• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel conditional diagnosability algorithm under the PMC model①

    2017-12-19 00:45:44GuoChenLiangJiarongLengMingPengShuo
    High Technology Letters 2017年4期

    Guo Chen (郭 晨), Liang Jiarong, Leng Ming, Peng Shuo

    (*School of Electronic and Information Engineering, Jinggangshan University, Ji’an 343009, P.R.China) (**School of Computer and Electronic Information, Guangxi University, Nanning 530004, P.R.China) (***Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P.R.China)

    A novel conditional diagnosability algorithm under the PMC model①

    Guo Chen (郭 晨)*, Liang Jiarong②, Leng Ming***, Peng Shuo*

    (*School of Electronic and Information Engineering, Jinggangshan University, Ji’an 343009, P.R.China) (**School of Computer and Electronic Information, Guangxi University, Nanning 530004, P.R.China) (***Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P.R.China)

    Conditionally t-diagnosable and t-diagnosable are important in system level diagnosis. Therefore, it is valuable to identify whether the system is conditionally t-diagnosable or t-diagnosable and derive the corresponding conditional diagnosability and diagnosability. In the paper, distinguishable measures of pairs of distinct faulty sets with a new perspective on establishing functions are focused. Applying distinguishable function and decision function, it is determined whether a system is conditionally t-diagnosable (or t-diagnosable) or not under the PMC (Preparata, Metze, and Chien) model directly. Based on the decision function, a novel conditional diagnosability algorithm under the PMC model is introduced which can calculate conditional diagnosability rapidly.

    the PMC (Preparata, Metze, and Chien) model, conditionally t-diagnosable, conditional diagnosability, conditional diagnosability algorithm

    0 Introduction

    With the continuous development of large-scale integration, multiprocessor computer systems can consist of hundreds of processors. However, the high complexity of those systems may threaten their reliability. To resolve this issue, in 1967, Preparata, Metze, and Chien presented the definition of system level diagnosis and proposed a so-called PMC model and t-diagnosable[1]. In 1992, Sengupta and Dahbura proposed that the most important necessary and sufficient condition for t-diagnosable was that each pair of distinct faulty sets should be distinguishable, provided the number of faulty vertices was no more than t[2].

    Lai, et al.[3]introduced the conditional diagnosability based on the assumption that all neighbors of any processor in a multiprocessor system could not be fault simultaneously. A system is conditionally t-diagnosable if each pair of conditional faulty sets is distinguishable. Thus far, distinguishability of a pair of distinct faulty sets is widely adopted in the study of t-diagnosable[2,4,5], conditionally t-diagnosable[3,5-9], strong diagnosability[5,9]and g-good-neighbor conditional t-diagnosable[10]. However, lacking of distinguishable measures has caused bad influence.

    In this paper, distinguishable measures of pairs of distinct faulty sets with a new perspective on establishing functions is focused. After a distinguishable function and a decision function are constructed, how to identify whether a system is conditionally t-diagnosable (t-diagnosable) or not under the PMC model is studied. Finally, a novel algorithm is given to derive conditional diagnosability under the PMC model.

    1 Preliminaries

    A multiprocessor computer system consisting of n processors is modeled as a graph where each vertex represents a processor and each edge represents a link. Let G(V, E) be such a graph. An edge (u, v)∈E(G), with u, v∈V(G), is a test edge of G(V, E), which represents a test performed by u on v. The outcome of edge (u, v), denoted by σ(u, v), is “0” if u evaluates v as a pass and “1” if u evaluates v as a fault. An outcome is reliable only if the tester is fault-free. The collection of all test outcomes in G(V, E) is called a syndrome, denoted by σ. Each vertex has two states: fault-free and faulty. If vertex u is identified as fault-free, then denoted by u=0; otherwise u=1.

    In the PMC model, each vertex u is able to test another vertex if there is a link between them. The outcome of a test performed by a fault-free tester is 1 (respectively, 0) if the tested vertex is faulty (respectively, fault-free), whereas the outcome of a test performed by a faulty tester is unreliable. Table 1 summarizes the invalidation rules for the PMC model.

    Table 1 Invalidation rules for the PMC model

    Some known results about faulty set and t-diagnosable are listed below.

    Definition 1[4]: A subset F?V(G) is called a faulty set of a given syndrome σ, for any (u,v)∈E(G) and u∈V(G)-F, σ(u,v)=0 if v∈V(G)-F, σ(u,v)=1 if v∈F.

    For a given syndrome σ, a faulty set F?V(G) is said to be consistent with σ if F can produce σ. Let σ(F) represent the set of syndromes which can be produced if F is the set of faulty vertices.

    Definition 2[1]: A system is a t-diagnosable one if and only if, for a given syndrome σ, all the faulty vertices can be identified that the number of faulty vertices are not more than t.

    Definition 3[2]: Two distinct faulty sets F1and F2are said to be indistinguishable if σ(F1)∩σ(F2)≠?; otherwise, (F1, F2) is distinguishable.

