• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control system design of flying-wing UAV based on nonlinear methodology

    2017-12-20 03:04:49JigungLIXinCHENjunLIRongZHANGSchoolofAutomtionNnjingUniversityofAeronuticsAstronuticsNnjingJingsu210016ChinSchoolofElectronicEngineeringNnJingXioZhungUniversityNnjing211171Chin
    Defence Technology 2017年6期

    Ji-gung LI,Xin CHEN,Y-jun LI,Rong ZHANGSchool of Automtion,Nnjing University of Aeronutics&Astronutics,Nnjing,Jingsu,210016 ChinSchool of Electronic Engineering,NnJing XioZhung University,Nnjing,211171 Chin

    Control system design of flying-wing UAV based on nonlinear methodology

    Ji-guang LIa,*,Xin CHENa,Ya-juan LIb,Rong ZHANGaaSchool of Automation,Nanjing University of Aeronautics&Astronautics,Nanjing,Jiangsu,210016 China
    bSchool of Electronic Engineering,NanJing XiaoZhuang University,Nanjing,211171 China

    In this paper,A fluid vector rudder flying-wing UAV is employed as the design object,so as to study the nonlinear design method and flight validation.For the maneuvering flight control,this paper presents a control structure.This control structure included the inner loop linearization decoupling methods to eliminate the known negative coupling and the outer loop backstepping methods for trajectory tracking control.The stability of the control structure has been proved in this paper.Compared with the traditional backstepping control method,this controller increases the inner loop decoupling structure and retains the aerodynamic damping term which makes the linearized system a weak nonlinear system.This structure can not only reduce the conservatism of the outer loop controller design,but also is convenient for engineering implementation.Simulation and flight validation results show that the proposed control scheme is effective.

    1.Introduction

    With the wide application of the UAV and extension of the mission requirements,maneuver ability gradually becomes the basic performance of the UAV[1-3].The ability of maneuver flight not only helps the UAV to evade the land-based air defense,thus improving the survivability of the UAV in the battlefield,but it is also the basic guarantee for carrying out the surveillance and attack of the fast moving target,thus intercepting cruise missile and landing on board the ship[4,5].

    Compared with the conventional aircraft,flying-wing aircraft has advantages on structural strength,aerodynamic and stealth aspects,but it is not suitable for maneuvering flight[6-8].Flyingwing aircraft canceled the tail,thus weakening the course stability.In addition,the short arm of force leads to the condition that the pneumatic rudder control efficiency is not enough.Before the vector control technology has been applied,these limiting factors result in that the flying-wing UAV does not have the ability of maneuvering flight.In recent years,with the development of vector control technology and control theory,as well as the demand for combat environment,the maneuver ability of flying-wing UAV has attracted unprecedented attentions[9,10].

    In designing the control system,because of the special aerodynamic configuration,the coupling between longitudinal and lateral channel in maneuvering flight of the flying-wing UAV is more serious than that in conventional aircraft.At the same time,the complex nonlinearity,hysteresis effect,uncertain disturbances and other problems make the maneuvering control of flying-wing UAV difficult to achieve[11-13].The characteristics of nonlinearity,unsteadiness and strong coupling involved in UAV maneuvering flight result in the lack of typical equilibrium state.The traditional linear control method based on the equilibrium point of the small disturbance linearization is facing a serious challenge[13-15].When the flying-wing UAV is maneuvering at large attack angles,there are problems of nonlinearity,unsteadiness,and strong coupling as well as unsteady effects of mass inability to model and disturbance.It is very difficult for the conventional controller to meet the flight performance requirements.Thus,we need to study a system design method that has strong robustness in accordance with the dynamical features of flying-wing UAVs.Good robust stability and the desired flying qualities are guaranteed in the situation of nonlinearity,strong coupling and model uncertainty.

    Maneuver control is typically a matter of nonlinear closed-loop stability augmentation control,and its main issue is to eliminate the effect of nonlinearity as well as the design the calculationproblems of the controller.In recent years,the rapid development of linearization theory,such as dynamic inversion method,has opened the way for the development of the modern design of nonlinear systems.Literature[16-23]studied the problems of the nonlinear control method applied in the flight control design,which were verified by practical flight test.

    Known from the above literature,the nonlinear control method represented by the dynamic inversion method has made full recognition and development for solving the problem of nonlinear closed-loop stability augmentation control.The main idea of dynamic inversion method is to eliminate the nonlinear influence through the inverse controller,thus enabling the inner loop dynamics of theUAV topresentthe characteristics of the linearsystem(or approximate linear system).

    According to the processing power of the airborne electronic device,this paper presents a control scheme that uses the inner loop linearization decoupling methods to eliminate the known negative coupling,the outer loop backstepping methods for trajectory tracking control.The stability of the control structure has been proved in this paper.Compared with the traditional backstepping control method,this controller increases the inner loop decoupling structure and retains the aerodynamic damping term which makes the linearized system a weak nonlinear system.The structure can not only reduce the conservatism of the outer loop controller design,but also is convenient for engineering implementation.It is validated to be effective design method through l ying-wing UAV flight test.

