李 迪 劉彥飛 劉鐵軍
(海鷹航空通用裝備有限責任公司,北京 100074)
無人機地面氣動彈射系統(tǒng)性能研究
李 迪 劉彥飛 劉鐵軍
(海鷹航空通用裝備有限責任公司,北京 100074)
根據(jù)無人機地面彈射要求,對目前無人機地面彈射系統(tǒng)的性能進行了系統(tǒng)彈射過程理論分析和研究,并對性能指標進行了對比分析。
無人機,氣動彈射系統(tǒng),理論分析
氣動彈射系統(tǒng)屬于典型的流體傳動控制系統(tǒng),其按氣缸位置分類分為氣缸前置型和氣缸后置型。根據(jù)分類的不同,無人機及發(fā)射小車的安裝位置不同:其中,氣缸前置型系統(tǒng)的發(fā)射小車和飛機安裝在彈射系統(tǒng)的尾部;氣缸后置型系統(tǒng)的發(fā)射小車和飛機安裝在彈射系統(tǒng)的頂部。不同的類型適用于不同機型,彈射過程也存在差異。
氣缸前置緩沖器型氣動彈射系統(tǒng)的物理模型如圖1所示,將彈射小車放置在出發(fā)點的位置,使用彈簧夾系統(tǒng)對小車限動,小車對飛機限動,氣瓶充氣完畢,打開無人機發(fā)動機,準備工作完成后,開始進行發(fā)射階段工作,打開氣閥,氣瓶中的空氣進入氣缸并推動活塞做功,活塞通過鋼絲繩繞過定滑輪帶動小車,此時拉力大于彈簧夾的預緊力,發(fā)射小車帶動飛機共同向前加速運動,當小車達到速度要求時,碰撞緩沖器,進行減速,飛機按原速脫離小車,小車在氣體壓縮作用和緩沖器作用下減速至0,發(fā)射完成。
圖1 氣缸前置緩沖器型原理圖
氣缸前置滑離型氣動彈射系統(tǒng)的物理模型如圖2所示,將發(fā)射車放置在出發(fā)點的位置,使用彈簧夾限動,并用小車對飛機進行限動,氣瓶充氣完畢,打開無人機發(fā)動機,準備工作完成后,開始進行發(fā)射階段工作,打開氣閥,氣瓶中的空氣進入氣瓶并推動活塞做功,活塞通過鋼絲繩繞過滑輪組帶動小車,拉力大于彈簧夾預緊力,發(fā)射小車帶動飛機共同向前加速運動,在小車達到速度要求時,受緩沖帶減速,飛機按原速脫離小車,小車在氣體壓縮作用和摩擦力作用下減速至0,發(fā)射完成。
圖2 氣缸前置滑離型原理圖
氣缸后置型氣動彈射系統(tǒng)的物理模型如圖3所示,使用固定支桿對飛機限動,氣瓶充氣完畢,打開無人機發(fā)動機,準備工作完成后,開始進行發(fā)射階段工作,打開氣閥,氣瓶中的空氣進入氣瓶并推動滑桿做功,滑桿帶動飛機共同向前加速運動,直到滑桿全部滑離氣缸,在重力的作用下,滑桿下落與無人機分離,發(fā)射完成。
2.1 彈射獲得總能量
動能方程:E動能=m總v2/2 (1)
圖3 氣缸后置型原理圖
其中:m總為負載質(zhì)量即飛機、彈射小車、活塞的質(zhì)量和,θ為發(fā)射角度,L為活塞行程。摩擦力做功,摩擦力分為3部分:①滑塊與滑軌間滑動摩擦;②鋼絲繩與架體間摩擦力;③活塞與缸筒間的摩擦力。
聯(lián)立公式(1)(2)(3)得:
彈射做功總能量:
氣瓶釋放能量:
其中:S為活塞面積,P0為原始氣壓,V氣瓶為氣瓶體積。
圖4 儲氣瓶氣壓P與滑車加速距離L的關系圖
根據(jù)能量守恒定律可知:
其中:η為彈射架工作效率。
聯(lián)立式(1)、(2)、(3)、(4)、(5)、(6)、(7)可得E釋放和L。
2.2 不同階段活塞的做功分析
活塞在缸筒內(nèi)運動主要分為:氣體對活塞做功即活塞通過排氣口之前、活塞對氣體壓縮做功即活塞通過排氣口之后的做功。
氣體對活塞做功時:
由狀態(tài)方程可知:PVn=P0V0n=常量其中:n為氣體多變過程指數(shù)。
其中:PA為排氣口背壓,Tz為驅(qū)動繩輪旋轉(zhuǎn)所需的力,m1為飛機和彈射小車質(zhì)量,T2為鋼絲繩對飛機和小車的拉力,F(xiàn)f2為小車和飛機與彈射系統(tǒng)的摩擦力,m2為活塞的質(zhì)量,T1為鋼絲繩對活塞的拉力,F(xiàn)f1為活塞與彈射系統(tǒng)的摩擦。根據(jù)式(12)、式(13)、式(14)計算小車與飛機開始運動時的加速度為a,并計算飛機x軸最大發(fā)射過載nx。
活塞對氣體壓縮做功時,根據(jù)能量守恒:
其中:EV為彈射小車動能;Eh為彈射小車勢能;Ep為氣體內(nèi)能;Ef摩擦功耗。
原緩沖器吸收的能量為系統(tǒng)運動件動能與勢能和摩擦功耗的差,由力學公式可知,距離越小,F(xiàn)越大。
壓強公式:F=PS (16)
其中:S為定值,可知力的大小由瞬時P決定:
其中:V2為氣體壓縮段體積,故H2為氣體壓縮段長度,則聯(lián)立式(16)、式(17)小車與緩沖器撞擊瞬時最大力Fmax;氣缸密封后:
聯(lián)立式(15)、式(18)求出E緩沖,從而計算η吸收。
