孫麗娟 王曉榮 倪曉詳 程龍軍
(浙江農(nóng)林大學(xué) 亞熱帶森林培育國(guó)家重點(diǎn)實(shí)驗(yàn)室 杭州 311300)
巨桉非生物逆境響應(yīng)基因EgrNAC1的基因結(jié)構(gòu)和表達(dá)分析*
孫麗娟 王曉榮 倪曉詳 程龍軍
(浙江農(nóng)林大學(xué) 亞熱帶森林培育國(guó)家重點(diǎn)實(shí)驗(yàn)室 杭州 311300)
【目的】 NAC(NAM,ATAF和 CUC2 蛋白)是植物中一類特異轉(zhuǎn)錄因子,廣泛參與植物生長(zhǎng)、發(fā)育、激素信號(hào)轉(zhuǎn)導(dǎo)和逆境響應(yīng)過程。本文通過對(duì)巨桉EgrNAC1(Eucgr.I00058)編碼蛋白結(jié)構(gòu)、蛋白亞細(xì)胞定位特點(diǎn),以及低溫、干旱和高鹽等非生物逆境條件下的基因表達(dá)分析,研究EgrNAC1基因與非生物逆境響應(yīng)的關(guān)系,為其功能的深入研究提供基礎(chǔ)。【方法】 首先從巨桉基因組數(shù)據(jù)庫(kù)下載EgrNAC1基因、啟動(dòng)子和編碼蛋白序列,利用SMART、MatInspector 和MEGA等軟件對(duì)EgrNAC1蛋白結(jié)構(gòu)特征、進(jìn)化分類及啟動(dòng)子上的順式作用元件進(jìn)行分析; 并以pCAMBIA1300為基礎(chǔ)載體,用酶切法構(gòu)建EgrNAC1∷sGFP載體,采用基因槍轟擊洋蔥表皮方法,對(duì)EgrNAC1蛋白表達(dá)的亞細(xì)胞定位特點(diǎn)進(jìn)行研究。然后,以4 ℃不同時(shí)間處理的數(shù)字表達(dá)譜數(shù)據(jù)為基礎(chǔ),利用WGCNA軟件進(jìn)行基因共表達(dá)分析,了解低溫下與EgrNAC1高度相關(guān)的共表達(dá)基因特征。為進(jìn)一步了解EgrNAC1在不同非生物逆境處理下的表達(dá)特征,同樣利用3個(gè)月巨桉無(wú)性系幼苗進(jìn)行不同低溫(-8,-4,0,4,8 ℃)、4 ℃不同時(shí)間(2, 6, 12, 24, 48 h)、高溫(42 ℃)、高鹽、干旱、脫落酸(ABA)和茉莉酸甲酯(MeJA)的不同處理,用實(shí)時(shí)熒光定量RT-PCR方法對(duì)這些處理下EgrNAC1的表達(dá)情況進(jìn)行分析?!窘Y(jié)果】 EgrNAC1中NAC結(jié)構(gòu)域包含A,B,C,D,E 5個(gè)典型亞結(jié)構(gòu)域,其中含2個(gè)α螺旋5個(gè)β折疊片結(jié)構(gòu),有核定位序列,無(wú)跨膜域。進(jìn)化樹構(gòu)建結(jié)果表明,EgrNAC1屬于NAC家族的Ⅰ類亞家族ATAF子組,逆境類NAC分類中屬于SNAC-A亞類。EgrNAC1啟動(dòng)子序列上含有ABRE、MBS、MCS和DREB等大量與逆境脅迫相關(guān)的順式作用元件。亞細(xì)胞定位結(jié)果表明EgrNAC1在核中表達(dá)。4 ℃不同處理時(shí)間(0,2,6,12,24,48 h)下與EgrNAC1共表達(dá)相關(guān)系數(shù)最高的20個(gè)基因中,大多數(shù)基因參與逆境脅迫響應(yīng)相關(guān)的調(diào)控過程。不同時(shí)間處理下,葉片中EgrNAC1誘導(dǎo)水平隨處理時(shí)間延長(zhǎng)不斷提高; 不同低溫下, 4 ℃和8 ℃處理中EgrNAC1的誘導(dǎo)水平相對(duì)較高; 干旱處理1天后基因表達(dá)即受到誘導(dǎo),然后又有所下降; 鹽(200 mmol·L-1NaCl)脅迫48 h,才能誘導(dǎo)EgrNAC1表達(dá); 100 μmol·L-1ABA和100 μmol·L-1MeJA均能誘導(dǎo)葉片中EgrNAC1基因表達(dá),MeJA誘導(dǎo)速度更快,處理2 h后基因表達(dá)即明顯提高,而ABA的誘導(dǎo)效應(yīng)則需要24 h。【結(jié)論】EgrNAC1是參與巨桉逆境脅迫響應(yīng)的1個(gè)NAC類轉(zhuǎn)錄因子基因,其不僅參與低溫、干旱和高鹽的非生物逆境脅迫響應(yīng),還可能與ABA、MeJA信號(hào)轉(zhuǎn)導(dǎo)有交叉互作效應(yīng)。
