• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Luminescence and Optical Temperature Sensing Properties of NaY(MoO4)2∶Er3+Nanocrystalline Phosphor

    2017-12-05 07:36:34-,-,-,-
    發(fā)光學(xué)報(bào) 2017年12期

    -, -, -, -

    (Key Laboratory of Photoelectric Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China)

    LuminescenceandOpticalTemperatureSensingPropertiesofNaY(MoO4)2∶Er3+NanocrystallinePhosphor

    SUNYing-fei,LYUShu-chen*,MENGQing-yu,QUXiu-rong

    (KeyLaboratoryofPhotoelectricBandgapMaterials,MinistryofEducation,HarbinNormalUniversity,Harbin150025,China)

    The NaY(MoO4)2∶Er3+phosphors derived at different calcination temperatures were prepared by molten salt method and the crystal structure and microscopic morphology were characterized by means of X-ray diffraction(XRD) and field emission scanning electron microscopy (FE-SEM). The Stokes fluorescence emission spectra of nanocrystals derived at different calcination temperatures have been measured. It can be found that the emission intensity ratio of2H11/2-4I15/2to4S3/2-4I15/2transitions from NaY(MoO4)2∶Er3+increases with the decrease of the calcination temperature. Furthermore, the temperature sensing properties of NaY(MoO4)2∶Er3+phosphors were studied based on the emission intensities from two thermally coupled2H11/2and4S3/2levels of Er3+. The results show that the temperature sensing sensitivity of the sample calcinated at600℃ is somewhat higher than that of the sample calcinated at900℃in a relatively wide range of sensing temperature (303-573K). The sensing sensitivity increases with the decreasing of the calcination temperature, and a relative high sensitivity of1.36×10-2K-1is obtained for the sample calcinated at600℃, which is about76.6% higher than that of the sample obtained at900℃. Finally, the physical mechanism for the calcination temperature-dependence of temperature sensing sensitivity was explained and predicted.

    molten salt method, NaY(MoO4)2∶Er3+phosphors, temperature sensing

    1 Introduction

    In recent years, rare earth (RE) ion doped phosphors have become a current tendency because of their prominent luminescence properties, gaining a vast application prospect in some fields, such as fluorescent lamps, displays, biosensors,etc.[1-4]. The optical temperature sensing is regarded as a kind of the application prospect of non-contact, environmental protection and high sensitivity optical temperature sensing technology[5-7]. In addition, some of the rare earth ions applied to optical temperature sensing have aroused general concern, for example, Er3+has two thermally coupled energy level2H11/2and4S3/2and pretty good luminescence properties[8-10].

    Temperature-sensitive fluorescent materials are increasingly receiving attention, because it can provide a non-contact temperature measurementviaprobing the dependence of fluorescence intensities on temperature[7]. In this work, Er3+doped NaY(MoO4)2phosphors were synthesized by molten salt method, and the phosphors were obtained by adjusting the amount of calcinations temperature. The temperature sensing properties of Er3+doped NaY(MoO4)2were studied. This work will provide an application potential for optical temperature sensor.

    2 Experiments

    2.1 Synthesis

    NaY(MoO4)2∶Er3+phosphors with different calcination temperatures were prepared by a molten salt method. First, ([Y3+]∶[Er3+]=98∶2, the Re3+is 0.002 mol totally) in a typical experiment, 2 mmol Y(NO3)3·6 H2O, 2 mmol Er(NO3)3·6 H2O, 4 mmol Na2MoO4, 100 mmol NaNO3and 50 mmol KNO3as starting materials were weighed and ground adequately in an agate mortar. In the next step, the homogeneous mixture was transferred to a crucible and sintered at the temperatures of 350 ℃ for 3 h in air. After cooling to room temperature in furnace, the precursor was stirred with distilled water, after that the suspension was centrifuged at 4 500 r/min for 30 min. The resultant precipitate was washed several times, then dried at 80 ℃ for 8 h in drying cabinet. Last, the resultant precipitate was calcined at 600, 750, and 900 ℃ for 2 h, respectively. Finally, the NaY(MoO4)2∶Er3+phosphors with different calcination temperatures were obtained.

    2.2 Characterization

    The XRD of all the samples is detected by a D/max 2600 diffractometer by usingλ=0.154 06 nm radiation of Cu Kα1. The range of the scanning mode is from 10°-70°. The morphology and microstructure were characterized by field-emission scanning electron microscopy (FE-SEM, SU70, Hitachi). The emission, excitation spectra were carried out on a FluoroMax-4 spectrophotometer with temperature controlling and monitoring system which can accurately heat the samples in a temperature range from 303 to 573 K.

    3 Results and Discussion

    3.1 Structural and Morphology Characterization of The Phosphors

    Fig.1 shows the XRD patterns of NaY(MoO4)2∶Er3+phosphors under the calcinations temperature of 600, 750, and 900 ℃, respectively. The crystal lattice is body-centered tetragonal, the diffraction peak positions are consistent well with those reported in JCPDS card No.82-2369. The samples which we prepared are pure phase since no diffraction peaks of impurities were observed in the XRD. According to the data of XRD patterns, the average crystallographic sizes can be calculated by the Scherrer formula which showed as follows[14]:

    Fig.1 X-ray diffraction patterns of NaY(MoO4)2∶Er3+phosphors under different calcination temperature

    Fig.2 FE-SEM images of NaY(MoO4)2∶Er3+phosphors corresponding to calcinations temperatures of 600, 750, 900 ℃, respectively.

    (1)

    whereκ=0.9,λ=0.154 06 nm,θis the Bragg angle,βrepresents the full width at half maximum (FWHM) of the diffraction peak, andβ0is a modification factor for the system broadening. The average particle size of the samples was calculated from the three strongest peaks in the XRD patterns. The particle size of the samples with calcinations temperature of 600, 750, 900 ℃ was obtained to be 20.68, 31.02, and 36.19 nm, respectively. It will produce a large accretion of error when the particle size is bigger than 100 nm, so the calculation value of the sample under the calcinations temperature of 600 and 900 ℃ was not applied.