    Nomenclature

    fTthe thrust of the one fan

    l1the distance of the vector rudder along with fuselage direction to the center of gravity

    δrthe angle of vector rudder

    MAthe torque generated by aerodynamic forces

    Iinertia matrix

    S(ω) ω's anti symmetric matrix

    Θinominal value

    ΔΘiperturbation value

    f0the inertial coupling torque

    Kthe damping torque coefficient nominal value of each channel

    ulinthe control input to design the outer controller

    ??,?ζthe output of the ideal weight matrix of the outer controller

    ?*,ζ*the output of the adaptive law f

    2.The flight test flying wing UAV

    In this paper,the study of flying-wing UAV have thrust vectoring rudder.The UAV and rudder surface as shown in Fig.1(a)and Fig.1(b).

    As shown in the above figures,the UAV is powered by a ducted fan.An adjustable bezel is mounted on the air outlet of the duct,which is used to change the direction of air flow to provide yaw moment and named vector rudder.Two pieces of vector rudder can only be deflected in the same direction.However,due to the layout,twovector rudderonlyonecan deflection for middleof the fuselage and change the direction of airflow.A piece of elevon on the back of wing.

    3.Aerodynamic modeling

    Since the UAV using a special vector rudder,the function of vector rudder is modeling firstly here.Definition:The thrust of the one fan isfT;the distance isl1which the vector rudder along the fuselage directiontothe centerof gravity;Deflection angle of vector rudder isδr.Assuming that the air flows along the bezel,then the lateralforce and yaw moment generatedbythe vector rudderare as follows

    This paper presents a controller fora nonlinear flying-wing UAV.The body- fixed axes,and nonlinear equations of motion for a flying-wing UAV over a flat earth are given by

    Define the state vectors as follows

    Definex4= [x1,x2]T,x5= [x2,x3]T,and the fight dynamic equations(3)-(5)can be rearranged as

    In order to express the inner loop decoupling design conveniently,the attitude equation of the UAV is presented as

    4.Structural design of the controller

    Compared with the conventional layout of the aircraft,the coupling effect of the flying-wing UAV is more serious.Moreover,the flying-wing UAV is unstable and its rudder operation is ineff icient.These factors make it difficult for the flying-wing UAV to guarantee the quality in the maneuver flight.

    In the traditional dynamic inverse decoupling control method,it is expected to eliminate all the nonlinear terms in the UAV dynamic model through the state feedback.These nonlinear terms include aerodynamic force/torque term,inertial coupling term,gravity term and other uncertain terms caused by various disturbances.Some of these terms show very strong nonlinear features,such as the inertial coupling,etc.,which must be linearized for the design of the controller.But the damping term in the aerodynamic torque reflects the inherent damping characteristic of the UAV,which is beneficial tothe stabilityof the dynamic performance of the control system.Therefore,there is no need to eliminate the coupling of this part.Thus,in the process of inverse system design,the damping term can be reserved to obtain the weakly non-linear system by non-linear compensation.This system is a pseudo linear system of time-varying parameters.By retaining the aerodynamic damping characteristics of part of the system,this method that uses the robust control method for further design of the outer loop controller can not only reduce the conservatism of the controller design,but also be easy for engineering realization.Based on this idea,this paper designs the controller structure as shown in Fig.2.

    In the controller structure shown in Fig.2,the aerodynamic database,torque compensation module,torque allocation module and UAV dynamic model comprise the pseudo control object.The linear controller and the pseudo control object connect in series and form a closed loop system that is also a weakly nonlinear system.The closed-loop system is compensated by the robust controller so as to adjust the output error of the ideal model.Thus,the sensitivity problem of the inverse system to the modeling error can be solved.

    The following is the control process of the system:Firstly,according to the current flight status of UAV,the control input is obtained by linear modular to eliminate the non-linear and unsteady aerodynamic torque and inertia coupling torque,and the pseudolinearsystem isobtained bythereal-timetorque compensation.Then,a linear controller is designed for the compensated linear system on the control law.Finally,through utilizing the expected reference model,the closed-loop controller of the flight quality and flight performance is designed by the robust control compensator,which enables the system to have a good operation stability.

    5.Linearization decoupling of attitude equations

    5.1.Inner loop torque compensation

    According to the previous discussion,it can be seen that the decoupling linearization but retaining aerodynamic damping torque can bring many benefits.Therefore,this section will introduce the method of torque compensation and retaining the aerodynamic damping torque.For the controller structure of Fig.2,a more detailed structure of the inner loop nonlinear decoupling controller is shown in Fig.3:

    In order to express conveniently,the attitude equation of the flying wing UAV is expressed as follows

    Where: ω = [p,q,r]T,MAis the torque generated by aerodynamic forces.IandS(ω)are inertia matrix and ω's anti symmetric matrix

    Aerodynamic moments in formula(8)can be expressed as

    Assuming that the aerodynamic moment coefficient and the engine thrust are nonlinear function with time varying parameters

    Taking formula(10)into formula(8),and we get

    The nominal model of the system can be expressed as

    As the damping torque re flects the inherent damping characteristics of the UAV,this part of the torque should be retained in the aerodynamic compensation process.The compensation torque can be expressed as:

    The influence of the inertia coupling torque and the cross coupling torque between the channels can be compensated by the above formula.The coupling between the channels can be avoided when the UAV is maneuvering with large angular velocity.

    Taking formula(10)into formula(9),and we get

    From the equation(14),we can see that the compensation method finally obtains a first-order inertia link.This inertial link retains the inherent damping characteristics of the system.Withulinas the control input to design the outer controller,it can be ensuredthatthesystem couldhaveabetterclosed loop performance.

