产精品一区二区三区四区久久| 99久久成人亚洲精品观看| 精品国产三级普通话版| 欧美中文日本在线观看视频| 91字幕亚洲| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 嫩草影院精品99| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 99久久成人亚洲精品观看| 亚洲人成伊人成综合网2020| 变态另类成人亚洲欧美熟女| 深爱激情五月婷婷| 日日摸夜夜添夜夜添小说| avwww免费| 又爽又黄无遮挡网站| 好男人电影高清在线观看| 欧美乱妇无乱码| 小说图片视频综合网站| 欧美激情在线99| 两性午夜刺激爽爽歪歪视频在线观看| АⅤ资源中文在线天堂| 国产精品永久免费网站| 一级a爱片免费观看的视频| 99热6这里只有精品| 亚洲一区二区三区色噜噜| 最后的刺客免费高清国语| 日韩精品中文字幕看吧| 免费观看人在逋| 欧美日本视频| 九色成人免费人妻av| 久久人妻av系列| 久久精品国产亚洲av香蕉五月| 久久草成人影院| 日韩欧美精品v在线| 精品无人区乱码1区二区| 一区二区三区高清视频在线| 男人和女人高潮做爰伦理| 国语自产精品视频在线第100页| 狠狠狠狠99中文字幕| 国产精品99久久久久久久久| 午夜福利在线观看吧| 三级国产精品欧美在线观看| 999久久久精品免费观看国产| 欧美黑人巨大hd| 久久精品91蜜桃| 在线免费观看不下载黄p国产 | 长腿黑丝高跟| 久久久久久久久久成人| 一边摸一边抽搐一进一小说| 好男人电影高清在线观看| 蜜桃亚洲精品一区二区三区| 黄片小视频在线播放| 午夜视频国产福利| 女人十人毛片免费观看3o分钟| 全区人妻精品视频| 51国产日韩欧美| 五月伊人婷婷丁香| 国产色爽女视频免费观看| 亚洲国产欧美人成| 黄色一级大片看看| 久久久色成人| 亚洲国产精品sss在线观看| 高清在线国产一区| 色哟哟·www| 两性午夜刺激爽爽歪歪视频在线观看| 桃红色精品国产亚洲av| 精品人妻1区二区| 国产久久久一区二区三区| 深夜精品福利| 久久久久久久久久成人| 亚洲欧美清纯卡通| av中文乱码字幕在线| 蜜桃久久精品国产亚洲av| 波多野结衣高清作品| 亚洲一区二区三区不卡视频| 久久天躁狠狠躁夜夜2o2o| 成年女人看的毛片在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲成人中文字幕在线播放| 淫妇啪啪啪对白视频| 深爱激情五月婷婷| 中文亚洲av片在线观看爽| 亚洲人与动物交配视频| 一区福利在线观看| 99久久精品一区二区三区| 欧美成人性av电影在线观看| av在线蜜桃| 婷婷亚洲欧美| av女优亚洲男人天堂| 丁香欧美五月| 国内精品久久久久精免费| 欧美性猛交╳xxx乱大交人| 一级黄色大片毛片| 一级黄片播放器| 男女做爰动态图高潮gif福利片| 美女被艹到高潮喷水动态| 亚洲av熟女| 1000部很黄的大片| 婷婷丁香在线五月| 国产国拍精品亚洲av在线观看| 99国产精品一区二区三区| 成年人黄色毛片网站| 日韩欧美精品v在线| av在线老鸭窝| 偷拍熟女少妇极品色| 久久香蕉精品热| 97超级碰碰碰精品色视频在线观看| 免费av毛片视频| 欧美高清成人免费视频www| 精品久久久久久久末码| 国产精品影院久久| 中文字幕人妻熟人妻熟丝袜美| 90打野战视频偷拍视频| 欧美日韩综合久久久久久 | 色尼玛亚洲综合影院| 色综合站精品国产| 老熟妇乱子伦视频在线观看| bbb黄色大片| 国产蜜桃级精品一区二区三区| 少妇的逼水好多| 久久天躁狠狠躁夜夜2o2o| 波多野结衣高清无吗| 老司机福利观看| 国产国拍精品亚洲av在线观看| 国产毛片a区久久久久| 精品熟女少妇八av免费久了| 草草在线视频免费看| 中文字幕av在线有码专区| 最近最新免费中文字幕在线| 91午夜精品亚洲一区二区三区 | 全区人妻精品视频| 性欧美人与动物交配| 欧美精品国产亚洲| 激情在线观看视频在线高清| 国产成人av教育| 国产欧美日韩一区二区三| 亚洲无线观看免费| 一本一本综合久久| 中文字幕人成人乱码亚洲影| 免费人成在线观看视频色| 亚洲国产精品成人综合色| 又粗又爽又猛毛片免费看| 99久久成人亚洲精品观看| 欧美性猛交╳xxx乱大交人| 亚洲 欧美 日韩 在线 免费| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久av| .国产精品久久| 欧美色欧美亚洲另类二区| 亚洲av免费在线观看| 成人高潮视频无遮挡免费网站| 成人性生交大片免费视频hd| 99久久精品热视频| 亚洲无线观看免费| 欧美色视频一区免费| 一区福利在线观看| 在线播放无遮挡| 久久久久九九精品影院| 一级a爱片免费观看的视频| 可以在线观看毛片的网站| 久久午夜福利片| 午夜福利18| 成人一区二区视频在线观看| 亚洲精华国产精华精| 久久人人精品亚洲av| 人妻丰满熟妇av一区二区三区| 99久久无色码亚洲精品果冻| av中文乱码字幕在线| 高潮久久久久久久久久久不卡| 岛国在线免费视频观看| 97碰自拍视频| 国产成人a区在线观看| 91久久精品国产一区二区成人| 欧美又色又爽又黄视频| 最近最新中文字幕大全电影3| 亚洲七黄色美女视频| 97碰自拍视频| 国产成人a区在线观看| 亚洲黑人精品在线| 99国产极品粉嫩在线观看| 亚洲在线观看片| 毛片一级片免费看久久久久 | 香蕉av资源在线| 日韩国内少妇激情av| 少妇人妻精品综合一区二区 | 久久久久精品国产欧美久久久| 免费观看人在逋| 日本免费一区二区三区高清不卡| 乱码一卡2卡4卡精品| 两个人视频免费观看高清| 国产精品久久久久久亚洲av鲁大| 99热这里只有是精品50| 亚洲欧美日韩卡通动漫| 神马国产精品三级电影在线观看| 精品久久久久久久久久免费视频| 国产精品久久久久久人妻精品电影|