    Fig.2 shows the FE-SEM images of the samples which mentioned in Fig.1. It can be found that the particle sizes of the samples under the calcinations temperature of 600, 750, 900 ℃ were about 30,300, and 3 μm. The particle sizes exhibited in FE-SEM are in good agreement with the calculation results.

    3.2 Excitation Spectra Depended on Calcination Temperature

    We can see from Fig.3 that the room temperature excitation spectra of NaY(MoO4)2∶Er3+with different calcination temperatures for monitoring the4S3/2-4I15/2emission of Er3+ions, the scanning range is from 250 to 500 nm. it can be seen that the two main excitation peaking at 378 and 487.5 nm corresponding to the4G11/2-4I15/2and4F7/2-4I15/2transitions and the four excitation peaking at 364.5, 406,442.5, and 450 nm corresponding to the2G9/2-4I15/2,2H9/2-4I15/2,2F3/2-4I15/2, and2F5/2-4I15/2transitions. In the near-ultraviolet and blue light region, Er3+doped NaY(MoO4)2may possess strong absorption corresponding to Er3+4f-4f transition and effective transfer the green light emission.

    Fig.3 Excitation spectra of NaY(MoO4)2∶Er3+phosphors at room temperature with different calcination temperature

    3.3 Temperature Sensing Properties

    The luminescent properties of rare earth doped material have attracted a lot of interest for using as temperature sensing material[15-17]. Er3+has two excellent thermal energy levels:2H11/2and4S3/2.The transition of2H11/2-4I15/2and4S3/2-4I15/2can emit green light located at 520 and 550 nm, respectively. The integrated intensity ratio of the two green light emissions changed obviously with the changing of the temperature. The emission spectra of NaY(MoO4)2∶Er3+material with different calcination temperatures under the 378 nm excitation were obtained in a temperature region of 303 to 573 K, which showed in Figs.4-6. It can be seen that the two main emission peaks locating at 520 and 550 nm corresponding to the2H11/2-4I15/2and4S3/2-4I15/2transitions. The relative strength of all the emission peaks presents the same changing trend. The emission intensity of2H11/2-4I15/2transition increases with the temperature increase, while the emission intensity of4S3/2-4I15/2transition decreases. In general, the fluorescence intensity ratio of2H11/2-4I15/2to4S3/2-4I15/2transitions can be expressed byR. The value ofRis different among the samples with different calcination temperatures. Moreover, the value ofRfor the same sample at various temperatures is also different. The fluorescence integrated intensity ratio of the samples with different calcination temperatures can be represented byR1(600 ℃),R2(750 ℃), andR3(900 ℃), which showed in Tab.1. It can be found that the value ofRincreases with the temperature increase.

    Fig.4 Emission spectra of NaY(MoO4)2∶Er3+phosphors with the calcination temperature of 600 ℃ in a temperature region of 303 to 573 K

    Fig.5 Emission spectra of NaY(MoO4)2∶Er3+phosphors with the calcination temperature of 750 ℃ in a temperature region of 303 to 573 K

    Fig.6 Emission spectra of NaY(MoO4)2∶Er3+phosphors with the calcination temperature of 900 ℃ in a temperature region of 303 to 573 K

    Tab.1IntegratedemissionintensityofEr3+2H11/2-4I15/2and4S3/2-4I15/2transitionofthesamples

    T/KR1(600℃)R2(750℃)R3(900℃)3030.7900.7370.5433331.1331.0100.7543631.5271.2860.9513931.8481.5681.1574232.2841.9851.3964532.6762.2831.6134833.0862.6771.8475133.4683.0022.1045433.8053.3262.2815734.2753.6122.481

    Fig.7 shows the dynamic process of the luminescence of Er3+in NaY(MoO4)2∶Er3+phosphors. It can be found that when the samples are excited by 378 nm fluorescence, the4I15/2level reaches4G11/2level. Er3+at the4G11/2state can decay rapidly down to the2H11/2state, and finally the transition from2H11/2-4I15/2state results on the green emission at 520 nm. Similarly, Er3+at the4G11/2state can also decay rapidly down to the4S3/2state, and finally the4S3/2-4I15/2transition reveals 550 nm green emissions.

    Fig.7 Energy level diagram of Er3+and the luminescent process under the excitation of 378 nm light

    The integrated emission intensity of Er3+locating at 520 and 550 nm can be expressed asIupandIlow, respectively, andR=Iup/Ilow. The number of electron on2H11/2level and4S3/2level of Er3+is related to the temperature, and follow the Boltzmann distribution law. Therefore, the relation between the fluorescence intensity ratio of2H11/2level to4S3/2level and temperature can be written as follows[18-19]:

    (2)

    whereCis a constant concerning the host materials, ΔEis the energy distance between2H11/2level and4S3/2level which can be experimentally determined from the emission spectrum,kis the Boltzmann constant, andTis absolute temperature. For the samples with different calcination temperatures,Cand ΔE/kcan not be the same. Then, the Eq.(2) can also be converted in the form of a linear equation as

    (3)

    putting the different values of lnRand 1/Tinto Eq.(3), ΔE/kand lnCvalues can be obtained by linear fitting. The slope of ΔE/k-lnCis a very important parameter to judge the optical temperature sensing ability of Er3+doped materials, which are shown in Fig.8. Putting the slope andC(derived from lnC) into Eq.(2), the emission integrated intensity ratio of2H11/2-4I15/2to4S3/2-4I15/2transitions with various temperatures can be obtained, which shown in Fig.9 (point is the experimental data obtained, the line is fitting data obtained). The results were showed in Tab.2, the temperature sensing curves of the samples can be got from it.