最大發(fā)射速度:85km/h=23.6m/s;飛機最大過載:8;發(fā)射角度θ:15°;適用于海拔0m~3000m地區(qū);發(fā)動機推力F推=100N;氣缸直徑:d=63mm;氣瓶容積:V氣瓶=80L;發(fā)射前氣壓:P0=6bar;活塞半徑:r=31.5mm;活塞面積:S活塞=3.1×10-3m2;活塞重量約為:0.5kg;彈射架工作效率:0.7;管路直徑:1.5寸(50mm);管路長度2.5m;理想狀態(tài)n=1.4。
3.1 氣缸前置緩沖器型
該系統(tǒng)的彈射重量28kg,緩沖器長320mm,作用距離160mm;則計算:E總=7797.44+108.5L,E飛=6962J,η發(fā)射=E飛/E總=0.823 7797.44+108.5L=100L+0.7×6×105×80×10-3×ln[(80×10-3+π×(31.5×10-3)2÷80×10-3]
使用麥克勞林展開式,求得L=6.1m,即L行程=6.1m;E總=8459.29J;E釋放=11213.2714J;P'=5.5bar;a=40.77m/s2;nx=4.16;經(jīng)過排氣孔時Pmax:P=4.14bar,小車與緩沖器撞擊瞬時最大力:Fmax=974.7N;EV=835.44J;Ef=3.2J;Eh=0.8J;Ep=124J;E緩沖=707.44J;η吸收=0.847;緩沖器依舊需要吸收大部分能量,缸體末端可幫助吸收約15%的能量。
3.2 氣缸前置滑離型
該系統(tǒng)的彈射重量為27.1kg,車在架體上減速160mm。
計算得:E動能=7546.808J;E總=7546.808+106.2L;η發(fā)射=0.852
7546.808+106.2L=100L+0.7×6×105×80×10-3×ln[(80×10-3+π×(31.5×10-3)2÷80×10-3]
使用麥克勞林展開式,求得L=5.8953m,即L行程>>5.9m;E總=8173.388J;E釋放=10833.4114J;P'=5.52bar;a=42.1776m/s2;nx=4.3;EV=584.808J;Ef=16J;Eh=0.446J;Ep=124J;則彈射小車剩余能量為EV'=443.962J;小車飛離架體時小車和活塞速度為20.5m/s,受力分兩個階段,第一階段活塞繼續(xù)向下運動至速度為0,第二階段活塞和小車同時向上運動,并壓縮上半段氣體,同時受重力,摩擦力影響,直到小車停止。第一階段:EV''=231J,由于受鋼絲繩作用,壓縮氣體和重力反作用可忽略不計,第二階段,活塞與小車同速,速度v=14.8m/s,此時小車和活塞,受活塞與缸筒的摩擦力,活塞壓縮上半部分氣體做功,并受重力作用,由于小車掉落地面與地面作用力不在分析范圍內(nèi),暫時不考慮,考慮氣缸做功,根據(jù)Ep公式得出h=75mm氣體做功為230J。小車離開架體后向上運動75mm,運動停止,小車與彈射架碰撞,無法落至地面。
3.3 氣缸后置型
該系統(tǒng)的彈射重量為25.8kg。
計算得:E動能=7184.784J;E勢能=65.44J;F滑桿摩擦=40N;F飛機摩擦=40N。
則E摩擦=F飛機摩擦L放置平臺+F滑桿摩擦L=40×0.85+40L
E總=E動能+E勢能+E摩擦=7184.784+25.8×9.8×L×sin15°+40L+34=7218.784+105.44L
7218.784+105.44L=100L+0.9×6×105×80×10-3×ln[(80×10-3+π×(31.5×10-3)2÷80×10-3]
使用麥克勞林展開式,求得L=4.4m,即L行程=4.4m;E總=7680.9J;E釋放=9023.22J;η發(fā)射=0.906;P'=5.5bar;a=65.11m/s2;nx=6.65。
根據(jù)上述對各個方案的理論基本計算列舉方案進行對比。根據(jù)方案數(shù)據(jù)對比表(表1)可知:這3種方案中氣缸后置型可以將負載重量降到最低,提升發(fā)射效率,氣缸后置型發(fā)射距離最短,但是過載最大;氣缸前置滑離型小車重量較氣缸前置緩沖器型發(fā)射效率較高,發(fā)射距離較短,過載相差不大,但是小車在滑離后不能接觸地面,會與彈射架進行碰撞,對小車材料要求較高。氣缸前置緩沖器型方案是目前使用最廣泛的方案,雖然性能指數(shù)并不優(yōu)異,但技術(shù)成熟穩(wěn)定。以上3種方案總結(jié)概括了無人機地面氣動彈射系統(tǒng),并為不同機型和技術(shù)條件下的選用方案提供了技術(shù)指導和參考。
1 崔予柯. 氣動彈射裝置的動態(tài)分析和優(yōu)化[J]. 煤礦機電, 2009, (6): 44~45
2 劉今朝. 氣體彈射器的動力學建模及仿真[D]. 北京交通大學, 2014
3 劉救世. 貯氣瓶供氣無人機彈射器過程的研究[D]. 鄭州大學, 2013
4 盧偉. 無人機氣動彈射動力學仿真與優(yōu)化[J]. 西北工業(yè)大學學報, 2014, (32): 865~871
表1 方案數(shù)據(jù)對比表
1009-8119(2017)11(1)-0061-03