    5.2.Linearization of attitude equations

    In order to make the system to have a better response to the instruction,the attitude equation of the UAV is linearized to eliminate the influence of the motion coupling in this paper.Herein,the method of input-output linearization based on Lie derivative is presented.The steps of the system linearization are as follows:

    (1)Select the coordinate transformation function set

    which is defined in the neighborhoodxo.

    (2)The system is transformed into m groups of equations:

    After the above coordinate transformation and state feedback,the original system is transformed into a Brunovsky standard system

    The affine non-linear system can be transformed into a standard linear system with the above steps.However,the calculation process is not always easy,especially for the matrix A-1.in formula(19).But it is not difficult to get the analytic formula of the matrix A.Fortunately,the solution of matrix A-1is not necessary.In the actual simulation design,it is not in accordance with the above steps:first is the coordinate transformation,and then state feedback to get the state of the system after the transformation.Afterwards,the original system state can be obtained by inverse coordinate transformation.In practical application,the process of coordinate transformation is totally unnecessary.Only by state feedback can the decoupling of the original system be achieved.Such a design avoids the solution of the matrix A-1and some unnecessary coordinate transformations.If the state of the linear system after transformation is required,it can be obtained by coordinate transformation of the original system.

    According to formula(13),the coordinate transformation function of the system is obtained

    with formula(16),

    For the convenience of expressing the design of the outer-loop controller in the following passage,the post-decoupled attitude equation and the trajectory equation are expressed as follows and named as System 1 and System 2.

    Where, state vectorx1,x2,x3,u∈R3, andx1= [α,β,φ]T,

    x2= [p,q,r]T,x3= [φ,θ,ψ]T,u= [δe,δa,δr,δT]T,x4= [x1,x2]T.

    6.Design of outer loop controller

    The purpose of the outer loop control is to achieve the tracking ofα,β,φ input commands.The outer loop controller is based on the current state of the aircraft and the adaptive law of the input U to output,so that the outputx1of the system can asymptotically track the desired reference inputx1d.

    Leading the derivative of the above formulas,and taking them into formulas(4)and(5),the closed-loop error state equations are as followed

    Known from above two formulas

    Define the ideal control variable of the system Z1 as

    wherek1>0 is the controller design parameter.Because ?*is unknown,the estimated value?? is used here.Hence the actual virtual control input for the system is obtained

    Taking formula(30)into formula(28),and we get

    According to formula(27),the ideal control input of the system is defined as

    Taking them into formula(27),we can obtain

    7.Controller stability analysis

    In order to analyze the stability of the system,we select the following Lyapunov function

    The ?*and ζ*are expressed in the form of a partitioned matrix,and then the above formula(35)can be expressed as

    Taking the derivative of the above functionV(t)over time t,and we will obtain

    The adaptive law of the particle swarm is expressed as followed

    Since the following inequalities are established

    Define ρ=min{2k10,2k20,αi,βi},and formula(40)can be expressed as

    Following are the theorem and the process of proof.

    (1)the statex(t)=[xT1,xT2]Tof the closed-loop system and the adaptive weight??,?ζis bounded:

    the state of the system and the exponential convergence of the compensator are convergent to a bounded compact setΩs,and

    Conclusion 1 can be proven as follows

    Integrate both sides of formula(41)from[0,t],and we can obtain

    Depending on the above formula and formula(36)

    From the above two formulas,formulas(42)and(43)can be obtained.

    Becausez1,z2,x1dare bounded ande t()=x1t()-xdt(),the following formula is available

    Thant is,formula(44)sets up,and conclusion 1 is proved.Conclusion 2 can be proven as follows:From formula(48)and(49)we can obtain

    Table 1Aerodynamic disturbance coefficients.

    The conclusion 2 is proved.

    From formula(45),we can know that by adjusting the magnitudes of thek10,k20,λ1,αi,λ2,βi,the convergence rate and the domain of the convergence of the system can be adjusted.

    8.Simulation and flight validation

    It is known from the above control law design that the purpose of control is to track the α,β,φ.However,due to the airborne equipment can not directly measure the signals of attack angle and sideslip angle,the acceleration and GPS velocity signals are used to calculate the required air flow angle.The calculating formulas are

    In order to verify the robustness of the controller,the aerodynamic disturbance coefficients are selected in the maneuver process.The amplitude of disturbance is shown in the table(see Table 1):

    In this paper,we choose the spiral isokinetic drop maneuver and the continuous rapid of one flying-wing UAV to Simulation toverify the performance of the designed controller.In the following of maneuver simulation results,the red solid lines represent the aerodynamic coefficients without disturbance while the black dashed lines represent the aerodynamic coefficient with disturbance.

    Spiral maneuvering is commonly used in UAV tracking target.In general,the speed of the UAV is greater than the speed of the tracking target motion.In order not to lose track of the target,the UAV often needs to spiral over the target.Spiral isokinetic maneuvering is to reduce the flying height on the basis of the spiral maneuver,and maintain the same flight speed.The maneuver not only requires the UAV to have a good course stability,coordination of turning ability,track tracking capability,but also increases the throttle control to maintain kinetic energy.The simulation results are shown as follows:

    From Fig.4,we can see that the flying-wing UAV has been reduced its height from1500 m to 500 m at the same speed.Flyingwing UAV has no side-slip phenomenon.With/without disturbances,it can be seen that the flying-wing UAV can follow flight instructions in the presence of disturbances.The system has good adaptability to disturbance.

    Typical maneuver action in the flight test process are as follows.Flying wing UAV Ranversman maneuver trajectory and attitude as shown in Fig.5.