    Fig.8 Value of lnRdependence on the inverse absolute temperature in NaY(MoO4)2∶Er3+phosphors with different calcination temperature. (a) 600 ℃. (b) 750 ℃. (c) 900 ℃.

    Fig.9 Value ofRdependence on the temperature in NaY-(MoO4)2∶Er3+phosphors with different calcination temperature. Solid squares are experimental data, solid line is the fitting result by Eq.(2).

    Tab.2ValueofCandΔE/kofthesampleswithdifferentcalcinationtemperature

    Calcinationtemperature/℃CΔE·k-1/K60025.961033.5175022.361033.8690013.80973.10

    3.4 Temperature Sensing Sensitivity

    For the Er3+-based temperature sensor, the sensitivityScan be defined as[5,8]

    (4)

    Sensitivity is an important factor for evaluating the performance of the sensor. The moreSis large, the more obviouslyRchanged, so the samples with largeSvalue can reflect the change of temperature more clearly, and more suitable for being temperature sensing material.Sof the samples with different sizes shown in Fig.10 can be obtained by taking the data in Tab.2 and the temperature to Eq.(4). It can be found that the value ofSincreases with the decreasing of the calcination temperature. The maximum value for the sensitivities of the sample with calcination temperature of 600, 750, and 900 ℃ is 1.36×10-2, 1.17×10-2, and 7.67×10-3K-1. After the data analysis, the temperature sensing property of lower calcination temperature is better than higher calcination temperature, which suggests the lower calcination temperature is more suitable to be used in temperature sensing material.

    It can be found in Eq.(4) that the sensitivity of material is related toCand ΔE/k. The larger the ΔEis, the larger the ΔE/kis. The values of ΔE/kfor the samples with calcination temperatures of 600, 750, and 900 ℃ are 1 033.509 67, 1 033.863 03, and 973.098 34 K, respectively. The observed change in the energy separation between the emitting levels could be caused by differences in the crystal field for different calcination temperatures or by the different contributions of ‘surface’ ions for different calcination temperatures.

    Fig.10 Thermal sensitivity-temperature curves of NaY(MoO4)2∶

    Er3+phosphors with different calcination temperature From Eq.(5) it can be concluded that the sensitivity of material is related toCand ΔE/k. The larger the ΔEis, the larger the ΔE/kis. But the ΔE/kchanged little in our work. Moreover, it can be found from Eq.(5), sensitivitySisCdependent. SoCfor different materials can be decided by the following Eq.(5)[6]

    (5)

    The pre-exponential parameters depends on the following reasons: (1) The instrument responseci, which can be considered equal to unity since the emission spectra were corrected from the instrument response. (2) The average photon energy of each transitionhνi. (3) The percentage of the total emission from the thermalized level to the final4I15/2levelβi. (4) The degeneracy of the thermalized levelsgi. (5) The radiation transition rate of each thermalized levels to4I15/2level,Ai“up” corresponding to2H11/2level, “l(fā)ow” corresponding to4S3/2level . From Eq.(5), it can be seen thatCis proportional to theAup/Alow. The radiation transition rate between levels of rare earth ion is related to the transition matrix element of ion and transition intensity parameters of host material. Therefore,Cof the material whose luminescent center is Er3+can be expressed as follows[6-7]

    (6)

    Ω2,Ω4,Ω6in the above Eq.(6) are the Judd-Ofelt intensity parameters.

    As we know that the small size sample with poor crystallinity has much more disordered environment than bulk because of existence of surface defects. The more disordered environment may correspond to the poorer crystallinity. Moreover, the increasing disorder of environment will lead to the increase of transition intensity parameters, so the transition intensity parameters in small size sample are noticeable larger than that in bulk material, especiallyΩ2. It is generally believed that the rate of change ofΩ2with environment is more obvious than that ofΩ4andΩ6[7]. Hence, the value ofCin small size sample is bigger than that of in bulk material. Back to Eq. (4), the temperature sensing sensitivity of small size sample is better than bulk material in the temperature range of 303-593 K.

    The maximum value of sensitivity (S) of Er3+activated optical temperature sensing materials has been reported is 1.7×10-3to 7.9×10-3K-1[7,10,20-25]. Then the sensitivity of Er3+co-doped NaY(MoO4)2nano-materials we prepared has advantage. In this work, the values of ΔE/k,CandShave been obtained in NaY(MoO4)2∶Er3+phosphors, so it is necessary to compare our results with other relevant studies. The optical temperature sensing ability of Er3+doped other material is shown in Tab.3. Compared with other materials, the samples of this work have a relative better performance.

    Tab.3RelevantparametersandmaximalsensitivityaswellastemperaturesforthemaximalsensitivityandtheexcitationwavelengthforEr3+dopedhosts

    HostCΔE·k-1/KS/K-1T/Kλex/nmRefs.Gd2O317.241175.30.0084570980[7]BaTiO39.971200.00.0045600980[21]NaYF44.89719.80.0037363980[22]YNbO46.29759.60.0072406980[23]Yb2Ti2O79.30679.20.0074345976[24]Al2O39.63964.10.0051495978[25]YVO420.781011.40.0111498980[13]NaY(MoO4)225.961033.50.0136517378Thiswork

    4 Conclusion

    In conclusion, the nanocrystalline NaY(MoO4)2∶Er3+phosphors with various calcination temperatures were prepared through a molten salt method. The structure of the phosphors was examined by means of XRD. In addition, the crystal lattice is body-centered tetragonal. In addition, the temperature sensing properties of NaY(MoO4)2∶Er3+phosphor were studied. The temperature sensing sensitivity of the materials we prepared is superior to that of materials reported in literatures. The sensitivity will increase with the decrease of the calcination temperature. It shows that in a relatively wide range of sensing temperature (303-573 K), the temperature sensing sensitivity of lower calcination temperature is somewhat better than that of higher calcination temperature. The temperature sensing sensitivity of calcination temperature of 900 ℃ is 7.67×10-3K-1, and the value for 600 ℃ sample is 1.36×10-2K-1which is about 76.6% higher than that of calcination temperature of 900 ℃. This is ascribed to more disordered local environment in the higher calcination temperature, which leads to the increase of transition intensity parameters. Although the improvement of sensitivity is not obvious, but the above results can also provide a potential approach for improving the properties of Er3+doped optical temperature sensing materials.

