• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First order sensitivity analysis of magnetorheological fluid damper based on the output damping force①

    2017-12-19 00:39:49KongXiangdong孔祥東LiBinQuanLingxiaoBaiRuxia
    High Technology Letters 2017年4期

    Kong Xiangdong(孔祥東), Li Bin, Quan Lingxiao, Bai Ruxia

    (*College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, P.R.China) (**Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Qinhuangdao 066004, P.R.China)

    First order sensitivity analysis of magnetorheological fluid damper based on the output damping force①

    Kong Xiangdong(孔祥東)***, Li Bin*, Quan Lingxiao②, Bai Ruxia*

    (*College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, P.R.China) (**Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Qinhuangdao 066004, P.R.China)

    With many features, the magnetorheological fluid (MRF) damper is widely applied in the semi-active vibration control system. And sensitivity analysis is an important method to study the influence weight of various parameters on damping force characteristics. A mathematical model of the output damping force on the MRF damper is established by the mechanism modeling method, a first order output sensitivity equation is deduced and the expression of the first order output sensitivity function is obtained. The first-order sensitivity functions of ten design parameters are solved, and the influence degree of system parameters change on the output force of MRF damper is analyzed by comparing the sensitivity index of the parameters. Two sensitivities of vibration velocity and control current are obtained through experiment to prove the other parameters sensitivity analysis conclusion by analogy verification, which provides guidance for the structure optimization design of MRF damper.

    magnetorheological fluid (MRF) damper, output damping force, first order sensitivity analysis, sensitivity index

    0 Introduction

    Vibration is a common phenomenon in the fields of general industry, aerospace, architecture, military and so on[1,2]. If not controlled effectively, vibration will seriously influence the lifetime and reliability of equipments. Therefore, study of vibration control is quite significant[3]. In recent years, with the rapid development of intelligent materials, more and more attention has been paid to realize semi-active vibration by using intelligent materials, such as MRF, with lots of application results.

    The main damping material of a MRF damper is MRF. The damper has the advantages of simple structure, fast response speed, large control range of the damping force, adapting to the control of the wide frequency vibration, without excessive external energy access and with better control effect, so it is widely used[4]. Although overseas and domestic scholars have made great achievements in theoretical, rheological characteristics and technical applications of the MRF damper, research on the sensitivity of the output damping force to each design parameter is less. There are many factors that affect the output damping force of the MRF damper, including damper control current, piston motion velocity, turns of the excitation coil, the effective length of the piston and so on. According to the actual operating condition and structural parameter optimization theory, the influence mechanism of all parameters on the damping characteristics can be studied quantitatively[5]. However, the mathematical model of the MRF damper is so complex that it is difficult to obtain the influence of each parameter on the damping force accurately with the traditional method.

    The sensitivity analysis method can be used to quantitatively analyze the influence weight of each parameter change on the characteristics of the system, so it is applied widely. Myung[6]proposed a sensitivity analysis method based on the finite element-transfer stiffness coefficient method and analyzed the free vibration sensitivity of a rectangular plates structure. Akihiro[7]obtained the intrinsic mode function sensitivity of continuum systems based on scalar Helmholtz equations. Then, they numerically optimized the 1D and 2D vibration problems to design the vibration resonator optimally. A time integration scheme of co-variance sensitivity has been proposed by Rita[8]to evaluate the sensitivity analysis results of dynamic response with respect to structural parameters. Zhao[9]applied a sensitivity analysis method to the research on sensitivity of the mechanical vibration to the parameters in the vibration transmission path, then the vibration reduction design based on the structural parameters was carried out. Liao[10]applied the sensitivity analysis method to the optimal design of the frame structure of the cassava harvester and obtained the optimal design scheme of frame structure with the methods of fuzzy matter-element and entropy weight, improving the working performance. With the modal sensitivity theory, Zou[11]researched the modal sensitivity and mass sensitivity of the sheet metal and frame thickness and effectively solved the problem of severe vibration and noise. Based on the sensitivity analysis method, Guo[12]made a lightweight design of the machine tool mechanism to ensure the rigidity of the machine tool and reduce the manufacturing cost. Therefore, analyzing the damping force of the MRF damper with the sensitivity analysis method can obtain the influence weight of each parameter on the output damping force, which will provide guidance for the optimal design of the MRF damper.

    MRF damper model is so complex that it is difficult to obtain the effect of each parameter on the output damping force. In order to solve this problem, firstly, the damping force mathematical model of the linear MRF damper is established in this paper. Then, based on the sensitivity analysis theory, the first order output sensitivity model of the output damping force is built. The first order output sensitivity functions about these structures or working parameters, such as the damper piston motion velocity and the control current, were set up. Next, numerical simulation was used to compare the influence of these parameters on the output damping force. Finally, piston motion speed and control current, the two parameters which are convenient to carry out experimental study, were selected to verify the accuracy of theoretical analysis.