    It can be seen from the flight test results that:the energy of the flying-wing UAV is rapidly transformed from the kinetic energy to the potential energy,and the direction of the nose pointing is changed.It can be known from the attitude figure that the turning process of the flying-wing UAV is coordinated.

    Another continuous maneuver flight is also shown in Fig.6.Its combined maneuver flight process is described as follows:Flying-wing UAV climbs rapidly to occupy the height advantage,so as transform the kinetic energy into potential energy,while changing the nose pointing.The Flying-wing UAV began to dive when the potential energy is the maximum,making the potential energy to be translated into kinetic energy and saving energy for the next maneuver flight.When the new flight mode is established,the Flying-wing UAV immediately jumps and turns,with its the nose pointing changing 180°.The continuous maneuver flight is equivalent to have an Immelmann maneuver followed by a Ranversman maneuver.The trajectory and attitude is shown in Fig.6.

    From Fig.6,we can see that,during the flight,the attitude and flight state of UAV is stable.As can be seen from the attitude,the veri fication UAV longitudinal channel and lateral channel is decoupled.The flight test show that the controller designed in this paper is effective.

    9.Conclusion

    With a fluid vector rudder flying-wing UAV as the designed object,this paper has studied the nonlinear design method and done the flight validation.According to maneuvering flight control of flying-wing UAV faces the problem of nonlinearity,unsteadiness and strong coupling,this paper presents a control scheme that uses the inner loop linearization decoupling methods to eliminate the known negative coupling,the outer loop backstepping methods for trajectory tracking control.The stability of the control structure is proved in this paper.Compared with the traditional backstepping control method,the controller increases the inner loop decoupling structure.and retains the aerodynamic damping term in the control structure,which makes the linearized system a weak nonlinear system.The structure can not only reduce the conservatism of the outer loop controller design,but also is convenient for engineering implementation.Simulation results show that the proposed control scheme is effective.

    The control process of the system is as follows:Firstly,according to the current flight status of UAV,the control input is obtained by linear modular to eliminate the non-linear and unsteady aerodynamic torque and the inertia coupling torque,and a pseudo linear system is obtained by the real time torque compensation.Then,a linear controller is designed to the compensated pseudo linear system.Finally,by using the expected reference model,the closed-loop controller of the flight quality and flight performance is designed with one robust control compensator,which makes the system to have good operation stability.From the snake maneuver simulation results,the design scheme is proved to be effective.The flight test indicates that the proposed control scheme is effective.

    [1]L.C.Edward,Longitudinal and lateral-directional coupling effects on nonlinear unsteady aerodynamic modeling form flight data[J],AIAA atmospheric flight mechanics conference and Exhibit,Monterey,CA,5-8Aug2002.

    [2]Alikhan Mir,Naba K,Peyada,Go TiauwHiong.Flight dynamics and optimization ofthree-dimensionalperchingmaneuver.JGuid ControlDyn 2013;36(6):1791-6.

    [3]Guo Yang,Yao Yu,Wang Shicheng.Maneuver control stratergies to maximaze prediction errors in ballistic middle phase.J Guid Control Dyn 2013;36(4):1225-34.

    [4]Zhi Qiang,Cai Yuanli.Energy-management steering maneuver for thrust vecor-controlled interceptors.J Guid Control Dyn 2012;35(6):1798-804.

    [5]Mueller JB,Paul R.Avoidance maneuver and planning incorporating stationkeeping constraints and automatic relaxation.J Aerosp Inf Syst 2013;10(6):306-22.

    [6]Andrew JN,Fernando NU,John Y.Performance studies of shock vector control Iluidic thrust vectoring[R].AIAA 2007:2007-5086.

    [7]Karen AD.Summary of fluidic thrust vectoring research conducted at NASA langley research center[R].AIAA-2003-3800.2003.

    [8]Sadiq MU.Performance analysis and flowfield characterization of secondary injection thrust vector control(SITVC)for a 2DCD nozzle[D].Los Angeles:University of Southern California;2007.

    [9]Mengjie WAND,Eriqitai,Qiang WAND.Numerical simulaton of nozzle pressure ratio effect on vector Performance and separation control for shock vector control nozzle.J Aerosp Power 2015;30(3):527-38.

    [10]Kiranyaz S,Ince T,Gabbouj M.Dynamic data clustering using stochastic approximation driven multi-dimensional particle swarm optimization.Lect Notes Comput Sci 2010;22(10):1448-62.

    [11]Yang Yi,Chen Xin.Transient performance improvement in model reference adaptive control using h? optimal method.J Frankl Inst 2015;(352):16-32.

    [12]Yang Yi,Chen Xin.Transient performance improvement in model reference adaptive control using h? optimal method.J Frankl Inst 2015;(352):16-32.

    [13]Zhu Jihong,Zhang Shangmin,et al.Dynamic characteristics and challenges for control system of super-maneuverable aircraft.Control Theory&Appl 2014;31(12):1650-62.

    [14]Wilson JR.UAV worldwide roundup.Aerosp Am 2005;43(9):26-34.

    [15]Osterhuber R.FCS requirements for combat aircraft-lessons learned for future Designs.STO-AVT-189.In:Workshop on Stability&Control,Portsmouth;October 2011.p.23-5.

    [16]van Soest WR,Chu QP.Combined feedback linearization and constrained model predictive control for entry flight.J Guid Control Dyn 2006;29(2):427-34.