    [1] TUAN P V, LE T H, NGA L Q,etal.. Hydrothermal synthesis and characteristic photoluminescence of Er-doped SnO2nano-particles [J].PhysicaB, 2016, 501:34-37.

    [2] SUN Y J, ZHAO Z T, LI P W,etal.. Er-doped ZnO nanofibers for high sensibility detection of ethanol [J].Appl.Surf.Sci., 2015, 356:73-80.

    [3] WU X, CHI M L, KWOK K W. Effect of phase transition on photoluminescence of Er- doped KNN ceramics [J].J.Lumin., 2015, 155:343-350.

    [4] WANG X S, ZHANG J B, WANG L Y,etal.. High response gas sensors for formaldehyde based on Er-doped In2O3nanotubes [J].J.Mater.Sci.Technol., 2015, 31:1175-1180.

    [5] ZHENG H, CHEN B J, YU H Q,etal.. Temperature sensing and optical heating in Er3+single-doped and Er3+/Yb3+codoped NaY(WO4)2particles [J].RSCAdv., 2014, 4:47556-47563.

    [7] TIAN Y, TIAN B N, CUI C E,etal.. Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3∶Yb3+/Er3+phosphor [J].RSCAdv., 2015, 5:14123-14128.

    [8] VETRONE F, NACCACHE R, ZAMARRO A N,etal.. Temperature sensing using fluorescent nanothermometers [J].ACSNano, 2010, 4:3254-3258.

    [9] WANG X, ZHANG Z G, GAO W W. Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+codoped CaWO4[J].Opt.Lett., 2012, 37:4865-4867.

    [10] RAKOV N, MACIEL G S. Three-photon upconversion and optical thermometry characterization of Er3+∶Yb3+co-doped yttrium silicate powders [J].Sens.ActuatorsB:Chem., 2012, 164:96-100.

    [11] PARCHUR A K, NINGTHOUJAM R S, RAI S B,etal.. Luminescence properties of Eu3+doped CaMoO4nanoparticles [J].DaltonTrans., 2011, 40(29):7595.

    [12] PARCHUR A K, NINGTHOUJAM R S. Preparation and structure refinement of Eu3+doped CaMoO4nanoparticles [J].DaltonTrans., 2011, 40(29):7590.

    [13] MENG Q Y, LIU T, DAI J Q,etal.. Study on optical temperature sensing properties of YO4∶Er3+,Yb3+nanocrystals [J].J.Lumin., 2016, 179:633-638.

    [14] TROJAN-PIEGZA J, ZYCH E. Preparation of nanocrystalline Lu2O3∶Eu phosphorviaa molten salts route [J].J.AlloysCompd., 2004, 38:118-122.

    [15] WANG F, BANERJEE D, LIU Y S,etal.. Upconversion nanoparticles in biological labeling, imaging, and therapy [J].Analyst, 2010, 135:1839-1854.

    [16] DEBASU M L, ANANIAS D, PASTORIZA-SANTOS I,etal.. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2 000 K based on Er3+emission and blackbody radiation [J].Adv.Mater., 2013, 25:4868-4874.

    [17] JAQUE D, VETRONE F. Luminescence nanothermometry [J].Nanoscale, 2012, 4:4301-4326.

    [18] DONG B, CAO B S, HE Y Y,etal.. Temperature sensing andinvivoimaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides [J].Adv.Mater., 2014, 24:1987-1993.

    [19] LI J J, SUN S, LIU J T,etal.. Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+co-doped Gd2(WO4)3phosphors [J].Mater.Res.Bull., 2013, 48:2159-2165.

    [21] ALENCAR M A R C, MACIEL G S, DE ARAJO C B,etal.. Er3+-doped BaTiO3nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor [J].Appl.Phys.Lett., 2004, 84:4753-4755.

    [22] DONG B, HUA R, CAO B,etal.. Wolfbeis, size dependence of the upconverted luminescence of NaYF4∶Er,Yb microspheres for use in ratiometric thermometry [J].Phys.Chem.Chem.Phys., 2014, 16:20009-20012.

    [23] TIAN Y Y, TIAN Y, HUANG P,etal.. Effect of Yb3+concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+co-doped YNbO4nanoparticles preparedviamolten salt route [J].Chem.Eng.J., 2016, 297:26-34.

    [24] CAO B, HE Y, FENG Z,etal.. Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo∶Yb2Ti2O7anophosphor [J].Sens.ActuatorsB:Chem., 2011, 159:8-11.

    [25] DONG B, LIU D, WANG X,etal.. Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+codoped Al2O3[J].Appl.Phys.Lett., 2007, 90(18):181117-1-3.