    1 Establishment of the first order output sensitivity model

    In this paper, based on the Bingham model of MRF, the output damping force mathematical model of the MRF damper is established.The following assumptions are made in the modeling process:

    1) The MRF is incompressible;

    2) The working temperature of MRF ranges from -40℃ to 130℃.The temperature has little effect on the damper performance, so it is not considered;

    3) The MRF has low viscosity when the external magnetic field strength is zero;

    4) There is no residual magnetism in the core material, a small hysteresis loop area, low coercive force, no eddy current and hysteresis loss.

    1.1 Flow analysis of MRF

    Because of the small ratio between the flow gap and the diameter of the damper piston, one might conjectures that the axisymmetric flow field found in the damper can be approximated as flow through a parallel plate, as shown in Fig.1.

    Fig.1 The parallel plate model

    In Fig.1, l denotes the length of damping channel, b denotes the width of cross section, g denotes the gap between the two plates, ν denotes the relative velocity, Δp denotes pressure difference at the two ends of the damping channel.

    In the plate model, the shear stress of MRF is linearly distributed along the plate gap. The flow can be divided into three regions[13]. In region ① and region ③, the shear stress exceeds the yield stress of MRF and begins to flow, called the yield zone. In region②, the shear stress is lower than the yield stress and is the rigid flow zone.The velocity distribution of MRF is shown in Fig.2.

    Fig.2 Velocity distribution in the annular space

    Based on the plane Poiseuille flow[14], the governing equation can be simplified as

    (1)

    The MRF is the Bingham fluid under the external magnetic field. When MRF flows between the parallel plates, the expression is shown as

    (2)

    The relationship between theoretical shear yield stress τyand magnetic induction intensity B can be approximated as

    τy=152B-11.4

    (3)

    The flow velocity in the three regions are represented by u1, u2and u3respectively, and the boundary conditions are as follows:

    In region ①, τ is substituted into Eq. (1), the expression is shown as

    (4)

    Eq. (4) can be calculated according to the boundary conditions, and thus the flow velocity of region ① can be calculated as

    (5)

    Similarly, the flow velocity of region ② is calculated as

    (6)

    and the flow velocity of region ③ is calculated as

    (7)

    Considering that τ(y1)=-τyand τ(y2)=τy, the expression is shown as

    (8)

    (9)

    The thickness of rigid flow zone is expressed as

    (10)

    A non-dimensional factor is introduced as

    (11)

    Then Eq. (11) is substituted into Eqs (8) and (9) as

    (12)

    (13)

    Q is the volume flow rate of MRF in the plate gap, which is expressed as

    (14)

    where, b=π(D+g)

    According to the continuity principle of fluid mechanics, the output damping force of the MRF damper is expressed as

    F=-ΔpA

    (15)

    And there is the following relation

    Q=Av

    (16)

    1.2 Magnetic circuit analysis

    When assuming that the damper core permeability is constant, and ignoring the magnetic flux leakage and friction loss, the relationship among the magnetic reluctance Rm, the flux φ and the magnetic potential Ffcan be expressed as

    Ff=Rmφ

    (17)

    Magnetic potential Ffcan be expressed as

    Ff=NI

    (18)

    where, N is the coil turn’s number, I is the field current.

    The formula of magnetic induction intensity is

    B=μH

    (19)

    where, B is the magnetic induction intensity, μ is the core permeability, H is the intensity of magnetic field (T).

    The magnetic flux is expressed as

    φ=BS

    (20)

    where, S is the cross-sectional area of the iron core.

    Considering from Eq. (17) to Eq. (20), the intensity of magnetic field is expressed as

    (21)

    It is assumed that the average length of the magnetic circuit is L(m), and the relative permeability is μR, the permeability of cylinder material is μ0, so magnetic reluctance Rmcan be expressed as

    (22)

    According to the structural characteristics of the damper iron core, the magnetic circuit is divided into three regions for analysis, as shown in Fig.3.

    Fig.3 Magnetic circuit of magnetizer

    The three regions form a magnet, which makes up a closed magnetic circuit with the working gap. The coil current of the MRF damper consists of the field current and the iron loss current. At the low vibration frequency, the coil current can be seen as the field current, so the magnetic reluctance of each region is expressed as

    (23)

    (24)

    (25)

    The magnetic reluctance of MRF can be approximated as

    (26)

    where, μMRis the relative permeability of MRF, μMR=2.5.

    The total magnetic reluctance is expressed approximately as

    Rm=Rm1+2Rm2+Rm3+RMR

    (27)

    In summary, the damping force formula is

    H3F3+H2F2+H1F+H0=0

    (28)

    where,

    1.3 Establishment of the first order output sensitivity model

    This paper mainly analyzes the output sensitivity of the ten parameters related to the structure and working process of the MRF damper. The output sensitivity equation of each parameter is expressed as

    (29)

    The parameter matrix is expressed as

    α=[α1, α2, α3, α4, α5, α6, α7, α8, α9, α10]

    where, α1is the control current of the MRF damper and α2is the piston motion velocity, which can affect the final output damping force, and the parameters can be adjusted according to actual conditions. Some parameters can affect the shear yield stress, and then affect the output damping force, such as the excitation coil turns α3, the core cross-sectional area α4, the core permeability α5and the apparent viscosity coefficient of the MRF α6. In addition, the gap between outer cylinder and piston cylinder α7, the piston damping ring diameter α8, the piston shaft diameter α9and the piston effective length α10can also affect the output damping force.

