江龍 路會(huì)同 王如竹 王麗偉
(上海交通大學(xué)制冷與低溫工程研究所 上海 200240)
兩級(jí)吸附式制冷工質(zhì)對(duì)性能實(shí)驗(yàn)研究
江龍 路會(huì)同 王如竹 王麗偉
(上海交通大學(xué)制冷與低溫工程研究所 上海 200240)
本文針對(duì)不同兩級(jí)吸附工質(zhì)對(duì) CaCl2?NaBr?NH3,CaCl2?BaCl2?NH3,SrCl2?BaCl2?NH3與 SrCl2?NH4Cl?NH3進(jìn)行了實(shí)驗(yàn)研究,同時(shí)模擬了兩級(jí)吸附制冷樣機(jī)的工作性能。結(jié)果表明:SrCl2?NH4Cl?NH3與CaCl2?NaBr?NH3的循環(huán)吸附量可以分別達(dá)到理論值的95.4%與88.6%;對(duì)于不同兩級(jí)吸附工質(zhì)對(duì),樣機(jī)系統(tǒng)的COP、制冷量與SCP分別介于0.215~0.285、2~3.65 kW 與161.4~260.74 W/kg;采用硫化石墨配置吸附劑能夠大幅度提高兩級(jí)制冷系統(tǒng)的SCP,以CaCl2?BaCl2?NH3為例,與采用普通石墨作為基質(zhì)相比,采用硫化石墨的系統(tǒng)SCP最高可以提高40.2%。
吸附;制冷循環(huán);工質(zhì)對(duì);硫化石墨
近年來(lái),低溫?zé)嵩打?qū)動(dòng)吸附式制冷技術(shù)為低品位熱能的回收和高效利用提供了一條有效途徑,并引起了廣泛關(guān)注[1-2]。傳統(tǒng)的單級(jí)熱化學(xué)吸附式制冷若應(yīng)用于冷凍工況,所需熱源的驅(qū)動(dòng)溫度較高。M.Pons等[3]采用氯化鍶與氨作為工質(zhì)對(duì)在熱源驅(qū)動(dòng)溫度為130℃,冷卻溫度為40℃,蒸發(fā)溫度為-25℃的條件下,系統(tǒng) COP 只有0.22。 A.Erhard 等[4]采用相同的工質(zhì)對(duì)在熱源溫度低于120℃與蒸發(fā)溫度-10℃的條件下,系統(tǒng)的 COP最高也僅為0.082。與單級(jí)吸附制冷相比,兩級(jí)吸附式制冷不僅有效地降低驅(qū)動(dòng)熱源溫度,還提高冷卻溫度,使系統(tǒng)能夠適應(yīng)非常惡劣的工況[5-6]。Wang J.等[7]研究了 CaCl2?BaCl2?NH3兩級(jí)吸附式制冷機(jī)組,對(duì)于 CaCl2?NH3單級(jí)吸附式制冷,當(dāng)冷凝溫度為30℃時(shí),驅(qū)動(dòng)熱源溫度可以從98℃降低至69℃;對(duì)于BaCl2?NH3單級(jí)吸附式制冷,當(dāng)蒸發(fā)溫度為-20℃時(shí),冷卻溫度由16℃升至43℃。針對(duì)夏季惡劣工況,采用兩級(jí)吸附制冷技術(shù)的車用冷藏系統(tǒng)也取得了成功[8-9]。
然而兩級(jí)吸附式制冷工質(zhì)對(duì)研究相對(duì)較少,本文研究了4種不同兩級(jí)吸附式工質(zhì)對(duì)的性能,同時(shí)利用其結(jié)果對(duì)文獻(xiàn)[7]中的兩級(jí)吸附樣機(jī)進(jìn)行了模擬,對(duì)比分析了不同工質(zhì)對(duì)間的制冷性能,為今后兩級(jí)吸附樣機(jī)設(shè)計(jì)提供了思路。