    [17]Sonneveldt L,Chu QP.Nonlinear flight control design using constrained adaptive backstepping.J Guid Control Dyn 2007;30(2):322-36.

    [18]Lee Taeyoung,Kim Youdan.Nonlinear adaptive flight control using backstepping and neural networks controller.J Guid Control Dyn 2001;24(5):675-83.

    [19]Sieberling S,Chu QP.Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction.J Guid Control Dyn 2010;33(6):1732-42.

    [20]MacKunis W,Patre PM.Asymptotic tracking for aircraft via robust and adaptive dynamic inversion methods.IEEE Trans CONTROL Syst Technol 2010;18(6):1448-56.

    [21]Johnson Eric N,Michael A.Turbe.Modeling,control,and flight testing of a small ducted-fan aircraft.J Guid Control Dyn 2006;29(4):769-80.

    [22]Xu Bin,Huang Xiyuan,Wang Danwei.Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation.Asian J Control 2014;16(1):162-74.

    [23]Li Jiguang,Chen Xin,et al.,Control system design study of nonlinear robust Method on Flying wing UAV,J Beijing Univ Aeronautics Astronautics,2017-05-31,Network first publishing.

    29 November 2016

    in revised form 31 May 2017 Accepted 14 June 2017 Available online 20 June 2017

    ?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail address:912646963@qq.com(J.-g.LI).

    Peer review under responsibility of China Ordnance Society.