    The first-order partial derivative of the parameters from damping force F in Eq. (28) is calculated. Then the first order output sensitivity function of each parameter can be obtained by MATLAB software programming. In the engineering application, the output damping force is controlled by adjusting the control current and the piston motion velocity in most cases[15]. Therefore, this paper focuses on the first order output sensitivity of control current and piston motion velocity.

    The expressions of the control current and the piston motion velocity are expressed as

    (30)

    [6bτl2η2AF2-(6Alη2+3bglη2)F3]

    (31)

    The change in parameters Δα will cause the change ΔF of the output damping force. The first order Taylor expansion of the damping force is shown as

    +higher order items

    (32)

    For a single parameter change Δα, Eq. (32) can be expressed as

    +higher order items

    (33)

    (34)

    2 Simulation analysis of the first order output sensitivity

    2.1 Sensitivity function solution

    Programs were written in MATLAB software based on the calculation of the first order output sensitivity equation. The output sensitivity function curve of the MRF damper output damping force is shown in Fig.4.

    It can be seen that the ten parameters will affect the change of output damping force. Some parameters have a great impact on the system dynamics and a relatively small effect on the system stability in the whole adjustment time, such as α1, α3, α4,α5,α7,α8and α9.These parameters tend to be stable at the end of the sampling time. The change of α2will cause the flow change, flowing from the high pressure chamber to the low pressure chamber in the damper, which results in the variation of the damping force. Changing α6will increase the output damping force at zero magnetic field intensity. With the increase of α10, the length of the damping hole becomes larger and the damping force increases. The magnetic reluctance becomes larger and the intensity of magnetic field decreases, which leads to the decrease of the shear force.Therefore, the three parameters can consistently affect the steady state of the system and the system is ultimately not stable.

    2.2 The sensitivity index

    Two different sensitivity indexes are defined to quantify the influence of parameters α on damping force F intuitively.

    The influence of each parameter on damping force F is measured by the output damping force variation △F of the MRF damper. Ignoring the higher order terms in Eq. (34), the expression can be described as

    (35)

    The maximal value of this percentage is regarded as the peak sensitivity index and the result is expressed by s1.

    (36)

    Fig.4 The sensitivity function curve of each parameter

    (37)

    2.3 Peak sensitivity and mean sensitivity analysis

    According to Eq. (35), when each parameter change reaches 10%, the change percentage of the output damping force is shown in Fig.5.

    Fig.5 The temporal curve of damping force change percentage caused by the parameters

    The peak sensitivity index and the mean sensitivity index of each parameter are obtained by the first order output sensitivity analysis method, and the column is shown in Fig.6.

    Fig.6 Sensitivity index of each parameter

    The conclusions are as follows:

    1) The two sensitivities of these parameters, including α2, α4, α6, α9and α10, are relatively small. The peak sensitivity is less than 10% and the mean sensitivity is less than 10N. Therefore, these parameters have little effect on the output damping force when they vary 10%.

    2) The sensitivity of α1and α8is larger. The peak sensitivity ranges from 10% to 15% and the mean sensitivity is close to 20N. It is shown that the influence of the two parameters change 10% on the output damping force is increased.

    3) For some parameters, the peak sensitivity is greater than 40% and the mean sensitivity is greater than 60N, such as α3, α5and α7. The output damping force changes greatly when the three parameters change by 10%, so these parameters should be considered carefully in the design of the MRF damper.

    4) The sensitivity of α5is the largest. It suggests that the parameter has great influence on the output damping force. In order to avoid the MRF damper damage caused by the excessive damping force, special attention should be paid to the core permeability in the selection of the core material.

    3 Experimental study

    The performance testing system of the experimental platform of MRF damper is shown in Fig.7.

    In this paper, the sensitivity of the piston motion velocity and the control current is studied experimentally. During the experiment, the control current and the piston motion velocity vary by 10% and 20% respectively. The experimental and simulation curves of firstorder output sensitivity is shown in Fig.8.

    Fig.7 The performance testing system experimental platform of MRF damper

    It can be seen that when the control current and the piston motion velocity change 10% and 20% respectively, the change trend is basically consistent with the simulation curve, even if there is a large fluctuation in the experimental curve. Therefore, the sensitivity analysis model and the analysis method established in this paper are accurate.

    4 Conclusion

    In order to solve the problem that it is difficult to obtain the influence of each parameter on the output damping force due to the complex model, the study is carried out based on a linear MRF damper.The effect of the structural parameters and operating parameters on the output damping force is studied by using the first order sensitivity analysis method numerically and experimentally. The conclusions are as follows:

    Fig.8 The curve of simulation compared with the experiment

    (1) The parameters have influence on the output damping force, but the weight of the parameters is different. The parameters include control current, piston motion velocity, excitation coil turns, core cross-sectional area, core permeability, the apparent viscosity coefficient of the MRF, the gap between outer cylinder and cylinder, piston damping ring diameter, piston shaft diameter and piston effective length.