圖1所示為兩級(jí)吸附制冷循環(huán)Clapeyron圖,L/G為制冷劑蒸氣液飽和線,LTS為低溫鹽反應(yīng)平衡線,MTS為中溫鹽的反應(yīng)平衡線,Te與Tc分別為蒸發(fā)溫度和冷卻溫度,Ta為吸附制冷階段中溫鹽的平衡吸附溫度,Tg1與Tg2分別為中溫鹽解吸與低溫鹽解吸過(guò)程的平衡解吸溫度。具體工作過(guò)程如下:
1)低溫鹽解吸與中溫鹽吸附過(guò)程。即低溫鹽吸附床向冷凝器解吸過(guò)程,此時(shí)吸附飽和后的低溫鹽在熱源驅(qū)動(dòng)的作用下解吸出制冷劑蒸氣,壓力不斷上升,驅(qū)使制冷劑蒸氣流向冷凝器,釋放冷凝熱,該過(guò)程對(duì)應(yīng)圖1中的3-4。與此同時(shí),中溫鹽吸附床完成了充分解吸,通過(guò)環(huán)境冷媒冷卻后吸附床壓力降低,連通中溫鹽吸附床與蒸發(fā)器,由于中溫鹽的吸附作用,蒸發(fā)器內(nèi)飽和液態(tài)制冷劑不斷蒸發(fā),產(chǎn)生相變制冷效應(yīng),該過(guò)程對(duì)應(yīng)圖1中的5-6。
2)中溫鹽解吸過(guò)程。即中溫鹽吸附床向低溫鹽吸附床的解吸過(guò)程。在吸附制冷階段吸附飽和的中溫鹽在熱作用下解吸出制冷劑蒸氣,中溫鹽吸附床的壓力升高。低溫鹽解吸過(guò)程中解吸完全,通過(guò)環(huán)境冷媒冷卻后,在壓力驅(qū)動(dòng)下,由中溫鹽解吸出來(lái)的制冷劑蒸氣向低溫鹽吸附床轉(zhuǎn)移。低溫鹽吸附床與制冷劑蒸氣之間發(fā)生吸附反應(yīng),向環(huán)境冷媒中釋放吸附熱,該過(guò)程對(duì)應(yīng)圖1中的1-2。
圖1 兩級(jí)吸附制冷循環(huán)Clapeyron圖Fig.1 Clapeyron diagram of two?stage sorption refrigeration cycle
對(duì)于兩級(jí)吸附制冷系統(tǒng),當(dāng)環(huán)境溫度為30℃時(shí),低溫鹽的解吸溫度一般應(yīng)低于90℃。這樣可供選擇的吸附反應(yīng)工質(zhì)對(duì)為 SnCl2·(2.5 ~ 4)NH3,PbCl2·(2 ~ 3.25,3.25 ~ 8) NH3,BaCl2·(0 ~ 8) NH3,NH4Cl·(0 ~3)NH3以及 NaBr·(0 ~ 5.25)NH3。 而SnCl2的循環(huán)吸附量如表 1 所示,只有 0.135 kg/kg,不適合作為選擇。PbCl2具有一定的毒性,且反應(yīng)平衡線非常貼近氨的飽和線,故極易冷凝,也不適宜選用。因此選用 NH4Cl、BaCl2與 NaBr作為低溫鹽,CaCl2與SrCl2作為中溫鹽進(jìn)行兩級(jí)吸附工質(zhì)對(duì)吸附性能研究。實(shí)驗(yàn)中所采用的固化吸附劑是由堿金屬鹵化物和硫化石墨復(fù)合的吸附劑。其中硫化石墨因具有較高的導(dǎo)熱系數(shù),可將其作為添加劑添加到金屬氯化物中[10-12],既可以增強(qiáng)復(fù)合吸附劑的傳熱傳質(zhì)性能,又可以解決復(fù)合吸附劑吸附氨之后的膨脹與結(jié)塊現(xiàn)象。表2為不同復(fù)合吸附劑的配置參數(shù)。中溫鹽與低溫鹽吸附劑的密度都為400 kg/m3,此時(shí)傳熱傳質(zhì)性能最優(yōu)[13-14]。表3為不同以硫化石墨為基質(zhì)的復(fù)合吸附劑的導(dǎo)熱系數(shù),可以看出導(dǎo)熱系數(shù)為 15.41 ~19.48 W/(m·K),該數(shù)值相比于采用膨脹石墨為基質(zhì)的混合吸附劑的導(dǎo)熱系數(shù)提高了18~20倍。