    2017-06-01;

    2017-07-25

    哈爾濱創(chuàng)新科技人才研究專項(xiàng)基金(2014RFXXJ091); 光電帶隙材料省部共建教育部重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目計(jì)劃(PEBM201614)資助項(xiàng)目

    NaY(MoO4)2∶Er3+納米晶體熒光粉的發(fā)光與光學(xué)溫度傳感特性

    孫英斐, 呂樹臣*, 孟慶裕, 曲秀榮

    (哈爾濱師范大學(xué) 光電帶隙材料省部共建教育部重點(diǎn)實(shí)驗(yàn)室, 黑龍江 哈爾濱 150025)

    采用熔鹽法制備了不同煅燒溫度的NaY(MoO4)2∶Er3+熒光粉材料,樣品的晶體結(jié)構(gòu)與微觀形貌由X射線衍射儀和場(chǎng)發(fā)射掃描電鏡測(cè)得。Er3+摻雜的 NaY(MoO4)2納米晶體的斯托克斯熒光發(fā)射光譜是在不同煅燒溫度下測(cè)得的。NaY(MoO4)2∶Er3+熒光粉材料的兩個(gè)能級(jí)2H11/2-4I15/2和4S3/2-4I15/2躍遷的發(fā)射強(qiáng)度比隨煅燒溫度的增加而減小。NaY(MoO4)2∶Er3+熒光粉材料的溫度傳感特性依賴于Er3的兩個(gè)熱耦合能級(jí)2H11/2-4I15/2和4S3/2-4I15/2的發(fā)射強(qiáng)度。研究表明,在一個(gè)相對(duì)大的傳感溫度范圍(303~573 K),600 ℃煅燒的樣品的溫度傳感靈敏度比900 ℃煅燒的樣品高,樣品的溫度傳感靈敏度隨煅燒溫度的增加而減小,600 ℃煅燒的樣品的溫度傳感靈敏度為 1.36×10-2K-1,比900 ℃煅燒的樣品高76.6%。最后,解釋了基于不同煅燒溫度的溫度傳感靈敏度的物理機(jī)制。

    熔鹽法; NaY(MoO4)2∶Er3+熒光粉; 溫度傳感

    1000-7032(2017)12-1582-09

    Supported by Harbin Innovative Talent in Science and Technology Research Special Fund Project(2014RFXXJ091); Open Project Program of Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, China (PEBM201614)

    *CorrespondingAuthor,E-mail:hsdlsc63@126.com

    O482.31DocumentcodeA

    10.3788/fgxb20173812.1582

    孫英斐(1991-),男,黑龍江佳木斯人,碩士研究生,2014年于哈爾濱師范大學(xué)獲得學(xué)士學(xué)位,主要從事凝聚態(tài)物理方面的研究。E-mail: 279697358@qq.com

    呂樹臣(1963-),男,黑龍江哈爾濱人,教授,博士生導(dǎo)師,2002 年于中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所獲得博士學(xué)位,主要從事量子光學(xué)及固體發(fā)光方面的研究。E-mail: hsdlsc63@126.com