    (2) In the experiment, the change trend of damping force is studied when the control current and the poison speed vary at 10% and 20% individually. The control current change makes the damping force tend to be stable, and the variety of the piston motion velocity makes it change continuously. The first order sensitivity analysis is similar to the experiment results, which proves that the first order sensitivity model and the analysis method are correct.

    (3) Parameters have different influence on the damping force. The excitation coil turns, the core permeability and the gap between outer cylinder and cylinder have the most influence on the damping force, the control current and the piston damping ring diameter take second place. The piston motion velocity, the core cross-sectional area, the apparent viscosity coefficient of the MRF, the piston shaft diameter and the piston effective length have little influence on the damping force.

    [ 1] Li S W, Zhang G X. Development status quo of modern hydraulic technology. Mechanical Engineer, 2009,2: 54-57 (In Chinese)

    [ 2] Quan L X, Kong X D, Yu B, et al. Research status and trends on fluid-structure interaction vibration mechanism and control of hydraulic pipeline. Journal of Mechanical Engineering, 2015, 51(18): 1-6

    [ 3] Liu W, Liu Y S, Jiang Z F, et al. Pulsation reliability analysis of hydraulic power pipelines. Journal of Vibration and Shock, 2011, 30(6): 265-268

    [ 4] Mazlan S A, Ismail I, Zamzuri H, et al. Compressive and tensile stresses of magneto-rheological fluids in squeeze mode. International Journal of Applied Electromagnetics and Mechanics, 2011, 36(4): 327-337

    [ 5] Jia W H, Yin C B, Cao D H. Optimization of hydraulic spool valve based on AMESim/MATLAB. Machine Tool & Hydraulics, 2013, 41(15): 182-183

    [ 6] Myung S C, Jung H B. Sensitivity analysis for free vibration of rectangular plate. Journal of Sound and Vibration, 2013, 332(6): 1610-1625

    [ 7] Akihiro T, Mitsuru K. Sensitivity analysis and optimization of vibration modes in continuum systems. Journal of Sound and Vibration, 2013, 332(6): 1553-1566

    [ 8] Rita G, Francesco T. Structural reliability sensitivities under nonstationary random vibrations. Mathematical Problems in Engineering, 2013: 69-90

    [ 9] Zhao J, Li F, Liu L. Vibration characteristic sensitivity analysis based on finite element for ultra-high pressure pipeline systems. Journal of Vibration and Shock, 2014, 33(10): 148-151

    [10] Liao Y L, Liu S H, Sun Y P, et al. Structural optimization for rack of cassava harvester based on sensitivity analysis. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 56-61

    [11] Wu G M, Shi W K, Liu W, et al. Structural optimization of a light bus body-in-white based on model sensitivity analysis. Journal of Vibration and Shock, 2013, 32(3): 41-45

    [12] Guo L, Zhang H, Ye P Q, et al. Light weight design of machine tool based on sensitivity analysis. Journal of Tsinghua University(Science and Technology), 2011, 51(6): 846-850

    [13] Ma R, Zhu S H, Liang L, et al. Modelling and testing of magnetorheological damper. Journal of Mechanical Engineering, 2014, 50(4): 135-141

    [14] Cao J G, Fu L J, Deng G H, et al. Mechanical properties analysis of automobile magnetorheological fluid absorber. Mining & Processing Equipment, 2005, 33(8):41-44

    [15] Yang Z, Zhu C, Zheng J J, et al. Magnetic field response time analyses in magneto-rheological damper and correction circuit design. Machine Tool & Hydraulics, 2013, 41(5): 22-25

    Kong Xiangdong, born in 1959, Eng. D. professor. He received his Eng. D degree from Yanshan University in 1991 and his Ph. D and M. E. degrees from Yanshan University in 1985. He also received his B. E. degree from Zhejiang University in 1982. He is the Vice President of Yanshan University and the Director of Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control. His research focures on electro-hydraulic servo control system.

    10.3772/j.issn.1006-6748.2017.04.015

    ①Supported by the National Natural Science Foundation of China (No. 51375423, 51505410) and the National Key Basic Research Program (No. 2014CB046400).