表1 不同吸附劑的理論循環(huán)吸附量與解吸溫度Tab.1 Theoretical cycle sorption quantity and desorption temperature of different sorbents
兩級(jí)吸附工質(zhì)對(duì)性能測(cè)試裝置的原理和實(shí)物如圖2所示。包括兩個(gè)吸附床(一個(gè)高溫床和一個(gè)低溫床),一個(gè)蒸發(fā)/冷凝器和一個(gè)智能壓差變送器。其中壓差變送器用于測(cè)量氨液位變化的微壓差量。吸附床和蒸發(fā)冷凝器都由低溫恒溫槽來(lái)控制。循環(huán)吸附量可以由式(1)得到:
表2 復(fù)合吸附劑配置參數(shù)Tab.2 Development configuration of composite sorbents
式中:Δx為循環(huán)吸附量,kg/kg;Δm為吸附或解析的氨量,kg;msalt為吸附鹽的質(zhì)量,kg;p為蒸發(fā)或冷凝器內(nèi)液柱兩端壓差,Pa;Ac為冷凝器內(nèi)部套管橫截面積,m2;V為蒸發(fā)冷凝器容積,m3;g為重力加速度,9.8 m/s2;ν′為飽和液氨的比體積,m3/kg;Te為蒸發(fā)溫度,℃。
表3 復(fù)合吸附劑導(dǎo)熱系數(shù)Tab.3 Thermal conductivity of composite sorbent
根據(jù)式(2)可以計(jì)算得到循環(huán)吸附量的最大相對(duì)誤差為3.66%。
圖2 再吸附性能測(cè)試裝置Fig.2 Sorption performance testing
圖3所示為不同兩級(jí)吸附工質(zhì)對(duì)在不同熱源溫度條件下的循環(huán)吸附量。結(jié)果表明:循環(huán)吸附量隨著蒸發(fā)溫度與熱源溫度的升高而增加。SrCl2?NH4Cl?NH3與 CaCl2?NaBr?NH3的循環(huán)吸附量可以分別達(dá)到理論值的95.4%和88.6%。當(dāng)熱源溫度低于80℃時(shí),循環(huán)吸附量相對(duì)較小。當(dāng)蒸發(fā)溫度低于0℃,CaCl2?NaBr?NH3工質(zhì)對(duì)的循環(huán)吸附量高于 CaCl2?BaCl2?NH3,遠(yuǎn)高于其他兩組工質(zhì)對(duì)。而當(dāng)蒸發(fā)溫度高于0 ℃,CaCl2?BaCl2?NH3工質(zhì)對(duì)的循環(huán)吸附量高于 CaCl2?NaBr?NH3工質(zhì)對(duì)。 說(shuō)明 CaCl2?NaBr?NH3工質(zhì)對(duì)更適合于冷凍工況,CaCl2?BaCl2?NH3工質(zhì)對(duì)更適合空調(diào)工況。
圖3 不同工質(zhì)對(duì)在不同熱源溫度條件下的循環(huán)吸附量Fig.3 Cycle sorption quantity of different working pair with different heat source temperature