    国产成人一区二区在线| 国产高清三级在线| 亚洲欧美日韩卡通动漫| 中国国产av一级| 国产精品三级大全| www日本黄色视频网| 波多野结衣高清无吗| 天堂中文最新版在线下载 | 久久精品久久久久久久性| 亚洲国产色片| 亚洲四区av| 日韩欧美精品免费久久| 国产精品久久视频播放| 好男人视频免费观看在线| 亚洲精品影视一区二区三区av| 美女xxoo啪啪120秒动态图| 亚洲精品国产成人久久av| 激情 狠狠 欧美| 亚洲自偷自拍三级| 免费电影在线观看免费观看| 久久精品国产亚洲av香蕉五月| 九九久久精品国产亚洲av麻豆| 26uuu在线亚洲综合色| 亚洲欧洲国产日韩| 热99在线观看视频| 2022亚洲国产成人精品| 久久久久久九九精品二区国产| 悠悠久久av| 又粗又爽又猛毛片免费看| av天堂在线播放| 只有这里有精品99| av在线观看视频网站免费| 国产三级中文精品| 在线观看av片永久免费下载| 22中文网久久字幕| 欧美三级亚洲精品| 精品熟女少妇av免费看| 精品不卡国产一区二区三区| 黄色日韩在线| 一个人看视频在线观看www免费| 久久亚洲国产成人精品v| 欧美日韩国产亚洲二区| 18+在线观看网站| 日韩成人伦理影院| 日韩国内少妇激情av| 国产精品人妻久久久久久| 特级一级黄色大片| 精品少妇黑人巨大在线播放 | 91狼人影院| 熟妇人妻久久中文字幕3abv| 日本熟妇午夜| 国语自产精品视频在线第100页| 黄色日韩在线| 亚洲人成网站在线播放欧美日韩| 亚洲成人av在线免费| 美女脱内裤让男人舔精品视频 | 久久精品国产清高在天天线| 国产精品免费一区二区三区在线| 波多野结衣高清作品| 成年女人永久免费观看视频| АⅤ资源中文在线天堂| АⅤ资源中文在线天堂| 国产国拍精品亚洲av在线观看| 国产精品日韩av在线免费观看| 嫩草影院精品99| 超碰av人人做人人爽久久| 亚洲七黄色美女视频| 国产精品久久久久久av不卡| 久久久久网色| 亚洲成人久久爱视频| 青春草国产在线视频 | 日韩国内少妇激情av| 免费无遮挡裸体视频| 在线天堂最新版资源| 日韩一本色道免费dvd| 亚洲乱码一区二区免费版| 少妇被粗大猛烈的视频| 免费av毛片视频| 免费不卡的大黄色大毛片视频在线观看 | 边亲边吃奶的免费视频| 日日摸夜夜添夜夜添av毛片| 国产毛片a区久久久久| 99久久九九国产精品国产免费| 国产精品国产高清国产av| 成人特级黄色片久久久久久久| 只有这里有精品99| 亚洲综合色惰| 欧美精品国产亚洲| 亚洲欧洲日产国产| a级毛片a级免费在线| 欧美一区二区亚洲| 亚洲五月天丁香| 日韩 亚洲 欧美在线| 高清在线视频一区二区三区 | 精品一区二区三区视频在线| 久久99热6这里只有精品| 国产一级毛片在线| 国产91av在线免费观看| 日韩视频在线欧美| 国产毛片a区久久久久| 全区人妻精品视频| 边亲边吃奶的免费视频| 国产亚洲5aaaaa淫片| 精品久久久久久久久亚洲| 久久久久久伊人网av| 亚洲av成人av| 久久久久久久午夜电影| 听说在线观看完整版免费高清| 女人十人毛片免费观看3o分钟| 69av精品久久久久久| 欧美成人一区二区免费高清观看| 久久午夜福利片| 日韩 亚洲 欧美在线| 亚洲精品456在线播放app| 国产乱人偷精品视频| 久久这里有精品视频免费| 一个人看视频在线观看www免费| 在线观看66精品国产| 日韩av不卡免费在线播放| 免费观看a级毛片全部| 长腿黑丝高跟| 免费看美女性在线毛片视频| 午夜免费激情av| 干丝袜人妻中文字幕| 成人欧美大片| 黄色一级大片看看| 成人毛片60女人毛片免费| 日日啪夜夜撸| 国产一区二区在线观看日韩| 亚洲内射少妇av| а√天堂www在线а√下载| 日韩高清综合在线| 麻豆精品久久久久久蜜桃| 天堂网av新在线| 成人永久免费在线观看视频| 亚洲第一区二区三区不卡| 91午夜精品亚洲一区二区三区| 久久亚洲精品不卡| 久久精品影院6| 性插视频无遮挡在线免费观看| 在线免费观看不下载黄p国产| 日本三级黄在线观看| 99久久精品一区二区三区| 国产精品乱码一区二三区的特点| 成人亚洲欧美一区二区av| 99国产极品粉嫩在线观看| 色吧在线观看| 99九九线精品视频在线观看视频| 亚洲精品影视一区二区三区av| a级毛色黄片| 亚洲在线观看片| 亚洲国产精品合色在线| 夜夜看夜夜爽夜夜摸| 亚洲精品日韩av片在线观看| 高清日韩中文字幕在线| 97在线视频观看| 日本欧美国产在线视频| 人妻久久中文字幕网| 看片在线看免费视频| 不卡视频在线观看欧美| 欧美一区二区精品小视频在线| av国产免费在线观看| 高清日韩中文字幕在线| 69人妻影院| 亚洲国产色片| 中文字幕制服av| 国产成人a区在线观看| 一个人看视频在线观看www免费| 22中文网久久字幕| 一区福利在线观看| 精品午夜福利在线看| 国产男人的电影天堂91| 亚洲七黄色美女视频| 久久综合国产亚洲精品| 免费观看的影片在线观看| 直男gayav资源| 成人永久免费在线观看视频| 成人毛片60女人毛片免费| 草草在线视频免费看| 亚洲七黄色美女视频| 国产精品一区www在线观看| 亚洲一区高清亚洲精品| 成人综合一区亚洲| 亚洲色图av天堂| 国产极品天堂在线| 爱豆传媒免费全集在线观看| 女人十人毛片免费观看3o分钟| 一级黄片播放器| 尤物成人国产欧美一区二区三区| 欧美成人一区二区免费高清观看| 丰满乱子伦码专区| 春色校园在线视频观看| 蜜桃亚洲精品一区二区三区| 精品国内亚洲2022精品成人| 国产黄片美女视频| 最好的美女福利视频网| av又黄又爽大尺度在线免费看 | 男人舔奶头视频| 国产精品国产三级国产av玫瑰| 狠狠狠狠99中文字幕| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久久久免费视频| 黄色一级大片看看| 国产真实伦视频高清在线观看| 亚洲国产欧美人成| 午夜免费激情av| 亚洲欧美精品综合久久99| 国产欧美日韩精品一区二区| 国产黄片美女视频| 国产不卡一卡二| 黄色视频,在线免费观看| 久久久久九九精品影院| 国产v大片淫在线免费观看| 久久久精品大字幕| 伊人久久精品亚洲午夜| 99久久久亚洲精品蜜臀av| 日韩制服骚丝袜av| 欧美日韩乱码在线| 麻豆国产av国片精品| 国产黄色视频一区二区在线观看 | 99热这里只有是精品在线观看| 天堂av国产一区二区熟女人妻| 欧美日韩一区二区视频在线观看视频在线 | 国产久久久一区二区三区| 国产亚洲精品av在线| 日产精品乱码卡一卡2卡三| 国产亚洲91精品色在线| 国内精品宾馆在线| 成人一区二区视频在线观看| 日本黄色视频三级网站网址| 久久亚洲精品不卡| 综合色丁香网| 99热全是精品| 日日摸夜夜添夜夜添av毛片| 91午夜精品亚洲一区二区三区| 国产成人福利小说| 国产精品嫩草影院av在线观看| 级片在线观看| .