    According to Definition 2 and 3, the following two lemmas about t-diagnosable are proposed.

    Lemma 1[4]: For a pair of distinct faulty sets F1and F2, with F1?V(G) and F2?V(G), (F1, F2) is distinguishable if there exists at least one test from V(G)-(F1∪F2) to F1ΔF2. Operator Δ implies exclusive-or (XOR). Hence, F1ΔF2=(F1-F2)∪(F2-F1). The operator || implies cardinality. Then, |F1| is the cardinality of F1.

    Lemma 2[2]: A system is t-diagnosable if each pair of distinct faulty sets F1and F2is distinguishable, provided that |F1|≤t and |F2|≤t.

    Diagnosability is an important measure of self-diagnostic capability. The diagnosability of system G is the maximum value of t such that G is t-diagnosable, written as t(G).

    Motivated by the deficiency of classical measurement of diagnosability, Lai, et al. presented conditional diagnosability by claiming the property that each vertex had at least one fault-free neighbor[3]. Then, they introduced some useful definitions and lemmas as follows.

    Definition 4[3]: Faulty set F?V(G) is a conditional faulty set only if every vertex of the system has at least one fault-free neighbor.

    Lemma 3[3]: A system is conditionally t-diagnosable if each pair of distinct conditional faulty sets (F1, F2) is distinguishable, with |F1|≤t and |F2|≤t.

    Definition 5[3]: The conditional diagnosability of system G is the maximum value of t that G is conditionally t-diagnosable, denoted as tc(G).

    In this paper, an undirected diagnosable system is adopted, which assumes that every test edge is bidirectional. The undirected diagnosable system is a special diagnosable system. An arbitrary edge (u,v) of an undirected diagnosable system implies that u can test v and v can test u too.

    2 Distinguishable measure of pairs of distinct faulty sets

    As mentioned above, t-diagnosable and conditionally t-diagnosable are closely related to the distinguishability of pairs of distinct faulty sets. Therefore, an interesting question arises here: how to identify whether two distinct faulty sets are distinguishable or not. In this section, some important theorems and lemmas about distinguishable measures of two distinct faulty sets will be presented.

    Theorem 1: Let F1and F2be two distinct faulty sets of an undirected diagnosable system, (F1, F2) is distinguishable, then there exists at least one undirected edge (u, v), such (u+v)|F1+(u+v)|F2=1. (u+v)|Fxis the sum of u and v when Fxis the set of faulty vertices, (u+v)|Fx=(u)|Fx+(v)|Fx, (u)|Fx=0 if u?Fx, and (u)|Fx=1 if u∈Fx. According to the definition of (u+v)|Fx, (u+v)|F1=1 (or (u+v)|F2=1) implies that u+v=1, which means one of {u,v} is fault-free and the other is faulty, when F1(or F2) is the current faulty vertices set.

    Proof: This theorem is proved by contradiction. For each undirected edge (u,v) of the system, it is assumed (u+v)|F1+(u+v)|F2≠1. Without loss of generality, there exists 7 cases. As shown in Table 2, only case 2 lacks the possibility of satisfying σ(u,v)|F1=σ(u,v)|F2and σ(v,u)|F1=σ(v,u)|F2, which means σ(F1)∩σ(F2)=?.

    According to (u+v)|F1+(u+v)|F2≠1, case 2 will not appear in the system. Therefore, the system has the possibility of satisfying σ(u,v)|F1=σ(u, v)|F2and σ(v,u)|F1=σ(v,u)|F2, which implies σ(F1)∩σ(F2)≠?. According to Definition 3, (F1, F2) is an indistinguishable pair of faulty sets, which contradicts the assumption. The theorem follows.

    It is easy to prove that (u+v)|F1+(u+v)|F2=1 is another form of the existence of at least one test edge from V-(F1∪F2) to (F1△F2). Therefore, Theorem 1 is also proved by Lemma 1.

    Table 2 The value of (u+v)|F1+(u+v)|F2underall possible scenarios

    Case 1

    Case 2

    Case 3

    Case 4

    Case 5

    Case 6

    Case 7

    According to Theorem 1, an important distinguishable function is presented which can identify whether a pair of faulty sets is distinguishable or not.

    According to Definition 6, D(Fi, Fj)=D(Fj, Fi) is got. To avoid double-counting, i

    Lemma 4: D(F1,F2)=0 represents that (F1, F2) is distinguishable; otherwise, (F1, F2) is indistinguishable.

    According to Lemma 2 and Lemma 3, t-diagnosable and conditionally t-diagnosable are tied to distinguishability of pairs of distinct faulty sets and conditional faulty sets, respectively.

    Next, a decision function will be provided which can decide whether the system is t-diagnosable (or conditionally t-diagnosable).