巨桉; NAC基因; 非生物逆境; 基因表達(dá)
植物容易遭受各種環(huán)境脅迫危害,僅干旱、鹽、高溫和低溫等非生物逆境因子造成的全球范圍內(nèi)主要作物減產(chǎn)就達(dá)到50%以上(Rodriguezetal., 2005)。而且,隨全球氣候急劇變化,這一現(xiàn)象日趨嚴(yán)重(Lobelletal., 2011)。因此,研究植物應(yīng)對(duì)各種逆境因子的分子生物學(xué)機(jī)制,通過遺傳工程和分子輔助育種手段提高植物對(duì)逆境脅迫的抗性,對(duì)農(nóng)林業(yè)生產(chǎn)有非常重要的意義。
植物本身為應(yīng)對(duì)各種逆境因子,在長(zhǎng)期進(jìn)化過程中形成了一系列逆境響應(yīng)機(jī)制。植物細(xì)胞通過信號(hào)傳遞效應(yīng)接收逆境信號(hào)后,發(fā)生一系列基因調(diào)控過程,進(jìn)而產(chǎn)生適應(yīng)逆境環(huán)境的生理和代謝變化,如脯氨酸、甜菜堿等滲透調(diào)節(jié)物質(zhì)積累等,以提高對(duì)逆境的適應(yīng)性(Xiongetal., 2001; Shulaevetal., 2008)。
在基因調(diào)控階段,轉(zhuǎn)錄因子作為效應(yīng)基因控制開關(guān),發(fā)揮極為重要的作用。重要轉(zhuǎn)錄因子(如WRKY,bZIP,MYB,AP2和NAC等)家族都參與了逆境響應(yīng)調(diào)控過程(Agarwaletal., 2010; Crameretal., 2011)。其中NAC(NAM,ATAF和 CUC2 蛋白)轉(zhuǎn)錄因子家族成員廣泛參與植物對(duì)不同逆境因子的響應(yīng),并在其中發(fā)揮非常重要的作用(Nakashimaetal., 2012; Shaoetal., 2015)。
NAC轉(zhuǎn)錄因子基因?yàn)橹参锼赜?,其成員眾多,是一個(gè)龐大的基因家族。在擬南芥(Arabidopsisthaliana)、水稻(Oryzasativa)和毛果楊(Populustrichocarpa)中分別有117,151和163個(gè)成員(Ookaetal., 2003; Huetal., 2010; Nuruzzamanetal., 2010)。NAC基因最早是從矮牽牛(Petuniahybrida)中分離的NAM(no apical meristem,無(wú)頂端分生組織),該基因缺失影響根尖分生組織和葉片發(fā)育(Soueretal., 1997)。但近些年來(lái)的研究表明,NAC類基因的生物學(xué)功能非常廣泛,幾乎涉及植物生長(zhǎng)發(fā)育各個(gè)方面,包括植物生殖、營(yíng)養(yǎng)發(fā)育、次生生長(zhǎng)和激素信號(hào)轉(zhuǎn)導(dǎo)以及生物和非生物逆境脅迫響應(yīng)等(Olsenetal., 2005)。植物NAC基因家族中相當(dāng)比例的成員參與非生物逆境脅迫響應(yīng),如擬南芥中有33個(gè)NAC基因表達(dá)在鹽脅迫下發(fā)生非常大的變化(Jiangetal., 2006); 水稻中40個(gè)NAC基因響應(yīng)干旱和鹽脅迫(Fangetal., 2008); 大豆(Glycinemax)中也有38個(gè)NAC基因參與干旱響應(yīng)(Leetal., 2011)。因此,植物NAC基因在非生物逆境脅迫中發(fā)揮的作用越來(lái)越被重視(Shaoetal., 2015)。