根據(jù)以上測(cè)試結(jié)果,對(duì)文獻(xiàn)[7]中的兩級(jí)吸附制冷機(jī)組進(jìn)行了模擬仿真,仿真模型參照文獻(xiàn)[15]。根據(jù)不同循環(huán)吸附量的結(jié)果,選取循環(huán)吸附量較高的CaCl2?NaBr?NH3工質(zhì)對(duì)與 CaCl2?BaCl2?NH3工質(zhì)對(duì)進(jìn)行模擬比較,機(jī)組性能如圖4和圖5所示。CaCl2?NaBr?NH3工質(zhì)對(duì)最高的COP與制冷量分別為0.285和3.65 kW。對(duì)于不同兩級(jí)吸附工質(zhì)對(duì),COP、制冷量與 SCP 分別為 0.215 ~ 0.285、2 ~ 3.65 kW 與161.4 ~ 260.74 W/kg。 CaCl2?NaBr?NH3工 質(zhì) 對(duì) 的SCP比 CaCl2?BaCl2?NH3工質(zhì)對(duì)提高了 33%。 同時(shí)CaCl2?BaCl2?NH3工質(zhì)對(duì)的 SCP 比文獻(xiàn)[16]中采用普通石墨相同工質(zhì)對(duì)的仿真性能有顯著提高。在熱源溫度為85℃工況下,SCP最大的提升幅度為40.2%。這主要是由于硫化石墨提高了吸附劑的傳熱傳質(zhì),從而大幅度降低了系統(tǒng)的循環(huán)時(shí)間。
圖4 不同熱源溫度下的COP與制冷量Fig.4 COP and cooling power with different heat source temperature
圖5 不同熱源溫度下的SCPFig.5 SCP vs.different heat source temperature
本文對(duì)比研究了兩級(jí)吸附制冷循環(huán)中不同吸附工質(zhì)對(duì)的性能,配置新型堿金屬鹵化物硫化石墨復(fù)合吸附劑,通過(guò)實(shí)驗(yàn)測(cè)試不同吸附工質(zhì)對(duì)在不同的蒸發(fā)溫度以及冷凝溫度下的吸附性能,并且利用測(cè)試結(jié)果對(duì)兩級(jí)吸附冷凍機(jī)組進(jìn)行了模擬。結(jié)果表明:兩級(jí)吸附冷凍機(jī)可以在熱源溫度為70℃,蒸發(fā)溫度為-20℃的條件下產(chǎn)生制冷量。對(duì)不同吸附工質(zhì)對(duì)的循環(huán)吸附量,COP以及SCP進(jìn)行了比較,結(jié)果如下:
1) SrCl2?NH4Cl?NH3工質(zhì) 對(duì)與 CaCl2?NaBr?NH3工質(zhì)對(duì)的循環(huán)吸附量可以分別達(dá)到理論值的95.4%與 88.6% 。 CaCl2?NaBr?NH3工質(zhì)對(duì)更適合于冷凍工況,CaCl2?BaCl2?NH3更適合空調(diào)工況。
2)采用 CaCl2?NaBr?NH3工質(zhì)對(duì)最高的 COP 與制冷量分別為0.285和3.65 kW。對(duì)于不同吸附工質(zhì)對(duì),COP、制冷量與 SCP 分別介于 0.215 ~0.285、2~ 3.65 kW 與 161.4 ~ 260.74 W/kg。 CaCl2?NaBr?NH3工質(zhì)對(duì)的 SCP 相比 CaCl2?BaCl2?NH3工質(zhì)對(duì)的高33%。 同時(shí) CaCl2?BaCl2?NH3工質(zhì)對(duì)的 SCP比文獻(xiàn)[16]中采用普通石墨的吸附劑的性能有顯著提高。在熱源溫度為70℃工況下,最大的提升幅度可以達(dá)到 40.2% 。
[1]WANG R Z,XU Z Y,PAN Q W,et al.Solar driven air conditioning and refrigeration systems corresponding to vari?ous heating source temperatures[J].Applied Energy,2016,169:846?856.