    啦啦啦 在线观看视频| 超碰成人久久| 91精品伊人久久大香线蕉| 亚洲欧美一区二区三区久久| 大片免费播放器 马上看| 欧美国产精品va在线观看不卡| 欧美精品av麻豆av| av在线观看视频网站免费| a级毛片在线看网站| 国产成人精品久久久久久| 精品人妻熟女毛片av久久网站| 午夜福利,免费看| 亚洲精品久久成人aⅴ小说| 国产在线一区二区三区精| 韩国高清视频一区二区三区| 青青草视频在线视频观看| 久久久精品94久久精品| 亚洲精品日韩在线中文字幕| 午夜福利,免费看| 免费少妇av软件| 国产伦理片在线播放av一区| 亚洲精品久久午夜乱码| 日本一区二区免费在线视频| 在线观看人妻少妇| 青春草视频在线免费观看| 欧美在线黄色| a级片在线免费高清观看视频| 精品人妻在线不人妻| 嫩草影视91久久| 韩国av在线不卡| 韩国av在线不卡| 色婷婷久久久亚洲欧美| 亚洲国产精品一区三区| √禁漫天堂资源中文www| 一本—道久久a久久精品蜜桃钙片| 超色免费av| 男女边摸边吃奶| 又大又黄又爽视频免费| 日本色播在线视频| 汤姆久久久久久久影院中文字幕| 交换朋友夫妻互换小说| 欧美最新免费一区二区三区| 亚洲精品美女久久久久99蜜臀 | 国产高清国产精品国产三级| 久久久久精品久久久久真实原创| 精品福利永久在线观看| 国产免费现黄频在线看| 国产不卡av网站在线观看| 91成人精品电影| 国产成人欧美| 亚洲欧美精品综合一区二区三区| 午夜福利影视在线免费观看| 日韩成人av中文字幕在线观看| av网站在线播放免费| 国产麻豆69| 亚洲av中文av极速乱| 大话2 男鬼变身卡| 色94色欧美一区二区| 热99久久久久精品小说推荐| 国产精品麻豆人妻色哟哟久久| 国产精品蜜桃在线观看| 国产精品免费视频内射| 免费在线观看视频国产中文字幕亚洲 | 黄片播放在线免费| 日本猛色少妇xxxxx猛交久久| 久久久精品国产亚洲av高清涩受| 亚洲av中文av极速乱| 国产成人精品久久二区二区91 | bbb黄色大片| 中文欧美无线码| 日韩av不卡免费在线播放| 男人添女人高潮全过程视频| 韩国高清视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 国产成人免费观看mmmm| 日本午夜av视频| 欧美亚洲 丝袜 人妻 在线| av网站免费在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 伦理电影大哥的女人| 久久久欧美国产精品| 日本91视频免费播放| 国产精品久久久久久久久免| 最近的中文字幕免费完整| 精品卡一卡二卡四卡免费| 国产精品一区二区在线不卡| 一级毛片 在线播放| 哪个播放器可以免费观看大片| 男女下面插进去视频免费观看| videosex国产| 免费看不卡的av| 亚洲国产毛片av蜜桃av| 欧美亚洲日本最大视频资源| 一二三四在线观看免费中文在| 久久久久网色| 女性被躁到高潮视频| 日本欧美国产在线视频| 国产成人a∨麻豆精品| av在线播放精品| 91老司机精品| 黄片播放在线免费| 久久久久精品国产欧美久久久 | 久久久久国产精品人妻一区二区| 亚洲综合精品二区| av卡一久久| 亚洲,一卡二卡三卡| 免费看不卡的av| 欧美人与善性xxx| 高清黄色对白视频在线免费看| 亚洲欧美成人综合另类久久久| 桃花免费在线播放| 啦啦啦在线观看免费高清www| 一本色道久久久久久精品综合| 午夜老司机福利片| 国产精品人妻久久久影院| 69精品国产乱码久久久| 国产成人精品久久久久久| 老司机影院毛片| 久久女婷五月综合色啪小说| 久久久久久久久久久免费av| 欧美在线一区亚洲| 美女主播在线视频| av又黄又爽大尺度在线免费看| 国产成人av激情在线播放| 精品一区在线观看国产| 高清不卡的av网站| 欧美乱码精品一区二区三区| 99久国产av精品国产电影| netflix在线观看网站| av国产久精品久网站免费入址| av电影中文网址| 建设人人有责人人尽责人人享有的| 亚洲精品国产区一区二| 精品亚洲成国产av| 久久天堂一区二区三区四区| 亚洲欧美精品自产自拍| 精品福利永久在线观看| 国产精品偷伦视频观看了| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产av影院在线观看| 日韩大片免费观看网站| 久久午夜综合久久蜜桃| 毛片一级片免费看久久久久| 亚洲成人手机| 亚洲欧美中文字幕日韩二区| 老汉色∧v一级毛片| 嫩草影视91久久| 搡老岳熟女国产| 亚洲,欧美精品.| 老汉色av国产亚洲站长工具| 岛国毛片在线播放| av.在线天堂| 天堂中文最新版在线下载| 欧美日韩一区二区视频在线观看视频在线| 免费高清在线观看视频在线观看| 看非洲黑人一级黄片| 一本—道久久a久久精品蜜桃钙片| 各种免费的搞黄视频| 亚洲精品国产一区二区精华液| 多毛熟女@视频| 久久久精品94久久精品| 国产精品一区二区在线不卡| 综合色丁香网| 亚洲欧美清纯卡通| 老司机亚洲免费影院| 丰满饥渴人妻一区二区三| 晚上一个人看的免费电影| 欧美变态另类bdsm刘玥| 欧美日本中文国产一区发布| 日韩大码丰满熟妇| 一级片'在线观看视频| 亚洲综合色网址| 视频区图区小说| 一区在线观看完整版| 这个男人来自地球电影免费观看 | 亚洲欧洲精品一区二区精品久久久 | 成人三级做爰电影| 亚洲精品国产色婷婷电影| 观看美女的网站| 精品少妇内射三级| 国产老妇伦熟女老妇高清| 国产日韩欧美视频二区| 老司机靠b影院| 国产野战对白在线观看| avwww免费| 日本黄色日本黄色录像| 一级毛片黄色毛片免费观看视频| 男的添女的下面高潮视频| 午夜av观看不卡| 国产一区二区在线观看av| 一级片'在线观看视频| 91老司机精品| 国语对白做爰xxxⅹ性视频网站| 777久久人妻少妇嫩草av网站| 国产成人欧美| 一级爰片在线观看| 欧美激情 高清一区二区三区| 午夜福利免费观看在线| 国产成人精品无人区| 亚洲色图 男人天堂 中文字幕| 亚洲免费av在线视频| 免费av中文字幕在线| 久久97久久精品| 又黄又粗又硬又大视频| 少妇人妻精品综合一区二区| 久久久久久人人人人人| 国产成人系列免费观看| 亚洲,欧美精品.