国产精品久久| 男女下面进入的视频免费午夜| 搡老妇女老女人老熟妇| 欧美3d第一页| 国产探花极品一区二区| 国产精品福利在线免费观看| 深爱激情五月婷婷| 99热这里只有是精品在线观看| 欧美日本视频| 男人舔奶头视频| 99九九线精品视频在线观看视频| 99热6这里只有精品| 国产av麻豆久久久久久久| 我的老师免费观看完整版| av又黄又爽大尺度在线免费看 | 亚洲18禁久久av| 亚洲精品国产av成人精品| 精品久久久久久成人av| 久久久久久久久久成人| 亚洲激情五月婷婷啪啪| 国产一区二区在线av高清观看| 最后的刺客免费高清国语| 99久久人妻综合| 欧美最新免费一区二区三区| 久久精品久久久久久噜噜老黄 | 性插视频无遮挡在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 国内揄拍国产精品人妻在线| 毛片一级片免费看久久久久| 精品日产1卡2卡| 久久鲁丝午夜福利片| 色噜噜av男人的天堂激情| 综合色av麻豆| 麻豆精品久久久久久蜜桃| 久久久久免费精品人妻一区二区| 18禁黄网站禁片免费观看直播| 一夜夜www| 日本在线视频免费播放| 日本成人三级电影网站| 亚洲自偷自拍三级| 1024手机看黄色片| 免费人成在线观看视频色| 国产精品综合久久久久久久免费| 久久人人爽人人爽人人片va| 久久国内精品自在自线图片| 午夜精品一区二区三区免费看| 99久久久亚洲精品蜜臀av| 99在线人妻在线中文字幕| 亚洲av免费高清在线观看| 日韩大尺度精品在线看网址| 国产爱豆传媒在线观看| 亚洲无线在线观看| 国产精品一二三区在线看| 成人永久免费在线观看视频| 美女大奶头视频| 岛国在线免费视频观看| 特大巨黑吊av在线直播| 九草在线视频观看| 日韩欧美一区二区三区在线观看| 最近手机中文字幕大全| 男女那种视频在线观看| 国产高潮美女av| 亚洲精品国产成人久久av| 人妻系列 视频| 国产午夜精品论理片| 91av网一区二区| 嫩草影院新地址| 欧美成人免费av一区二区三区| eeuss影院久久| 久久人人爽人人爽人人片va| 久久午夜亚洲精品久久| 免费观看精品视频网站| 国产高潮美女av| 黄色视频,在线免费观看| 成年免费大片在线观看| 内射极品少妇av片p| 天天躁夜夜躁狠狠久久av| 国产一区亚洲一区在线观看| 亚洲欧美清纯卡通| 日韩视频在线欧美| 一区二区三区高清视频在线| 成人特级av手机在线观看| 欧美色欧美亚洲另类二区| 97超碰精品成人国产| 久久国产乱子免费精品| 69av精品久久久久久| 九九爱精品视频在线观看| 欧美三级亚洲精品| 精品久久久久久久久av| 午夜激情欧美在线| 国产伦理片在线播放av一区 | 色哟哟·www| 日本撒尿小便嘘嘘汇集6| 内射极品少妇av片p| 成人国产麻豆网| 国产亚洲精品久久久com| 麻豆一二三区av精品| 欧美又色又爽又黄视频| 亚洲国产精品成人综合色| 最近最新中文字幕大全电影3| 国产成人精品久久久久久| 男女边吃奶边做爰视频| 午夜激情福利司机影院| 国产成人一区二区在线| 男人舔女人下体高潮全视频| 好男人视频免费观看在线| 最近最新中文字幕大全电影3| 悠悠久久av| 嫩草影院精品99| 老司机福利观看| 欧美三级亚洲精品| 色综合站精品国产| 婷婷色av中文字幕| 看免费成人av毛片| av免费在线看不卡| 亚洲人与动物交配视频| 成人高潮视频无遮挡免费网站| 久久这里只有精品中国| 欧美色视频一区免费| 伦精品一区二区三区| 一区福利在线观看| 亚洲精品国产av成人精品| 午夜视频国产福利| 男人舔奶头视频| 一区二区三区四区激情视频 | 最新中文字幕久久久久| 日韩高清综合在线| 日韩大尺度精品在线看网址| 此物有八面人人有两片| 嫩草影院精品99| 99热这里只有精品一区| 国产成人精品久久久久久| 淫秽高清视频在线观看| 国产精品蜜桃在线观看 | 91麻豆精品激情在线观看国产| 乱系列少妇在线播放| 白带黄色成豆腐渣| 亚洲内射少妇av| 欧美丝袜亚洲另类| 国产精品99久久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 国产精华一区二区三区| 亚洲丝袜综合中文字幕| 国产一区二区三区av在线 | 亚洲欧美日韩东京热| 99热只有精品国产| 美女高潮的动态| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 亚洲国产精品国产精品| 边亲边吃奶的免费视频| 成人午夜高清在线视频| 老师上课跳d突然被开到最大视频| 精品人妻偷拍中文字幕| 91久久精品国产一区二区成人| 亚洲三级黄色毛片| 搡女人真爽免费视频火全软件| 热99re8久久精品国产| 黄色日韩在线| 久久久久久国产a免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产极品精品免费视频能看的| 我要看日韩黄色一级片| 日本三级黄在线观看| 国产亚洲5aaaaa淫片| 18禁裸乳无遮挡免费网站照片| 在线国产一区二区在线| 少妇丰满av| 最近的中文字幕免费完整| av天堂中文字幕网| 久久久久久国产a免费观看| 亚洲图色成人| 此物有八面人人有两片| 好男人视频免费观看在线| 看黄色毛片网站| 久久亚洲精品不卡| 久久精品夜色国产| 精品不卡国产一区二区三区| 91久久精品国产一区二区三区| 亚洲美女搞黄在线观看| 国产三级中文精品| 性插视频无遮挡在线免费观看| 中文字幕av在线有码专区| 菩萨蛮人人尽说江南好唐韦庄 | 欧美一区二区亚洲| 又黄又爽又刺激的免费视频.