    Lemma 5: J(F1,F2,…,Fm)=0 represents the fact that the system is t-diagnosable (or conditionally t-diagnosable), where F1,F2,…,Fmare all the possible faulty sets (or conditional faulty sets) with |F1|,|F2|,…,|Fm|≤t; otherwise, the system is not t-diagnosable (or conditionally t-diagnosable).

    Proof: By Definition 7, J(F1,F2,…,Fm)=0 means D(Fi, Fj)=0 for 1≤i

    The decision function J(F1,F2,…,Fm) can be used in both t-diagnosable systems and conditionally t-diagnosable systems. The only difference is whether F1,F2,…,Fmare all the possible faulty sets or all the possible conditional faulty sets.

    3 A novel conditional diagnosability algorithm under the PMC model

    The conditional diagnosability algorithm under the proposed PMC model is based on Theorem 1 and decision function J(F1,F2,…,Fm). The effectiveness of this conditional diagnosability algorithm has been confirmed by Lemma 5. Above all, all the possible conditional faulty sets of the system must be derived. Then, the decision function J(F1,F2,…,Fm) is called to identify whether the system is conditionally t-diagnosable or not and then obtain conditional diagnosability. The new algorithm can be outlined as follows:

    Step 1: Construct conditional faulty set equations.

    For each vertex u∈V, we set Γ(u)={u′∈V|(u,u′)∈E}. According to the definition of conditional diagnosability, Γ(u) has at least one fault-free neighbor that can be denoted by Γ(u)=u1u2…uq=0. The equations of all the vertices in the system compose the conditional faulty set equations.

    Step 1 can be described by the following pseudocode.

    Input:G(V,E)Output:Theconditionalfaultysetequations1 foreveryvertexu∈V(G)2 ComputeΓ(u)={u1,u2,…,uq}3 Tobuildequation∏qi=1ui=04 endfor5 Collectsallequationstoformconditionalfaultysetequa?tions6 returntoStep2

    Step 2: Convert each equation of the conditional faulty set equations into a relational table.

    For example, the equation x1x2…xq=0 means that there exists at least one vertex “0”. The relational table corresponding to x1x2…xq=0 is Table 3, which consists of 2q-1 tuples.

    Table 3 The relational table corresponds to x1x2…xq=0

    Step 2 can be described as follows:

    Input:ConditionalfaultmodelequationsOutput:RelationaltablesX1,X2,…,Xm1 foreveryequationofequations2 TransformequationintoarelationtableXi3 i=i+14 endfor5 returntoStep3

    Step 3: Derive all the possible conditional faulty sets.

    After all the conditional faulty set equations have been converted into relational tables, all the possible conditional faulty sets in this step will be derived. Let all of the relational tables be X1, X2,…, Xr.

    First of all, empty relational table X is defined. If relational tables X and X1have one or more fields in common, then the two tables are joined as a new relational table X by natural join (??), denoted by X=X??X1, otherwise, they are joined by Cartesian product (×), denoted by X=X×X1. Repeat this step from X2to Xr. The final new relational table X is the set of all the possible conditional faulty sets, denoted by X={F1, F2,…,Fm}.

    The pseudocode of this step is described as follows:

    Input:RelationaltablesX1,X2,…,XrOutput:AllthepossibleconditionalfaultysetsX1 forifrom1tor2 IFthereexistscommonfieldsbetweenXandXi3ThenX=X??Xi4ElseX=X×Xi5 endif6 endfor7 returntoStep4

    Step 4: Calculate the sum of the two adjacent vertices of each undirected test edge under different conditional faulty sets and D(Fi,Fj).

    The pseudocode of this step is given below.

    Input:AllthepossibleconditionalfaultysetsXOutput:Thesumofthetwoadjacentverticesofeachundi?rectedtestedgeunderdifferentconditionalfaultysetsandD(Fi,F(xiàn)j),1≤i

    Step 5: Call the decision function J(F1, F2,…,Fp) to determine whether the system is conditionally t-diagnosable or not and derive tc(G).

    Let all those conditional faulty sets which have less than i faulty vertices be F1, F2,…, Fp. J(F1, F2,…, Fp)=0 represents the system is conditionally t-diagnosable, with t=i. tc(G) is the maximum value of t.

    Step 5 can be described by the following pseudocode.

    Input:D(Fi,F(xiàn)j),1≤i

    Illustrated by the example of Fig.1, conditional faulty set equations can be constructed as Eq.(1) then to obtain all the relational tables as shown in Table 4. Finally, the new relational table X can be got by X=X1×X2??X3??X4??X5. The result of X is shown in Table 5.