    ②To whom correspondence should be addressed. E-mail: lingxiao@ysu.edu.cn

    on May 18, 2017***, Guo Haixin*

    少妇猛男粗大的猛烈进出视频| 十八禁高潮呻吟视频| 成人黄色视频免费在线看| 人成视频在线观看免费观看| 97在线人人人人妻| 亚洲国产欧美日韩在线播放| 99九九在线精品视频| 久久久国产一区二区| 国产精品久久久久久av不卡| 亚洲,一卡二卡三卡| 嫩草影院入口| 免费黄色在线免费观看| 麻豆精品久久久久久蜜桃| 国产黄色视频一区二区在线观看| 女性被躁到高潮视频| 三级国产精品片| 天天躁日日躁夜夜躁夜夜| 一级毛片电影观看| 亚洲av电影在线观看一区二区三区| 天美传媒精品一区二区| 久久精品国产综合久久久| 人妻少妇偷人精品九色| 麻豆乱淫一区二区| 亚洲精品第二区| 咕卡用的链子| 亚洲精品av麻豆狂野| 嫩草影院入口| 老司机影院成人| 欧美 日韩 精品 国产| 18禁动态无遮挡网站| 国产亚洲午夜精品一区二区久久| 久久综合国产亚洲精品| 日本欧美国产在线视频| 亚洲精品国产av蜜桃| 亚洲第一青青草原| 99国产综合亚洲精品| 久久99一区二区三区| 国产熟女午夜一区二区三区| 午夜av观看不卡| 日韩av免费高清视频| 热re99久久国产66热| 精品久久久精品久久久| 国产日韩欧美视频二区| 亚洲国产毛片av蜜桃av| 大香蕉久久网| 欧美日本中文国产一区发布| 亚洲成色77777| 午夜福利网站1000一区二区三区| 欧美精品一区二区免费开放| 免费av中文字幕在线| 我的亚洲天堂| 久久国产亚洲av麻豆专区| 日韩成人av中文字幕在线观看| 爱豆传媒免费全集在线观看| 欧美97在线视频| 涩涩av久久男人的天堂| av视频免费观看在线观看| 久久久国产精品麻豆| 精品国产一区二区三区久久久樱花| 亚洲国产精品一区二区三区在线| 久久久久精品人妻al黑| 免费高清在线观看日韩| 中文天堂在线官网| 男女免费视频国产| 日韩中字成人| 欧美日韩亚洲国产一区二区在线观看 | av免费在线看不卡| 欧美精品av麻豆av| 9191精品国产免费久久| 韩国av在线不卡| 国产亚洲av片在线观看秒播厂| 国产精品二区激情视频| 日韩人妻精品一区2区三区| 日韩一卡2卡3卡4卡2021年| 精品第一国产精品| 国产免费视频播放在线视频| 久久97久久精品| 人妻人人澡人人爽人人| 黄色视频在线播放观看不卡| 国产欧美日韩一区二区三区在线| 一个人免费看片子| 成年动漫av网址| 欧美激情极品国产一区二区三区| 日韩av在线免费看完整版不卡| 少妇被粗大的猛进出69影院| 制服丝袜香蕉在线| 制服诱惑二区| 国产亚洲午夜精品一区二区久久| 久久精品久久精品一区二区三区| a 毛片基地| 久久久久国产精品人妻一区二区| 欧美日韩亚洲高清精品| h视频一区二区三区| 国产一区二区激情短视频 | 久久精品国产鲁丝片午夜精品| 女的被弄到高潮叫床怎么办| 少妇被粗大的猛进出69影院| 丝袜喷水一区| 999久久久国产精品视频| 国产亚洲一区二区精品| 免费看av在线观看网站| 亚洲第一av免费看| 亚洲精品第二区| 2018国产大陆天天弄谢| 在线观看免费日韩欧美大片| av线在线观看网站| 日本av手机在线免费观看| 国产在线免费精品| 久久 成人 亚洲| 亚洲欧美精品自产自拍| 久久人人97超碰香蕉20202| 国产精品99久久99久久久不卡 | 99九九在线精品视频| 黄色毛片三级朝国网站| 精品一区二区免费观看| 91国产中文字幕| 满18在线观看网站| 国产三级黄色录像| 午夜免费成人在线视频| 乱人伦中国视频| 免费在线观看视频国产中文字幕亚洲| 成人18禁高潮啪啪吃奶动态图| 亚洲成国产人片在线观看| 99精品久久久久人妻精品| 99香蕉大伊视频| 琪琪午夜伦伦电影理论片6080| 国产精品免费视频内射| 黄色a级毛片大全视频| 欧美中文日本在线观看视频| 久久香蕉激情| 男人的好看免费观看在线视频 | 韩国av一区二区三区四区| 午夜久久久在线观看| 国产激情久久老熟女| 国产单亲对白刺激| 欧美丝袜亚洲另类 | 美女国产高潮福利片在线看| 这个男人来自地球电影免费观看| 免费观看精品视频网站| 亚洲一区二区三区色噜噜 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av五月六月丁香网| 免费在线观看视频国产中文字幕亚洲| 热re99久久精品国产66热6| 亚洲成人精品中文字幕电影 | 国产一区二区三区在线臀色熟女 | 午夜激情av网站| 国产亚洲精品综合一区在线观看 | 免费在线观看视频国产中文字幕亚洲| 亚洲精品一卡2卡三卡4卡5卡| 最好的美女福利视频网| 午夜福利,免费看| 日韩人妻精品一区2区三区| 99热国产这里只有精品6| av天堂久久9| 日韩大尺度精品在线看网址 | 亚洲国产精品合色在线| 日本五十路高清| 美女午夜性视频免费| 巨乳人妻的诱惑在线观看| 男女下面进入的视频免费午夜 | 香蕉丝袜av| av超薄肉色丝袜交足视频| 丝袜人妻中文字幕| 麻豆av在线久日| 女人被狂操c到高潮| 看片在线看免费视频| 中文字幕精品免费在线观看视频| 亚洲av片天天在线观看| 在线观看免费高清a一片| 亚洲专区字幕在线| 动漫黄色视频在线观看| 亚洲 国产 在线| 精品国产一区二区三区四区第35| 国产不卡一卡二| 新久久久久国产一级毛片| 新久久久久国产一级毛片| 不卡一级毛片| 国产野战对白在线观看| 久久人人精品亚洲av| 午夜视频精品福利| 国产亚洲精品第一综合不卡| av视频免费观看在线观看| 亚洲熟妇中文字幕五十中出 | 夫妻午夜视频| 国产激情欧美一区二区| 人人澡人人妻人| 精品卡一卡二卡四卡免费| 欧美 亚洲 国产 日韩一| 亚洲欧美激情在线| 伊人久久大香线蕉亚洲五| 国产成人系列免费观看| 精品福利观看| 国产精品1区2区在线观看.| 日韩免费高清中文字幕av| 日本免费一区二区三区高清不卡 | 两性午夜刺激爽爽歪歪视频在线观看 | 91国产中文字幕| 日本一区二区免费在线视频| 美女扒开内裤让男人捅视频| 黑人欧美特级aaaaaa片| 亚洲一区二区三区不卡视频| 成人特级黄色片久久久久久久| 久久欧美精品欧美久久欧美| 黄色女人牲交| 亚洲精品粉嫩美女一区| 性色av乱码一区二区三区2| a在线观看视频网站| 国产亚洲欧美98| 狂野欧美激情性xxxx| 我的亚洲天堂| 色婷婷久久久亚洲欧美| 亚洲欧美精品综合一区二区三区| 老汉色∧v一级毛片| 久久国产乱子伦精品免费另类| 亚洲第一青青草原| 精品国产乱码久久久久久男人| 香蕉国产在线看| 国产精品亚洲av一区麻豆| 精品国产乱子伦一区二区三区| 久久精品国产综合久久久| 亚洲国产精品合色在线| 不卡一级毛片| 国产精品影院久久| 在线永久观看黄色视频| 成在线人永久免费视频| 亚洲五月婷婷丁香| 大码成人一级视频| 99精品在免费线老司机午夜| 手机成人av网站| 露出奶头的视频| 女性被躁到高潮视频| 动漫黄色视频在线观看| 成人三级黄色视频| 欧美黄色片欧美黄色片| 亚洲狠狠婷婷综合久久图片| 一区二区三区精品91| 在线av久久热| 人人澡人人妻人| 女性被躁到高潮视频| 日本免费一区二区三区高清不卡 | 午夜影院日韩av| 色综合站精品国产| 在线观看免费日韩欧美大片| 欧美另类亚洲清纯唯美| 日日摸夜夜添夜夜添小说| 一二三四在线观看免费中文在| 成人国产一区最新在线观看| 18禁国产床啪视频网站| 一夜夜www| 99久久国产精品久久久| 亚洲在线自拍视频| 岛国在线观看网站| 99久久人妻综合| 午夜福利,免费看| 99国产精品一区二区蜜桃av| 久99久视频精品免费| 国产精品一区二区在线不卡| 美国免费a级毛片| 欧美日韩亚洲高清精品| 亚洲,欧美精品.| 亚洲七黄色美女视频| 国产成人av教育| 久久久久久久久免费视频了| 欧美精品啪啪一区二区三区| 涩涩av久久男人的天堂| av有码第一页| 女人精品久久久久毛片| 免费在线观看日本一区| 亚洲自偷自拍图片 自拍| 日韩免费高清中文字幕av| 午夜免费成人在线视频| 99在线人妻在线中文字幕| 成人黄色视频免费在线看| 久久 成人 亚洲| 精品一区二区三卡| 少妇裸体淫交视频免费看高清 | 岛国视频午夜一区免费看| 欧美日韩乱码在线| 一级片'在线观看视频| 国产熟女xx| 国产成人欧美| 日韩欧美一区视频在线观看| 久久久国产精品麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久国产精品久久久| 中国美女看黄片| 精品无人区乱码1区二区| 免费观看精品视频网站| 精品国产亚洲在线| 在线天堂中文资源库| 亚洲人成电影观看| 日本三级黄在线观看| 亚洲人成网站在线播放欧美日韩| 免费av毛片视频| 母亲3免费完整高清在线观看| 久久草成人影院| 麻豆一二三区av精品| 日本黄色视频三级网站网址| 天堂动漫精品| 午夜精品久久久久久毛片777| a在线观看视频网站| 法律面前人人平等表现在哪些方面| 久久精品亚洲精品国产色婷小说| 乱人伦中国视频| 午夜福利一区二区在线看| 在线看a的网站| 中国美女看黄片| 