| 亚洲乱码一区二区免费版| 国产亚洲精品久久久com| 成人高潮视频无遮挡免费网站| 久久久久久久午夜电影| 中文字幕人妻熟人妻熟丝袜美| 日本与韩国留学比较| 国内精品宾馆在线| 中文资源天堂在线| 国产精品福利在线免费观看| 九九热线精品视视频播放| 午夜激情欧美在线| 中国美白少妇内射xxxbb| 此物有八面人人有两片| 天堂√8在线中文| 国产美女午夜福利| 国产精品人妻久久久久久| av天堂在线播放| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| 伦理电影大哥的女人| 久久精品久久久久久噜噜老黄 | 国产精品一及| 久久人人爽人人片av| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看| 国产三级在线视频| 一边亲一边摸免费视频| 毛片女人毛片| 亚洲在线观看片| 久久久久久九九精品二区国产| 久久久久久国产a免费观看| 12—13女人毛片做爰片一| 99久久久亚洲精品蜜臀av| 一区二区三区免费毛片| 中文资源天堂在线| 亚洲精品粉嫩美女一区| 在线播放国产精品三级| 少妇人妻一区二区三区视频| 三级毛片av免费| 熟女电影av网| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| 精品久久国产蜜桃| 国产日韩欧美在线精品| 亚洲欧美成人综合另类久久久 | 成人av在线播放网站| 亚洲成人av在线免费| 免费看美女性在线毛片视频| 美女被艹到高潮喷水动态| 在线免费观看的www视频| 免费黄网站久久成人精品| 久久人人精品亚洲av| 美女 人体艺术 gogo| 悠悠久久av| 午夜福利视频1000在线观看| 大香蕉久久网| 观看美女的网站| 看黄色毛片网站| 亚洲精品色激情综合| 成年av动漫网址| 深夜a级毛片| 少妇人妻精品综合一区二区 | 欧美精品国产亚洲| 老司机福利观看| 2021天堂中文幕一二区在线观| 国产人妻一区二区三区在| 国产精品久久久久久久电影| 女人十人毛片免费观看3o分钟| 亚洲无线观看免费| 成年女人永久免费观看视频| 久久人妻av系列| 国产成人91sexporn| 中文字幕免费在线视频6| 日本与韩国留学比较| 国产真实乱freesex| 你懂的网址亚洲精品在线观看 | 成人无遮挡网站| 精品少妇黑人巨大在线播放 | 欧美性猛交黑人性爽| 丝袜喷水一区| 最新中文字幕久久久久| 久久精品国产自在天天线| 美女cb高潮喷水在线观看| 一个人看的www免费观看视频| 日韩成人av中文字幕在线观看| 久久久久久久久中文| 国产黄a三级三级三级人| 久久久精品大字幕| 在线免费观看的www视频| 观看免费一级毛片| 久久久成人免费电影| 一本精品99久久精品77| 丰满的人妻完整版| 欧洲精品卡2卡3卡4卡5卡区| 精华霜和精华液先用哪个| 亚洲精品456在线播放app| 日韩欧美精品v在线| 麻豆av噜噜一区二区三区| 久久精品人妻少妇| 少妇人妻精品综合一区二区 | 亚洲精品色激情综合| 十八禁国产超污无遮挡网站| 久久精品国产清高在天天线| 99久久成人亚洲精品观看| 一区福利在线观看| 又爽又黄无遮挡网站| 国产精品久久久久久亚洲av鲁大| 午夜激情欧美在线| 国产亚洲5aaaaa淫片| 国产亚洲欧美98| 人人妻人人澡欧美一区二区| 麻豆av噜噜一区二区三区| 小说图片视频综合网站| 久久久久久久久久久免费av| 深爱激情五月婷婷| 91狼人影院| 最近中文字幕高清免费大全6| 婷婷亚洲欧美| 免费人成视频x8x8入口观看| .国产精品久久| 久久国内精品自在自线图片| 永久网站在线| 久久精品国产亚洲av香蕉五月| 亚洲av不卡在线观看| 国产av在哪里看| 国产亚洲欧美98| 深夜a级毛片| 欧美丝袜亚洲另类| 国产午夜精品久久久久久一区二区三区| 毛片女人毛片| 真实男女啪啪啪动态图| 小蜜桃在线观看免费完整版高清| 国产一区二区在线av高清观看| 看片在线看免费视频| 久久久精品94久久精品| 波多野结衣巨乳人妻| 激情 狠狠 欧美| 国产成人一区二区在线| 最近中文字幕高清免费大全6| 久久精品国产亚洲av涩爱 | 亚洲国产精品国产精品| 久久精品国产清高在天天线| av黄色大香蕉| 国产精品国产三级国产av玫瑰| 成人美女网站在线观看视频| 99在线人妻在线中文字幕| 亚洲人成网站在线观看播放| 少妇人妻精品综合一区二区 | 久久久久久国产a免费观看| 午夜免费男女啪啪视频观看| 午夜亚洲福利在线播放| 国产精品国产高清国产av| 一边摸一边抽搐一进一小说| 全区人妻精品视频| 亚洲成人久久爱视频| 午夜福利在线在线| 啦啦啦啦在线视频资源| 一区福利在线观看| 亚洲天堂国产精品一区在线| 国产男人的电影天堂91| 国产精品人妻久久久久久| 免费观看人在逋| 国产白丝娇喘喷水9色精品| 插阴视频在线观看视频| 国产成人精品久久久久久| 熟女人妻精品中文字幕| 国产精品无大码| 成年av动漫网址| 黑人高潮一二区| 久久久久久久久中文| 最近中文字幕高清免费大全6| 色综合色国产| 一本久久精品| 国产极品精品免费视频能看的| 乱系列少妇在线播放| 国产 一区精品| 别揉我奶头 嗯啊视频| 免费不卡的大黄色大毛片视频在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| 免费搜索国产男女视频| av.在线天堂| 99热全是精品| 3wmmmm亚洲av在线观看| 又黄又爽又刺激的免费视频.| 男女边吃奶边做爰视频| 亚洲欧美成人精品一区二区| 亚洲七黄色美女视频| 国产黄片美女视频| 日韩亚洲欧美综合| 亚洲精品久久久久久婷婷小说 |