    As shown, there are 11 conditional faulty sets, where F1has no faulty vertex, each conditional faulty set of {F2, F3,…, F6} has only one faulty vertex, and each conditional faulty set of {F7, F8,…, F11} has two faulty vertices. The maximum number of faulty vertices of all the possible conditional faulty sets is 2. That is to say, tc(G)≤2. The sums of the two adjacent vertices of each undirected test edge under different conditional faulty sets are shown in Table 6. And D(Fi, Fj)=0 for 1≤i

    Fig.1 A system consisting of 5 vertices

    (1)

    Table 4 Relational tables corresponding to Eq. (1)

    4 Conclusion

    Conditional diagnosability is a new measure of diagnosability which claims that each vertex has at least one fault free neighbor. Therefore, all the fault processors can be identified if the number of fault processors in a system is less than the conditional diagnosability and any faulty set cannot contain all neighbors of any processor . As a result a conditional diagnosability algorithm is more important, which can determine conditional diagnosability of any system. With the continuous development of large-scale integration, multiprocessor systems may have hundreds of processors, especially in supercomputer systems,high-performance parallel computing systems and grid systems, which areusually based on an underlying bus structure, or a kind of interconnection networks. However, the high complexity of these systems may threaten their reliability. Hence, an efficient conditional diagnosability algorithm has important theoretical significance and application value, which can be used to evaluate the reliability of multiprocessor systems.

    Table 5 All the conditional faulty sets in X

    Table 6 The sums of the two incident vertices

    Table 7 The results of D(Fi, Fj), for 1≤i

    In this paper, the distinguishable measure of pairs of distinct faulty sets have be investigated. By theoretical deduction, an effective decision function J(F1,F2,…,Fm) and a novel conditional diagnosability algorithm are presented successfully which can identify whether the system is conditionally t-diagnosable or not directly and obtain tc(G) conveniently under the PMC model.

    [ 1] Preparata F P, Metze G, Chien R T . On the connection assignment problem of diagnosable systems. IEEE Transactions on Electronic Computers, 2006, 16(6): 848-854

    [ 2] Sengupta A, Dahbura A T. On self-diagnosable multiprocessor systems: diagnosis by the comparison approach. IEEE Transactions on Computers, 1992,41(11):1386-1396

    [ 3] Lai P L, Tan J J, Chang C P, et al. Conditional diagnosability measures for large multiprocessor systems. IEEE Transactions on Computers,2005, 54(2):165-175

    [ 4] Dahbura A T, Masson G M. An 0(n2.5) fault identification algorithm for diagnosable systems. IEEE Transactions on Computers, 1984, C-33(6):486-492

    [ 5] Zhu Q, Guo G D, Wang D. Relating diagnosability, strong diagnosability and conditional diagnosability of strong networks. IEEE Transactions on Computers, 2014,63(7):1847-1851

    [ 6] Yang M C. Analysis of conditional diagnosability for balanced hypercubes. In: Proceedings 2012 International Conference on IEEE, of the Information Science and Technology, Wuhan, China, 2012. 651-654

    [ 7] Xu M, Thulasiraman K, Hu X D. Conditional diagnosability of matching composition networks under the PMC model. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56(11): 875-879

    [ 8] Zhu Q. On conditional diagnosability and reliability of the BC networks. The Journal of Supercomputing, 2008, 45(2):173-184

    [ 9] Hsieh S Y, Tsai C Y, Chen C A. Strong diagnosability and conditional diagnosability of multiprocessor systems and folded hypercubes. IEEE Transactions on Computers, 2013, 62(7):1472-1477

    [10] Peng S L, Lin C K, Jimmy J M, et al. The g-good-neighbor conditional diagnosability of hypercube under PMC model. Applied Mathematics and Computation, 2012,218(21):10406-10412

    Guo Chen, was born in 1979. He is a Ph.D candidate of Guangxi University. He received his M.S. degree in computer science from Guanxi University in 2005. He received his B.S. degree of computer science from Beijing Business and Technology University in 2001. His research interests include artificial intelligence and interconnection network.

    10.3772/j.issn.1006-6748.2017.04.006

    ①Supported by the National Natural Science Foundation of China (No. 61562046) and Science and Technology Project of Jiangxi Provincial Education Department (No. GJJ150777, GJJ160742).