桉樹(Eucalyptus)作為一個(gè)重要工業(yè)用材樹種,其生長(zhǎng)過程中往往受低溫、缺水和鹽脅迫等非生物逆境限制,研究桉樹逆境響應(yīng)相關(guān)的重要基因?qū)ζ浞肿虞o助育種意義重大。本研究在巨桉(Eucalyptusgrandis)低溫處理的數(shù)字表達(dá)譜(digital gene expression,DGE)中發(fā)現(xiàn)1個(gè)受低溫誘導(dǎo)的NAC類基因,該基因具有典型的NAC結(jié)構(gòu)域,命名為EgrNAC1。對(duì)該基因結(jié)構(gòu)特征和不同非生物逆境條件下的表達(dá)變化進(jìn)行了分析,旨在為桉樹抗逆分子輔助育種提供研究基礎(chǔ)。
1.1試驗(yàn)材料
選取定植3個(gè)月、生長(zhǎng)一致的巨桉無(wú)性系幼苗作為試驗(yàn)材料。所有試驗(yàn)處理均在Snijders微氣候控制生長(zhǎng)箱(MC1000,荷蘭)中進(jìn)行,培養(yǎng)條件: 白天25 ℃ 14 h,夜間22 ℃ 10 h,光照強(qiáng)度150 μmol·m-2s-1,相對(duì)濕度70%。相應(yīng)非生物逆境處理結(jié)束后,收集植株葉片迅速凍存于液氮,進(jìn)行后續(xù)RNA提取。
1.2EgrNAC1編碼蛋白結(jié)構(gòu)和啟動(dòng)子分析
EgrNAC1(Eucgr.I00058)基因、蛋白序列從巨桉基因組數(shù)據(jù)庫(kù)(https:∥phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Egrandis)下載,利用在線軟件Protparam(http:∥www.expasy.ch/tools)預(yù)測(cè)EgrNAC1基因編碼蛋白分子量和等電點(diǎn)。蛋白質(zhì)二級(jí)結(jié)構(gòu)、跨膜結(jié)構(gòu)域和核定位序列預(yù)測(cè)分別用PSIPRE(http:∥bionf.cs.ucl.ac.uk/index.php),Tmhmm2.0(http:∥www.cbs.dtu.dk/services/TMHMM)和cNLS Mapper(http:∥nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi)進(jìn)行。根據(jù)Ooka等(2003)對(duì)植物中NAC家族的分類,擬南芥不同NAC子組成員各選取2個(gè)作為該子組代表,將它們的蛋白序列與EgrNAC1蛋白序列用Clustalx軟件進(jìn)行多序列聯(lián)配,再用MEGA4.0軟件構(gòu)建1 000個(gè)自舉重復(fù)的進(jìn)化樹(Ookaetal., 2003),以此為依據(jù)對(duì)EgrNAC1進(jìn)行分類。EgrNAC1與其他植物中同源蛋白進(jìn)化樹構(gòu)建,則在NCBI(http:∥www.ncbi.nlm.nih.gov)上,利用blast程序篩選與序列相似程度較高的蛋白序列,進(jìn)行多序列聯(lián)配后,同樣用MEGA4.0軟件構(gòu)建進(jìn)化樹。啟動(dòng)子上順式作用元件分析則是截取EgrNAC1基因起始密碼子上游1.5 kb序列,在線利用MatInspector軟件(http:∥www.genomatix.de/cgi-bin∥matinspector_prof)進(jìn)行分析。
1.3EgrNAC1蛋白亞細(xì)胞定位
在插入35S∷sGFP的載體pCAMBIA1300中,利用多克隆位點(diǎn)處BamHⅠ和XbaⅡ酶切位點(diǎn)連入去掉終止密碼子的EgrNAC1編碼序列PCR擴(kuò)增產(chǎn)物(表1),構(gòu)建EgrNAC1∷sGFP融合蛋白表達(dá)載體。進(jìn)行DH5α轉(zhuǎn)化后,抽提質(zhì)粒,金粉(1 μm,Bio-Rad)包埋,用PDS-1000/He型基因槍轟擊洋蔥(Alliumcepa)表皮細(xì)胞,然后用激光共聚焦顯微鏡掃描成像。
1.44℃不同處理時(shí)間EgrNAC1基因共表達(dá)分析