欧美久久黑人一区二区| 动漫黄色视频在线观看| 国产亚洲欧美在线一区二区| 夜夜夜夜夜久久久久| 精品福利观看| 男女床上黄色一级片免费看| 日本wwww免费看| 免费日韩欧美在线观看| 久久精品aⅴ一区二区三区四区| 在线观看午夜福利视频| 精品国内亚洲2022精品成人| av天堂在线播放| 免费人成视频x8x8入口观看| xxx96com| 自线自在国产av| 男女之事视频高清在线观看| 亚洲精品国产色婷婷电影| 国产欧美日韩一区二区三区在线| 99精国产麻豆久久婷婷| 免费久久久久久久精品成人欧美视频| 亚洲精品在线美女| 国产三级黄色录像| 夜夜夜夜夜久久久久| 欧美 亚洲 国产 日韩一| 一区福利在线观看| 啪啪无遮挡十八禁网站| 精品第一国产精品| 国产野战对白在线观看| 黄片大片在线免费观看| 99久久99久久久精品蜜桃| 嫩草影视91久久| 久久精品影院6| 久久久久九九精品影院| 欧美另类亚洲清纯唯美| 国产亚洲精品综合一区在线观看 | 咕卡用的链子| 国产精品久久久av美女十八| 黄频高清免费视频| 伦理电影免费视频| 9热在线视频观看99| 伊人久久大香线蕉亚洲五| 人人妻人人爽人人添夜夜欢视频| 51午夜福利影视在线观看| 亚洲人成电影免费在线| 亚洲情色 制服丝袜| 97人妻天天添夜夜摸| 欧美av亚洲av综合av国产av| 成人亚洲精品一区在线观看| 久9热在线精品视频| 制服人妻中文乱码| a级毛片黄视频| 国产精品香港三级国产av潘金莲| 久久久久久大精品| 国产精品成人在线| 欧洲精品卡2卡3卡4卡5卡区| 91在线观看av| 日韩精品青青久久久久久| 国产成年人精品一区二区 | 欧洲精品卡2卡3卡4卡5卡区| 美女扒开内裤让男人捅视频| 亚洲专区字幕在线| 亚洲精品在线观看二区| 国产黄a三级三级三级人| 中文欧美无线码| 熟女少妇亚洲综合色aaa.| 国产亚洲精品一区二区www| 嫩草影视91久久| 国产精品日韩av在线免费观看 | 亚洲狠狠婷婷综合久久图片| 欧美色视频一区免费| 久久久国产一区二区| 久久久久久久久中文| 色哟哟哟哟哟哟| 男女床上黄色一级片免费看| 久久久久九九精品影院| 制服人妻中文乱码| 少妇 在线观看| 国产又色又爽无遮挡免费看| 高清黄色对白视频在线免费看| 首页视频小说图片口味搜索| 女人爽到高潮嗷嗷叫在线视频| 18禁观看日本| 淫秽高清视频在线观看| 日本wwww免费看| 欧美日韩国产mv在线观看视频| 午夜视频精品福利| 美女高潮到喷水免费观看| 99在线视频只有这里精品首页| 久久人妻av系列| 久久国产精品影院| 免费av毛片视频| 久久性视频一级片| 50天的宝宝边吃奶边哭怎么回事| 亚洲人成网站在线播放欧美日韩| 宅男免费午夜| 大香蕉久久成人网| 怎么达到女性高潮| 日本免费一区二区三区高清不卡 | 午夜免费成人在线视频| 90打野战视频偷拍视频| 性少妇av在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美色视频一区免费| 亚洲精品久久午夜乱码| 女同久久另类99精品国产91| www.999成人在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人免费无遮挡视频| 国产亚洲精品第一综合不卡| 国产伦人伦偷精品视频| 色综合欧美亚洲国产小说| 老司机亚洲免费影院| 91成人精品电影| 精品免费久久久久久久清纯| 熟女少妇亚洲综合色aaa.| 亚洲精品中文字幕在线视频| 国产又色又爽无遮挡免费看| 欧美色视频一区免费| 久热爱精品视频在线9| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美一区二区综合| 久久影院123| 侵犯人妻中文字幕一二三四区| 亚洲,欧美精品.| 中文字幕人妻熟女乱码| 精品久久久精品久久久| 一区福利在线观看| 亚洲精华国产精华精| 国产精品一区二区免费欧美| 国产精品综合久久久久久久免费 | 国产精品99久久99久久久不卡| 亚洲激情在线av| 欧美日韩一级在线毛片| 色婷婷久久久亚洲欧美| 色在线成人网| 久久精品91无色码中文字幕| 人人妻人人添人人爽欧美一区卜| 美女国产高潮福利片在线看| 少妇被粗大的猛进出69影院| 黄片大片在线免费观看| 看片在线看免费视频| 搡老岳熟女国产| 一级,二级,三级黄色视频| 亚洲精品av麻豆狂野| 日韩精品中文字幕看吧| 久久天堂一区二区三区四区| 一级作爱视频免费观看| 搡老熟女国产l中国老女人| 搡老岳熟女国产| 黄片大片在线免费观看| 麻豆一二三区av精品| 精品国产一区二区三区四区第35| 