    ②To whom correspondence should be addressed. E-mail: 13977106752@163.com

    on Mar. 6, 2017**

    最近手机中文字幕大全| 色播在线永久视频| 亚洲综合色网址| 亚洲欧洲国产日韩| 欧美人与性动交α欧美精品济南到 | 久久久久久久久久久久大奶| 欧美老熟妇乱子伦牲交| 午夜福利视频在线观看免费| av线在线观看网站| 久久久久久人人人人人| 午夜日韩欧美国产| 国产免费视频播放在线视频| 亚洲精品久久午夜乱码| 在线观看国产h片| 国产男女内射视频| av又黄又爽大尺度在线免费看| 免费观看a级毛片全部| 人成视频在线观看免费观看| 寂寞人妻少妇视频99o| 免费大片黄手机在线观看| 在线观看免费视频网站a站| av在线app专区| 纯流量卡能插随身wifi吗| 国产亚洲一区二区精品| 在线免费观看不下载黄p国产| 亚洲国产最新在线播放| 嫩草影院入口| 午夜日韩欧美国产| 99久久综合免费| 性色avwww在线观看| 免费观看无遮挡的男女| 伦理电影免费视频| 亚洲国产av新网站| 日韩精品有码人妻一区| 日本色播在线视频| 最黄视频免费看| 成人国产麻豆网| 少妇人妻 视频| 亚洲美女视频黄频| 欧美精品一区二区免费开放| 亚洲精品日韩在线中文字幕| 一级,二级,三级黄色视频| 男女边摸边吃奶| 丝袜人妻中文字幕| 亚洲av中文av极速乱| 亚洲精品,欧美精品| 亚洲激情五月婷婷啪啪| 电影成人av| 亚洲国产精品一区二区三区在线| 精品国产露脸久久av麻豆| www.av在线官网国产| 深夜精品福利| 欧美激情 高清一区二区三区| 国产成人精品一,二区| 一边摸一边做爽爽视频免费| 国产 精品1| 9191精品国产免费久久| 久久久久久久精品精品| 人人妻人人添人人爽欧美一区卜| 亚洲欧洲日产国产| 亚洲av福利一区| 日日撸夜夜添| 最新中文字幕久久久久| 91aial.com中文字幕在线观看| 亚洲av中文av极速乱| 亚洲精品自拍成人| 成年美女黄网站色视频大全免费| 久久女婷五月综合色啪小说| 捣出白浆h1v1| 99国产精品免费福利视频| 日韩人妻精品一区2区三区| 在线观看免费日韩欧美大片| 免费久久久久久久精品成人欧美视频| 韩国av在线不卡| 18禁国产床啪视频网站| 免费观看a级毛片全部| 国产av国产精品国产| 欧美 日韩 精品 国产| 欧美激情极品国产一区二区三区| 久久久久久伊人网av| 人妻人人澡人人爽人人| 久久狼人影院| 国产福利在线免费观看视频| 成人18禁高潮啪啪吃奶动态图| 亚洲精品第二区| 国产精品国产av在线观看| 亚洲精品视频女| 亚洲国产精品一区三区| 韩国高清视频一区二区三区| www.av在线官网国产| 久久久精品国产亚洲av高清涩受| 2021少妇久久久久久久久久久| 一级爰片在线观看| 中文欧美无线码| 我的亚洲天堂| www.自偷自拍.com| 精品福利永久在线观看| 中国国产av一级| 精品国产超薄肉色丝袜足j| 亚洲,欧美,日韩| 日本午夜av视频| 日日爽夜夜爽网站| 久久精品国产亚洲av天美| 女性生殖器流出的白浆| 2018国产大陆天天弄谢| 妹子高潮喷水视频| 丝袜美腿诱惑在线| av一本久久久久| 建设人人有责人人尽责人人享有的| 午夜福利,免费看| 亚洲熟女精品中文字幕| 在线观看免费高清a一片| 免费黄网站久久成人精品| 人人妻人人澡人人爽人人夜夜| 美女国产视频在线观看| 一二三四在线观看免费中文在| 免费看不卡的av| 如日韩欧美国产精品一区二区三区| 午夜免费鲁丝| 晚上一个人看的免费电影| 考比视频在线观看| kizo精华| 亚洲国产欧美网| 天堂俺去俺来也www色官网| 国产不卡av网站在线观看| 中文天堂在线官网| 十分钟在线观看高清视频www| 久久 成人 亚洲| 黄网站色视频无遮挡免费观看| h视频一区二区三区| 高清黄色对白视频在线免费看| 久久精品亚洲av国产电影网| 最近最新中文字幕免费大全7| 丝袜人妻中文字幕| xxx大片免费视频| 欧美日韩av久久| 国产伦理片在线播放av一区| 99久久中文字幕三级久久日本| 老司机亚洲免费影院| 在线观看免费视频网站a站| 2022亚洲国产成人精品| 卡戴珊不雅视频在线播放| 国产亚洲精品第一综合不卡| 91国产中文字幕| 一二三四中文在线观看免费高清| 精品视频人人做人人爽| 美女主播在线视频| www日本在线高清视频| 赤兔流量卡办理| 