3個(gè)月苗齡巨桉幼苗,4 ℃低溫下,采用先后間隔0,24,36,42,46 h依次放入生長(zhǎng)箱,作為48,24,12,6,2 h的低溫處理,以25 ℃生長(zhǎng)條件下的幼苗作為0 h(對(duì)照)處理,處理完畢后一起收獲葉片(摘取枝條頂芽下面第3-5片完全展開的葉片,下同),提取RNA進(jìn)行數(shù)字表達(dá)譜(DGE)測(cè)序(諾禾致源)。結(jié)果中的差異表達(dá)基因(gt;2倍)用WGCNA計(jì)算與EgrNAC1具有共表達(dá)關(guān)系基因的Pearson系數(shù)(cor),根據(jù)cor的大小進(jìn)行基因排序。
1.5低溫、高溫、干旱、高鹽、ABA和MeJA處理下的EgrNAC1基因表達(dá)分析
參考魏曉玲等(2015)的方法,在生長(zhǎng)箱中以25 ℃生長(zhǎng)條件下幼苗作為對(duì)照(CK)。-8,-4,0,4,8 ℃作為低溫處理溫度,42 ℃作為高溫處理溫度,處理2 h收獲葉片提取RNA備用。4 ℃低溫不同時(shí)間試驗(yàn)處理方法同1.4,處理結(jié)束一起提取葉片RNA備用。高鹽處理則將植株置于不同塑料容器(60 L)內(nèi),處理組塑料容器內(nèi)保持植株栽培盆1/3高度的200 mmol·L-1NaCl溶液,對(duì)照組則用清水保持同樣液面高度; 同樣采用間隔0,24,48,60,66 h的方法依次放入處理苗作為72,48,24,12,6 h處理。干旱處理用5,3,2,1天不澆水植株作為處理組,正常澆水的作為對(duì)照。100 μmol·L-1ABA(脫落酸)和100 μmol·L-1MeJA(茉莉酸甲酯)處理采用植株葉面噴施的方法,以噴施激素溶液后2,6,24 h植株作為處理組,未噴施植株作為對(duì)照組,試驗(yàn)結(jié)束后,統(tǒng)一收獲葉片,提取RNA。以上試驗(yàn)均為每處理組3株植株,進(jìn)行3次重復(fù)。
1.6RNA提取、cDNA合成及基因定量表達(dá)分析
根據(jù)王亞紅等(2010)的方法提取處理葉片RNA。利用PrimeScript?RT reagent Kit(TaKaRa,大連,中國(guó))試劑盒完成反轉(zhuǎn)錄。實(shí)時(shí)熒光定量 RT-PCR試驗(yàn)中采用SYBR-Green染料(Takara,大連,中國(guó))和BIO-RAD CFX96實(shí)時(shí)PCR系統(tǒng)(Bio-Rad,USA)。以Egr18SrRNA作為內(nèi)參基因,設(shè)計(jì)引物進(jìn)行實(shí)時(shí)熒光定量RT-PCR,3次重復(fù)試驗(yàn)(表1)。用系統(tǒng)自帶的Bio-Rad CFX Manager(Version 1.5.5.34)軟件進(jìn)行結(jié)果分析,并用GraphPad (ver 4.0)作圖。
表1 實(shí)時(shí)熒光定量 RT-PCR、亞細(xì)胞定位sGFP載體構(gòu)建所用引物序列Tab. 1 List of primer sequences used in real timefluorescence quantitative RT-PCR and sGFPvector construction
圖1 EgrNAC1蛋白與其他植物同源蛋白序列的比對(duì)(a)及系統(tǒng)進(jìn)化樹(b)Fig.1 Mutiple alignment (a) and phylogenetic tree (b) of EgrNAC1 in Eucalyptus grandis and its homologus proteins from other plantsA, B, C, D和E劃線處為NAC結(jié)構(gòu)域的5個(gè)亞結(jié)構(gòu)域; NLS: 核定位序列,用雙劃線表示。The amino acid sequences underlined with A, B, C, D and E are subdomain of NAC domain, and nuclear localization sequence(NLS) is indicated with double lines.