[2]王如竹,王麗偉.低品位熱能驅(qū)動(dòng)的綠色制冷技術(shù):吸附式制冷[J].科學(xué)通報(bào),2005,50(2):101?111.(WANG Ruzhu,WANG Liwei.Green refrigeration tech?nology driven by the low grade heat:sorption refrigeration[J].Scientific Report,2005,50(2):100?111.)
[3]PONS M,MEUNIER F,CACCIOLA G,et al.Thermody?namic based comparison of sorption systems for cooling and heat pumping[J].International Journal of Refrigeration,1999,22(1):5?17.
[4]ERHARD A,HAHNE E.Test and simulation of a solar?powered absorption cooling machine [J].Solar Energy,1997,59(4/5/6):155?162.
[5]胡遠(yuǎn)揚(yáng),王健,蔡浩仁,等.低溫?zé)嵩打?qū)動(dòng)的二級(jí)吸附冷凍循環(huán)實(shí)驗(yàn)研究與性能分析[J].制冷學(xué)報(bào),2010,31(6):6?11.(HU Yuanyang,WANG Jian,CAI Haoren,et al.Experimental investigation and performance analysis of two?stage sorption freezing cycle driven by the low grade heat[J].Journal of Refrigeration,2010,31(6):6?11.)
[6]羅偉莉,王健,王麗偉,等.采用 SrCl2?NH4Cl?NH3工質(zhì)對(duì)的二級(jí)吸附式冷凍循環(huán)性能[J].化工學(xué)報(bào),2012,63(4):1004?1010.(LUO Weili,WANG Jian,WANG Li?wei,et al.Study on the performance of two?stage sorption refrigeration cycle by using SrCl2?NH4Cl?NH3as the work?ing pair [J].Chinese Journal of Chemical Engineering,2012,63(4):1004?1010.)
[7]WANG J,WANG L W,LUO W L,et al.Experimental study of a two?stage adsorption freezing machine driven by low temperature heat source[J].International Journal of Refrigeration,2013,36(3):1029?1036.
[8]GAO P,ZHANG X F,WANG L W,et al.Study on MnCl2/CaCl2?NH3two?stage solid sorption freezing cycle for refrigerated trucks at low engine load in summer[J].Ener?gy Conversion and Management,2016,109:1?9.
[9]高鵬,王麗偉,王如竹,等.汽車尾氣驅(qū)動(dòng)的吸附式冷藏車制冷系統(tǒng)的研究[J].工程熱物理學(xué)報(bào),2016,37(10):2180?2184.(GAO Peng,WANG Liwei,WANG Ruzhu,et al.Study on the sorption refrigerated truck driv?en by the vehicle exhaust[J].Journal of Engineering Ther?mophysics,2016,37 (10):2180?2184.)
[10]WANG L W,METCALF S J,CRITOPH R E,et al.De?velopment of thermal conductive consolidated activated car?bon for adsorption refrigeration[J].Carbon,2012,50(3):977?986.
[11]JIANG L,WANG L W,WANG R Z.Investigation on thermal conductive consolidated composite CaCl2for adsorp?tion refrigeration[J].International Journal of Thermal Sci?ences,2014,81:68?75.
[12]宋分平,江龍,王麗偉,等.氯化鈣/膨脹硫化石墨復(fù)合吸附劑非平衡吸附性能[J].制冷學(xué)報(bào),2013,34(6):12?16.(SONG Fenping,JIANG Long,WANG Liwei,et al.Non equilibrium sorption performance of CaCl2/ENG?TSA composite sorbent [J].Journal of Refrigeration,2013,34(6):12?16.)
[13]JIANG L,WANG L W,WANG R Z,et al.Influence of variable thermal conductivity and permeability of adsorbents on the simulation: a case study of two?stage freezing system[J].Heat Transfer Research,2015,46(2):141?157.
[14]江龍,金哲權(quán),王麗偉,等.不同吸附量條件下氯化鍶混合吸附劑?氨的導(dǎo)熱系數(shù)與滲透率研究[J].制冷學(xué)報(bào),2013,34 (3): 35?39.( JIANG Long,JIN Zhequan,WANG Liwei,et al.Study on thermal conductivity and permeability of SrCl2?NH3under the condition of different sorption quantities[J].Journal of Refrigeration,2013,34(3):35?39.)