国产熟女午夜一区二区三区| 亚洲av免费高清在线观看| 成人午夜精彩视频在线观看| 国产一区二区三区av在线| 国产1区2区3区精品| 国产精品久久久av美女十八| 中文欧美无线码| 久久午夜福利片| 精品国产一区二区三区四区第35| 欧美bdsm另类| 亚洲av免费高清在线观看| 宅男免费午夜| 性少妇av在线| 麻豆精品久久久久久蜜桃| 黄色配什么色好看| 亚洲欧洲日产国产| 精品人妻一区二区三区麻豆| 亚洲美女黄色视频免费看| 男男h啪啪无遮挡| videos熟女内射| 电影成人av| 啦啦啦在线免费观看视频4| 欧美av亚洲av综合av国产av | 中文字幕人妻熟女乱码| 国产成人aa在线观看| 欧美人与善性xxx| 亚洲av男天堂| 亚洲av综合色区一区| 国产av精品麻豆| 男女高潮啪啪啪动态图| 伊人久久国产一区二区| 18在线观看网站| 热re99久久国产66热| 午夜影院在线不卡| 欧美bdsm另类| 麻豆乱淫一区二区| 久久久久久久久久人人人人人人| 亚洲av电影在线观看一区二区三区| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| av在线播放精品| tube8黄色片| 久久精品亚洲av国产电影网| a级毛片黄视频| 国产在线视频一区二区| 丰满乱子伦码专区| 日韩制服丝袜自拍偷拍| 中文欧美无线码| 婷婷色综合www| 考比视频在线观看| 少妇的丰满在线观看| 免费黄色在线免费观看| 日本-黄色视频高清免费观看| 国产日韩一区二区三区精品不卡| 婷婷色av中文字幕| 伊人亚洲综合成人网| 亚洲精品久久午夜乱码| 精品国产一区二区三区四区第35| 久久久精品国产亚洲av高清涩受| 久久精品久久久久久久性| 99久久人妻综合| 伊人亚洲综合成人网| 一二三四中文在线观看免费高清| a级片在线免费高清观看视频| 国产麻豆69| 97人妻天天添夜夜摸| 亚洲国产日韩一区二区| 欧美精品av麻豆av| 亚洲欧美色中文字幕在线| av网站免费在线观看视频| 91精品国产国语对白视频| 亚洲国产看品久久| 成人国产av品久久久| 涩涩av久久男人的天堂| 中文字幕人妻熟女乱码| 日韩中文字幕欧美一区二区 | 热99久久久久精品小说推荐| 久久久久国产一级毛片高清牌| 美女国产高潮福利片在线看| 香蕉丝袜av| 午夜免费鲁丝| 宅男免费午夜| 多毛熟女@视频| 久久久久久人人人人人| 国产黄频视频在线观看| 欧美日韩精品网址| 成年美女黄网站色视频大全免费| 王馨瑶露胸无遮挡在线观看| 免费大片黄手机在线观看| 男女边吃奶边做爰视频| 午夜福利视频在线观看免费| 一区二区av电影网| 超碰97精品在线观看| 亚洲欧美精品自产自拍| 丰满少妇做爰视频| 国产一区二区激情短视频 | 性高湖久久久久久久久免费观看| 久久影院123| 国产精品久久久av美女十八| 极品人妻少妇av视频| 国产亚洲一区二区精品| 久久久久久久久久久久大奶| 99九九在线精品视频| 欧美+日韩+精品| 亚洲国产欧美在线一区| 高清在线视频一区二区三区| 婷婷色综合大香蕉| 亚洲欧美一区二区三区国产| 亚洲一码二码三码区别大吗| 一级毛片我不卡| 捣出白浆h1v1| 久久久久久久久免费视频了| 蜜桃在线观看..| 成人国语在线视频| 高清在线视频一区二区三区| 亚洲欧美成人综合另类久久久| 最近2019中文字幕mv第一页| 中文天堂在线官网| 成年人午夜在线观看视频| 女人久久www免费人成看片| 欧美精品av麻豆av| 成人午夜精彩视频在线观看| 亚洲内射少妇av| 国产深夜福利视频在线观看| 国产极品天堂在线| 亚洲精品日本国产第一区| 久久女婷五月综合色啪小说| 久久99热这里只频精品6学生| 亚洲人成网站在线观看播放| 性少妇av在线| 晚上一个人看的免费电影| 亚洲av国产av综合av卡| 日韩 亚洲 欧美在线| 女人久久www免费人成看片| 精品第一国产精品| 日韩电影二区| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| av片东京热男人的天堂| 高清在线视频一区二区三区| 精品一区二区三区四区五区乱码 | 高清不卡的av网站| 宅男免费午夜| 在线观看国产h片| 久久精品熟女亚洲av麻豆精品| 99久久中文字幕三级久久日本| 亚洲精品国产av蜜桃| 交换朋友夫妻互换小说| 精品久久久精品久久久| 国产成人精品在线电影| 国产精品久久久久久av不卡| 