| 天天添夜夜摸| 亚洲精品aⅴ在线观看| 这个男人来自地球电影免费观看 | 中文欧美无线码| 99热网站在线观看| 中文字幕最新亚洲高清| 热re99久久国产66热| 久久久久精品性色| 久久久久久久大尺度免费视频| 国产xxxxx性猛交| 国产成人一区二区在线| 你懂的网址亚洲精品在线观看| av在线观看视频网站免费| 亚洲av男天堂| 亚洲av电影在线观看一区二区三区| 丝袜美足系列| 精品少妇一区二区三区视频日本电影 | 欧美成人午夜精品| 97在线人人人人妻| 国产成人午夜福利电影在线观看| 欧美最新免费一区二区三区| 丝袜人妻中文字幕| 最新在线观看一区二区三区 | 91aial.com中文字幕在线观看| 18禁裸乳无遮挡动漫免费视频| 我的亚洲天堂| 在线 av 中文字幕| 久久久久久久国产电影| 欧美黑人精品巨大| 波野结衣二区三区在线| 免费高清在线观看视频在线观看| 久久久久久久久免费视频了| 老司机亚洲免费影院| 丝袜在线中文字幕| 女的被弄到高潮叫床怎么办| 狠狠精品人妻久久久久久综合| 黄网站色视频无遮挡免费观看| 精品人妻一区二区三区麻豆| 亚洲第一青青草原| 亚洲精品美女久久久久99蜜臀 | 日韩制服丝袜自拍偷拍| 老熟女久久久| 国产免费又黄又爽又色| 在线精品无人区一区二区三| 亚洲欧美一区二区三区黑人| 欧美日韩视频精品一区| 久久久国产一区二区| 亚洲成人手机| 韩国高清视频一区二区三区| 日本欧美视频一区| 欧美激情极品国产一区二区三区| av网站免费在线观看视频| 国产成人91sexporn| 亚洲欧洲精品一区二区精品久久久 | 少妇猛男粗大的猛烈进出视频| 在线免费观看不下载黄p国产| 丝袜喷水一区| 国产成人精品福利久久| 1024视频免费在线观看| 七月丁香在线播放| 久久97久久精品| 国产日韩欧美视频二区| 国产xxxxx性猛交| 成人免费观看视频高清| 婷婷色麻豆天堂久久| av又黄又爽大尺度在线免费看| 午夜福利视频精品| 热re99久久精品国产66热6| avwww免费| 精品久久久精品久久久| 高清欧美精品videossex| 国产精品久久久久久精品古装| h视频一区二区三区| 精品国产乱码久久久久久男人| 久久久久精品久久久久真实原创| 久久热在线av| 亚洲av电影在线观看一区二区三区| 99九九在线精品视频| 王馨瑶露胸无遮挡在线观看| 少妇人妻精品综合一区二区| 日本欧美视频一区| 丝袜美腿诱惑在线| 午夜老司机福利片| 久久青草综合色| 天堂俺去俺来也www色官网| 久久久精品免费免费高清| 亚洲av日韩在线播放| 桃花免费在线播放| av卡一久久| 欧美成人精品欧美一级黄| 尾随美女入室| 日韩人妻精品一区2区三区| 亚洲av福利一区| 久久精品国产综合久久久| 男人舔女人的私密视频| 久久久欧美国产精品| 欧美精品一区二区大全| av又黄又爽大尺度在线免费看| 少妇猛男粗大的猛烈进出视频| 最近的中文字幕免费完整| 亚洲国产看品久久| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久电影网| 天美传媒精品一区二区| 在线观看www视频免费| 亚洲成人国产一区在线观看 | 亚洲av欧美aⅴ国产| 久久久久国产一级毛片高清牌| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕最新亚洲高清| 国产精品嫩草影院av在线观看| 丝瓜视频免费看黄片| 赤兔流量卡办理| 性高湖久久久久久久久免费观看| 99香蕉大伊视频| 日日摸夜夜添夜夜爱| 国产亚洲一区二区精品| 欧美 日韩 精品 国产| 欧美97在线视频| 九草在线视频观看| 久久久久久久久久久久大奶| 视频区图区小说| 成人18禁高潮啪啪吃奶动态图| 国产亚洲av高清不卡| 80岁老熟妇乱子伦牲交| 欧美精品人与动牲交sv欧美| 女人精品久久久久毛片| 精品久久久精品久久久| 精品亚洲乱码少妇综合久久| 午夜福利在线免费观看网站| 一区二区av电影网| 嫩草影院入口| 亚洲精品一区蜜桃| 国产免费现黄频在线看| 少妇人妻 视频| 精品国产国语对白av| 亚洲美女搞黄在线观看| 国产成人精品在线电影| 日韩一卡2卡3卡4卡2021年| 精品国产国语对白av| 亚洲少妇的诱惑av| 丝袜美腿诱惑在线| 国产一区亚洲一区在线观看| 女性被躁到高潮视频| 一区福利在线观看| 亚洲国产欧美一区二区综合| www.熟女人妻精品国产| av不卡在线播放| 成年动漫av网址| 亚洲一区二区三区欧美精品| 久久午夜综合久久蜜桃| 久久久久久免费高清国产稀缺| 久久精品国产亚洲av涩爱| 黄片无遮挡物在线观看| 久久久久精品国产欧美久久久 | 免费少妇av软件| 欧美精品一区二区大全| 丰满乱子伦码专区| 久久人人爽人人片av| 中文字幕人妻丝袜一区二区 | 性色av一级| 日韩熟女老妇一区二区性免费视频| 免费不卡黄色视频| 亚洲欧美清纯卡通| 欧美97在线视频| 亚洲精品视频女| 精品一区二区三区av网在线观看 | 中文精品一卡2卡3卡4更新| 下体分泌物呈黄色| a级片在线免费高清观看视频| 欧美日韩视频精品一区| 国产成人a∨麻豆精品| 国产亚洲av片在线观看秒播厂| 久久精品国产亚洲av高清一级| 免费久久久久久久精品成人欧美视频| 五月天丁香电影| 免费看不卡的av| 日本午夜av视频| 精品国产国语对白av| 国产免费又黄又爽又色| 男女边摸边吃奶| 日韩成人av中文字幕在线观看| 久久人人97超碰香蕉20202| 一级毛片黄色毛片免费观看视频| 高清av免费在线| 国产成人午夜福利电影在线观看| 成人手机av| 大片免费播放器 马上看| 亚洲第一av免费看| 久久免费观看电影| 色视频在线一区二区三区| 日韩制服丝袜自拍偷拍| 欧美xxⅹ黑人| 搡老乐熟女国产| 老司机靠b影院| 美女高潮到喷水免费观看| 国产一区二区在线观看av| 一级毛片我不卡| 国产又爽黄色视频| 天堂中文最新版在线下载| 中国三级夫妇交换| 久久精品亚洲熟妇少妇任你| 久久狼人影院| 国产精品国产三级专区第一集| 成人18禁高潮啪啪吃奶动态图| 欧美日韩精品网址| 一区福利在线观看| 一级片免费观看大全| 夫妻午夜视频| 亚洲欧美精品综合一区二区三区| 亚洲精品一二三| 亚洲美女黄色视频免费看| 亚洲欧美一区二区三区久久| 欧美97在线视频| 日本av免费视频播放| 免费观看性生交大片5| 男女午夜视频在线观看| 欧美在线一区亚洲| 日本爱情动作片www.