[15]王健,胡遠(yuǎn)揚(yáng),王麗偉,等.CaCl2?BaCl2?NH3二級(jí)吸附式制冷系統(tǒng)及其制冷性能與仿真[J].上海交通大學(xué)學(xué)報(bào),2011,45(9):1389?1394.(WANG Jian,HU Yuanyang,WANG Liwei,et al.Refrigeration performance and simula?tion of CaCl2?BaCl2?NH3two?stage sorption refrigeration system [J].Journal of Shanghai Jiao Tong University,2011,45(9):1389?1394.)
[16]王健.CaCl2/BaCl2?NH3兩級(jí)吸附式制冷循環(huán)實(shí)驗(yàn)研究[D].上海:上海交通大學(xué),2012.(WANG Jian.Refrige?ration performance and simulation of CaCl2?BaCl2?NH3two?stage sorption refrigeration system[D].Shanghai: Shanghai Jiao Tong University,2012.)
Experimental Investigation on Working Pairs for a Two?stage Sorption Refrigeration Cycle
Jiang Long Lu Huitong Wang Ruzhu Wang Liwei
(Institute of Refrigeration and Cryogenics,Shanghai Jiao Tong University,Shanghai,200240,China)
Recently,a CaCl2?BaCl2?NH3chemisorption freezing cycle driven by a low?temperature heat source has drawn an increasing a?mount of attention.To develop a working pair with a more desirable performance than CaCl2?BaCl2?NH3,working pairs of CaCl2?NaBr?NH3,SrCl2?BaCl2?NH3,and SrCl2?NH4Cl?NH3were investigated and compared.Most composite adsorbents were developed with a novel matrix of expanded natural graphite treated with sulfuric acid (ENG?TSA),leaving one serial with expanded natural graphite(ENG) for comparison.For SrCl2?NH4Cl?NH3and CaCl2?NaBr?NH3,experimental results show that the maximum adsorption quantities are 95.4%and 88.6%of the theoretical values,respectively.Simulation results indicate that the best results are obtained from CaCl2?NaBr?NH3,and its specific cooling power(SCP) and coefficient of performance (COP) are as high as 260.74 W/kgand 0.285,respectively,which are 15.1%and 5.6%better than the values for CaCl2?BaCl2?NH3.It is also noted that,for different working pairs,the COP,cooling ca?pacity,and SCP range from 0.215 to 0.285,2 to 3.65 kW,and 161.4 to 260.74 W/kg,respectively.Comparisons also show that the ENG?TSA matrix effectively improves the SCP.For example,the SCP of CaCl2?BaCl2?NH3is improved by 40.2% ,when compared with a working pair with the ENG matrix.
sorption;refrigeration cycle;working pairs;ENG?TSA
Jiang Long,male,post doctor,Institute of Refrigeration and Cry?ogenics,Shanghai Jiao Tong University,+ 86 21?34206309,E?mail:maomaojianglong@ 126.com.Research fields: the conver?sion and utilization of low grade waste heat,sorption refrigeration and energy storage.
TB61;TB64
A
0253-4339(2017)06-0007-05
10.3969 /j.issn.0253 - 4339.2017.06.007
中國(guó)博士后科學(xué)基金(2015M581609)和國(guó)家自然科學(xué)基金(51606118)資助項(xiàng)目。 (The project was supported by China Postdoctoral Science Foundation (No.2015M581609) and the National Natural Science Foundation of China (No.51606118).)
2017年2月3日
江龍,男,博士后,上海交通大學(xué)制冷與低溫工程研究所,(021)34206309,E?mail:maomaojianglong@ 126.com。 研究方向:低品位余熱回收利用,吸附式與吸收式制冷與儲(chǔ)能。