热99久久久久精品小说推荐| av网站在线播放免费| 国产野战对白在线观看| 中文字幕人妻熟女乱码| 在线亚洲精品国产二区图片欧美| 亚洲av国产av综合av卡| 亚洲欧美日韩另类电影网站| 一级片免费观看大全| 老司机影院成人| 波野结衣二区三区在线| 王馨瑶露胸无遮挡在线观看| 久久女婷五月综合色啪小说| 王馨瑶露胸无遮挡在线观看| 欧美最新免费一区二区三区| av国产久精品久网站免费入址| 国产在线免费精品| 一区二区三区四区激情视频| 捣出白浆h1v1| 亚洲精品av麻豆狂野| 欧美激情 高清一区二区三区| 97在线视频观看| 男女无遮挡免费网站观看| 国产97色在线日韩免费| 在线观看人妻少妇| 国产精品亚洲av一区麻豆 | 一级毛片黄色毛片免费观看视频| 国产在视频线精品| 色网站视频免费| 亚洲成人手机| 99精国产麻豆久久婷婷| 婷婷色综合www| 色网站视频免费| 精品少妇内射三级| 色网站视频免费| 嫩草影院入口| 99国产综合亚洲精品| 丝袜美足系列| 国产精品av久久久久免费| 一二三四中文在线观看免费高清| 国产白丝娇喘喷水9色精品| 亚洲,一卡二卡三卡| 中文字幕人妻丝袜一区二区 | 亚洲精品在线美女| 制服诱惑二区| 中文字幕亚洲精品专区| 日韩中字成人| 欧美成人午夜免费资源| 性少妇av在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品婷婷| 日韩欧美一区视频在线观看| 国产人伦9x9x在线观看 | 毛片一级片免费看久久久久| 久久久久久久久久久免费av| av国产久精品久网站免费入址| 亚洲成色77777| av卡一久久| 岛国毛片在线播放| 在线观看免费高清a一片| 精品酒店卫生间| 国产1区2区3区精品| 五月开心婷婷网| 啦啦啦中文免费视频观看日本| 伦精品一区二区三区| 黑人欧美特级aaaaaa片| 久久鲁丝午夜福利片| 久久久久久久久免费视频了| 看免费成人av毛片| 丝袜美足系列| 肉色欧美久久久久久久蜜桃| av女优亚洲男人天堂| 亚洲av欧美aⅴ国产| 国产 精品1| 91午夜精品亚洲一区二区三区| 人妻少妇偷人精品九色| 汤姆久久久久久久影院中文字幕| 在线观看www视频免费| 免费高清在线观看视频在线观看| 国产无遮挡羞羞视频在线观看| 日本av免费视频播放| 性色av一级| 亚洲精品自拍成人| 妹子高潮喷水视频| 又大又黄又爽视频免费| 亚洲图色成人| av免费在线看不卡| 久久狼人影院| 国产视频首页在线观看| 国产探花极品一区二区| 亚洲成人手机| 亚洲第一区二区三区不卡| 老司机亚洲免费影院| 边亲边吃奶的免费视频| 国产日韩欧美视频二区| 五月伊人婷婷丁香| 亚洲美女搞黄在线观看| 久久久精品国产亚洲av高清涩受| 伊人久久国产一区二区| 中文精品一卡2卡3卡4更新| 国产色婷婷99| 久久ye,这里只有精品| 亚洲,欧美精品.| 天堂8中文在线网| 中文字幕人妻丝袜一区二区 | 国产深夜福利视频在线观看| 久久久久久伊人网av| 一个人免费看片子| 免费av中文字幕在线| a级片在线免费高清观看视频| 天堂8中文在线网| 看免费成人av毛片| 一区二区三区乱码不卡18| 国产免费福利视频在线观看| 在线免费观看不下载黄p国产| 大香蕉久久成人网| 丝袜在线中文字幕| 国产成人91sexporn| 精品亚洲成国产av| √禁漫天堂资源中文www| 1024香蕉在线观看| 免费观看无遮挡的男女| 日本免费在线观看一区| 国产黄色视频一区二区在线观看| 如日韩欧美国产精品一区二区三区| 亚洲国产成人一精品久久久| 国产97色在线日韩免费| 人妻 亚洲 视频| 欧美精品av麻豆av| 亚洲久久久国产精品| 国精品久久久久久国模美| 黑丝袜美女国产一区| 免费日韩欧美在线观看| 欧美亚洲 丝袜 人妻 在线| 另类精品久久| 国产一区二区在线观看av| 亚洲国产毛片av蜜桃av| 夫妻午夜视频| 人人妻人人爽人人添夜夜欢视频| 99久久综合免费| 黄频高清免费视频| 日韩 亚洲 欧美在线| 国产精品成人在线| 久久久久久人妻| 国产精品亚洲av一区麻豆 | 国产黄色免费在线视频| 在线亚洲精品国产二区图片欧美| 十分钟在线观看高清视频www| 日韩电影二区| 色视频在线一区二区三区| 国产成人精品福利久久| 国产精品熟女久久久久浪| 亚洲一区二区三区欧美精品| 纯流量卡能插随身wifi吗| 日日撸夜夜添| av视频免费观看在线观看| 校园人妻丝袜中文字幕| 精品国产乱码久久久久久男人| 人妻少妇偷人精品九色| 看免费av毛片| 女性生殖器流出的白浆| 2021少妇久久久久久久久久久| 久久久亚洲精品成人影院| 亚洲精品中文字幕在线视频| 亚洲国产av新网站| h视频一区二区三区| 国产综合精华液| 午夜福利在线免费观看网站| 韩国av在线不卡| 亚洲美女黄色视频免费看| 99久久人妻综合| 大片电影免费在线观看免费| 国产精品二区激情视频| 亚洲婷婷狠狠爱综合网| 老鸭窝网址在线观看| 国产一级毛片在线| 国产成人免费观看mmmm| 久久毛片免费看一区二区三区| av在线播放精品| av.