中国美女看黄片| 久久国产亚洲av麻豆专区| ponron亚洲| 国产欧美日韩一区二区三| 女警被强在线播放| 精品一区二区三区av网在线观看| 一区二区三区激情视频| 成在线人永久免费视频| 国产区一区二久久| 无限看片的www在线观看| 日韩欧美一区二区三区在线观看| 久9热在线精品视频| 欧美 亚洲 国产 日韩一| 1024香蕉在线观看| 很黄的视频免费| 久热爱精品视频在线9| 亚洲精品粉嫩美女一区| 欧美中文日本在线观看视频| 国产精品亚洲一级av第二区| 久久精品人人爽人人爽视色| 成人亚洲精品av一区二区 | 99精国产麻豆久久婷婷| 国产av一区在线观看免费| 国产欧美日韩一区二区三区在线| 国产成人精品无人区| 一级毛片女人18水好多| 欧美av亚洲av综合av国产av| 大香蕉久久成人网| 久久精品亚洲精品国产色婷小说| 18禁国产床啪视频网站| 日韩一卡2卡3卡4卡2021年| 变态另类成人亚洲欧美熟女 | 国产免费av片在线观看野外av| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| 操美女的视频在线观看| 久久香蕉精品热| 久久中文字幕人妻熟女| 欧美大码av| 色在线成人网| 如日韩欧美国产精品一区二区三区| 午夜91福利影院| 欧美黄色片欧美黄色片| 性欧美人与动物交配| 丰满饥渴人妻一区二区三| 国产伦人伦偷精品视频| 日日夜夜操网爽| 久久亚洲精品不卡| 日本vs欧美在线观看视频| 亚洲三区欧美一区| 中文字幕人妻丝袜制服| 黄色怎么调成土黄色| 在线观看一区二区三区激情| 欧美色视频一区免费| 9热在线视频观看99| 淫秽高清视频在线观看| 制服人妻中文乱码| 亚洲国产精品sss在线观看 | 高清av免费在线| 韩国精品一区二区三区| 这个男人来自地球电影免费观看| 久久久久国产精品人妻aⅴ院| 中文字幕人妻丝袜制服| 日韩大尺度精品在线看网址 | 日韩欧美国产一区二区入口| 最近最新免费中文字幕在线| 91在线观看av| 亚洲熟妇中文字幕五十中出 | 午夜免费成人在线视频| 国产色视频综合| 亚洲色图av天堂| 国产精品av久久久久免费| 91大片在线观看| 99re在线观看精品视频| 久久这里只有精品19| 老司机靠b影院| 亚洲精华国产精华精| 欧美人与性动交α欧美软件| 露出奶头的视频| 国产成人av激情在线播放| 国产高清激情床上av| 高清av免费在线| 精品国产美女av久久久久小说| 亚洲精品国产色婷婷电影| 他把我摸到了高潮在线观看| 桃色一区二区三区在线观看| 亚洲国产欧美日韩在线播放| 中亚洲国语对白在线视频| 一本大道久久a久久精品| 女性生殖器流出的白浆| 级片在线观看| 国产xxxxx性猛交| 亚洲欧美激情综合另类| 99久久久亚洲精品蜜臀av| 日韩大码丰满熟妇| 欧美不卡视频在线免费观看 | 日韩欧美一区视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产一区二区三区视频了| 久久精品成人免费网站| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av成人一区二区三| 一二三四社区在线视频社区8| 丰满人妻熟妇乱又伦精品不卡| 亚洲自拍偷在线| 午夜老司机福利片| 黄色 视频免费看| 日韩高清综合在线| 水蜜桃什么品种好| 亚洲七黄色美女视频| 一本综合久久免费| 久久久久久久午夜电影 | 欧美黑人精品巨大| 成人亚洲精品av一区二区 | 制服诱惑二区| 国产精品亚洲一级av第二区| 人成视频在线观看免费观看| 亚洲欧美一区二区三区久久| av有码第一页| 看免费av毛片| 日韩欧美三级三区| 久久午夜综合久久蜜桃| 久久精品aⅴ一区二区三区四区| 久久久久国产一级毛片高清牌| 精品人妻1区二区| 国产成人av教育| 成人av一区二区三区在线看| 久久性视频一级片| 久久香蕉精品热| 免费看十八禁软件| 亚洲精品一卡2卡三卡4卡5卡| 免费人成视频x8x8入口观看| 欧美精品啪啪一区二区三区| 一进一出好大好爽视频| 久久草成人影院| 国产成人系列免费观看| 午夜精品在线福利| 精品一区二区三区视频在线观看免费 | 国产一卡二卡三卡精品| 久久久国产一区二区| 日本欧美视频一区| 大码成人一级视频| 亚洲第一av免费看| 亚洲第一欧美日韩一区二区三区| 国产野战对白在线观看| 亚洲欧美激情综合另类| 99久久人妻综合| 性少妇av在线| 婷婷精品国产亚洲av在线| 精品国产一区二区久久| 伊人久久大香线蕉亚洲五| x7x7x7水蜜桃| av中文乱码字幕在线| e午夜精品久久久久久久|