在线观看| 在线观看人妻少妇| 亚洲av国产av综合av卡| 91精品伊人久久大香线蕉| 日韩电影二区| 国产熟女午夜一区二区三区| 亚洲综合精品二区| 热99久久久久精品小说推荐| 午夜老司机福利片| 日韩 亚洲 欧美在线| 美女高潮到喷水免费观看| 高清av免费在线| 中文字幕亚洲精品专区| 国产成人精品久久二区二区91 | 亚洲婷婷狠狠爱综合网| 精品人妻在线不人妻| 亚洲av综合色区一区| 成年人免费黄色播放视频| 亚洲综合色网址| 麻豆精品久久久久久蜜桃| 老司机影院毛片| 国产高清国产精品国产三级| 国产乱人偷精品视频| 色精品久久人妻99蜜桃| av卡一久久| 国产成人午夜福利电影在线观看| 熟女av电影| 精品国产乱码久久久久久小说| 成年人午夜在线观看视频| 欧美日本中文国产一区发布| 国产亚洲欧美精品永久| 热re99久久精品国产66热6| 国产av码专区亚洲av| 9色porny在线观看| 搡老岳熟女国产| 婷婷色综合大香蕉| 欧美日韩av久久| 老司机影院毛片| 亚洲国产中文字幕在线视频| 美女视频免费永久观看网站| 亚洲一码二码三码区别大吗| 看免费av毛片| 国产一区有黄有色的免费视频| 国产黄频视频在线观看| av不卡在线播放| 啦啦啦 在线观看视频| 欧美国产精品一级二级三级| 精品亚洲乱码少妇综合久久| 欧美日韩成人在线一区二区| 不卡av一区二区三区| 黄色一级大片看看| 一级毛片电影观看| 无遮挡黄片免费观看| 一区在线观看完整版| 九色亚洲精品在线播放| 国产av精品麻豆| 日本爱情动作片www.在线观看| 一区福利在线观看| 性少妇av在线| 丝袜在线中文字幕| 日韩av不卡免费在线播放| 一级毛片我不卡| 日本黄色日本黄色录像| 男女国产视频网站| 国产一区有黄有色的免费视频| 99精品久久久久人妻精品| 免费黄色在线免费观看| 丝袜美腿诱惑在线| 综合色丁香网| 国产精品香港三级国产av潘金莲 | 亚洲精品自拍成人| 一区二区三区四区激情视频| 亚洲成人免费av在线播放| 如日韩欧美国产精品一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 美女主播在线视频| 在线免费观看不下载黄p国产| 黄频高清免费视频| 嫩草影院入口| 亚洲久久久国产精品| www.熟女人妻精品国产| 亚洲欧美色中文字幕在线| 亚洲欧洲国产日韩| 久久精品久久久久久久性| 男的添女的下面高潮视频| 亚洲欧美清纯卡通| videosex国产| 久久精品久久精品一区二区三区| 另类亚洲欧美激情| 成人三级做爰电影| 国产日韩欧美亚洲二区| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 中文欧美无线码| 精品少妇一区二区三区视频日本电影 | 国产在线免费精品| 中文字幕最新亚洲高清| 亚洲图色成人| 亚洲精品自拍成人| 亚洲欧美一区二区三区久久| 亚洲欧美成人精品一区二区| 亚洲美女视频黄频| 国产日韩欧美视频二区| av有码第一页| 亚洲一级一片aⅴ在线观看| 久久精品久久久久久久性| 满18在线观看网站| 国产一区二区 视频在线| 国产一区有黄有色的免费视频| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕制服av| 免费人妻精品一区二区三区视频| 最近2019中文字幕mv第一页| 国产福利在线免费观看视频| 夜夜骑夜夜射夜夜干| 黑丝袜美女国产一区| 在线观看免费高清a一片| 亚洲国产日韩一区二区| 黄色怎么调成土黄色| 一本一本久久a久久精品综合妖精| 精品一区在线观看国产| 欧美黑人精品巨大| 国产精品免费大片| 欧美97在线视频| 亚洲av福利一区| 国产精品久久久av美女十八| 国产97色在线日韩免费| 新久久久久国产一级毛片| 极品人妻少妇av视频| 久久久久久人妻| 99精品久久久久人妻精品| 亚洲国产欧美日韩在线播放| 午夜av观看不卡| 婷婷色av中文字幕| 国产精品偷伦视频观看了| 建设人人有责人人尽责人人享有的| 婷婷色麻豆天堂久久| 国产日韩欧美视频二区| 日韩大码丰满熟妇| 麻豆乱淫一区二区| 亚洲人成电影观看| 天堂俺去俺来也www色官网| 欧美亚洲 丝袜 人妻 在线| 一级a爱视频在线免费观看| 色精品久久人妻99蜜桃| 亚洲欧美精品综合一区二区三区| 色精品久久人妻99蜜桃| 精品少妇一区二区三区视频日本电影 | 国产成人精品久久久久久| av不卡在线播放| 久久99一区二区三区| 亚洲精品日本国产第一区| 交换朋友夫妻互换小说| 九色亚洲精品在线播放| 午夜日本视频在线| 亚洲精品成人av观看孕妇| 视频在线观看一区二区三区| 麻豆乱淫一区二区| 成人手机av| 晚上一个人看的免费电影| bbb黄色大片| 日日啪夜夜爽| 免费女性裸体啪啪无遮挡网站| 9191精品国产免费久久| 丝袜美腿诱惑在线| 色婷婷久久久亚洲欧美| 母亲3免费完整高清在线观看| 久热爱精品视频在线9| 亚洲精品,欧美精品| 国产一级毛片在线| 又大又黄又爽视频免费| 人人妻,人人澡人人爽秒播 | 丝袜美腿诱惑在线| 国产精品熟女久久久久浪| 男的添女的下面高潮视频| 亚洲欧美日韩另类电影网站| 街头女战士在线观看网站| 中文字幕制服av| 色婷婷av一区二区三区视频| 欧美精品高潮呻吟av久久| 亚洲国产中文字幕在线视频| 亚洲精品一二三| 国产99久久九九免费精品| 欧美最新免费一区二区三区| 一本大道久久a久久精品| 天天操日日干夜夜撸| 欧美成人午夜精品| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产a三级三级三级|