在线天堂| 亚洲五月色婷婷综合| 免费观看a级毛片全部| 国产亚洲av片在线观看秒播厂| 亚洲精品国产一区二区精华液| 黄片小视频在线播放| 精品卡一卡二卡四卡免费| 天天操日日干夜夜撸| 青春草国产在线视频| 一区二区av电影网| 日韩欧美一区视频在线观看| 中文字幕av电影在线播放| 在线天堂最新版资源| 亚洲精品第二区| 视频区图区小说| 午夜影院在线不卡| 欧美日韩视频高清一区二区三区二| 色网站视频免费| 少妇人妻精品综合一区二区| 一区二区av电影网| 国产av一区二区精品久久| 中文字幕av电影在线播放| 男女免费视频国产| 国产一级毛片在线| 久久久久国产一级毛片高清牌| 免费在线观看完整版高清| 亚洲国产最新在线播放| 18在线观看网站| av线在线观看网站| 精品一区在线观看国产| 五月开心婷婷网| 久久久久精品性色| 精品国产乱码久久久久久小说| 在线观看一区二区三区激情| 精品一区在线观看国产| 午夜福利在线免费观看网站| 亚洲精品第二区| 精品久久久久久电影网| 人妻 亚洲 视频| 男男h啪啪无遮挡| 伊人亚洲综合成人网| 三上悠亚av全集在线观看| 久久久国产一区二区| 中文字幕人妻丝袜一区二区 | 亚洲三级黄色毛片| 久久99热这里只频精品6学生| 制服丝袜香蕉在线| 久热久热在线精品观看| 精品久久蜜臀av无| 日韩,欧美,国产一区二区三区| 欧美国产精品va在线观看不卡| 大香蕉久久成人网| 欧美av亚洲av综合av国产av | 国产精品蜜桃在线观看| 成年女人毛片免费观看观看9 | 精品99又大又爽又粗少妇毛片| 一边亲一边摸免费视频| 久久久精品免费免费高清| av卡一久久| 亚洲精品视频女| 高清在线视频一区二区三区| 亚洲国产精品一区三区| 免费观看在线日韩| 国产黄色视频一区二区在线观看| 亚洲国产av影院在线观看| 精品视频人人做人人爽| 国产成人a∨麻豆精品| 日韩av在线免费看完整版不卡| 亚洲av在线观看美女高潮| 中文字幕最新亚洲高清| 久久国产精品大桥未久av| 少妇 在线观看| 精品一区二区三区四区五区乱码 | 国产精品久久久久久精品古装| 美女国产视频在线观看| 亚洲,欧美,日韩| www日本在线高清视频| av福利片在线| 人妻 亚洲 视频| 久久午夜福利片| 亚洲精品,欧美精品| 亚洲欧美色中文字幕在线| 看免费av毛片| 老鸭窝网址在线观看| 久久精品国产a三级三级三级| 国产人伦9x9x在线观看 | 国产精品国产三级国产专区5o| 性少妇av在线| 欧美人与善性xxx| 国产片特级美女逼逼视频| 日韩精品有码人妻一区| 亚洲视频免费观看视频| 高清欧美精品videossex| 国产熟女午夜一区二区三区| 久热这里只有精品99| 亚洲国产最新在线播放| 欧美精品一区二区免费开放| 美女中出高潮动态图| 卡戴珊不雅视频在线播放| 18在线观看网站| 久久久久久久亚洲中文字幕| 中文字幕av电影在线播放| 亚洲精品自拍成人| 天天躁狠狠躁夜夜躁狠狠躁| 国精品久久久久久国模美| 亚洲激情五月婷婷啪啪| 一个人免费看片子| 中文字幕av电影在线播放| 亚洲精品自拍成人| 亚洲国产毛片av蜜桃av| 黄色毛片三级朝国网站| 男女啪啪激烈高潮av片| 久久久a久久爽久久v久久| 久久97久久精品| 伊人亚洲综合成人网| 精品人妻一区二区三区麻豆| 久久久久久久精品精品| a级毛片在线看网站| 久久久国产欧美日韩av| 黄色怎么调成土黄色| 纵有疾风起免费观看全集完整版| 久久久久久人妻| 久久热在线av| 大话2 男鬼变身卡| 乱人伦中国视频| 黄色怎么调成土黄色| 日韩一本色道免费dvd| 90打野战视频偷拍视频| 韩国高清视频一区二区三区| 高清av免费在线| 国产av精品麻豆| 国产精品蜜桃在线观看| 成人影院久久| 成人毛片60女人毛片免费| 日日啪夜夜爽| 久久久久人妻精品一区果冻| 最近最新中文字幕大全免费视频 |