2.1EgrNAC1基因編碼蛋白結(jié)構(gòu)分析
EgrNAC1是4 ℃不同時(shí)間(0,2,6,12,24,48 h)處理下,數(shù)字表達(dá)譜中被強(qiáng)烈誘導(dǎo)表達(dá)的基因。巨桉基因組數(shù)據(jù)庫(kù)(https:∥phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Egrandis)中該基因編號(hào)為: Eucgr.I00058,數(shù)據(jù)庫(kù)中該基因注釋為1個(gè)編碼含NAC結(jié)構(gòu)域的蛋白。該基因全長(zhǎng)1 968 bp,含3個(gè)外顯子、2個(gè)內(nèi)含子。開放閱讀框長(zhǎng)885 bp,編碼蛋白氨基酸殘基數(shù)量為294個(gè)。Protparam軟件預(yù)測(cè)該蛋白的等電點(diǎn)為5.86,分子量為33.46 kDa。
所有NAC基因編碼蛋白在N末端都含有1個(gè)約150個(gè)氨基酸殘基組成的NAC結(jié)構(gòu)域,該結(jié)構(gòu)域高度保守,而且不同于目前已知的經(jīng)典結(jié)構(gòu)域,是由數(shù)個(gè)α螺旋環(huán)繞反向平行的β折疊構(gòu)成,分為A,B,C,D,E 5個(gè)亞結(jié)構(gòu)域,DNA結(jié)合結(jié)構(gòu)域就位于其中。而C末端序列高度多樣化,為轉(zhuǎn)錄激活區(qū)(Puraniketal., 2012)。通過蛋白結(jié)構(gòu)域分析發(fā)現(xiàn)EgrNAC1的NAC結(jié)構(gòu)域?yàn)?-158位氨基酸,包含A,B,C,D,E 5個(gè)典型NAC亞結(jié)構(gòu)域,結(jié)構(gòu)域中有2個(gè)α螺旋和5個(gè)β折疊(圖1a),結(jié)構(gòu)域中含有核定位序列: KALVFYAGKAPKGVKTNWI。TMHMM軟件分析表明EgrNAC1蛋白不具有跨膜結(jié)構(gòu)域。不同植物NAC基因編碼蛋白的進(jìn)化樹結(jié)果表明EgrNAC1與楊樹、大豆中同源蛋白親源關(guān)系比較近,氨基酸序列相似程度最高達(dá)到67%,而與單子葉植物中水稻親源關(guān)系較遠(yuǎn),同水稻中SNAC基因編碼蛋白氨基酸序列相似程度僅為49%(圖1b)。
由于NAC基因家族成員眾多,根據(jù)Ooka等(2003)對(duì)擬南芥和水稻NAC家族的分類標(biāo)準(zhǔn),NAC蛋白分為2個(gè)亞家族Ⅰ和Ⅱ,共18個(gè)子組; 其中,亞家族Ⅰ含14個(gè)子組,亞家族Ⅱ含4個(gè)子組。將EgrNAC1與不同子組的擬南芥NAC蛋白序列聯(lián)配后構(gòu)建進(jìn)化樹進(jìn)行聚類分析,結(jié)果表明EgrNAC1屬于亞家族Ⅰ類ATAF子組(圖2)。Nakashima等(2012)則對(duì)不同植物中響應(yīng)逆境脅迫的NAC類轉(zhuǎn)錄因子SNAC(stress-responsive NAC)基于進(jìn)化關(guān)系進(jìn)行了分類,按照這種分類模式,EgrNAC1屬于SNAC-A亞類(Nakashimaetal., 2012)。
圖2 EgrNAC1在不同NAC子類中的分類Fig.2 Classification of EgrNAC1 in NAC subgroups
2.2EgrNAC1啟動(dòng)子順式作用元件分析
MatInspector軟件對(duì)EgrNAC1啟動(dòng)子序列分析結(jié)果表明,在其啟動(dòng)子序列上含有大量參與植物生長(zhǎng)發(fā)育、代謝調(diào)控以及逆境響應(yīng)相關(guān)的順式作用元件。其中,可能與逆境響應(yīng)相關(guān)的有脫落酸響應(yīng)元件(ABRE)、MYB轉(zhuǎn)錄因子結(jié)合序列(MBS)、MYC蛋白結(jié)合序列(MCS)、WRKY轉(zhuǎn)錄因子結(jié)合元件(W-BOX)、熱擊蛋白結(jié)合元件(HSE)、NAC蛋白結(jié)合序列(NACR)、干旱應(yīng)答元件(DREB)、乙烯響應(yīng)元件(ERE)及茉莉酸甲酯響應(yīng)序列(JARE)等,而且部分元件數(shù)目眾多(表2)。
2.3EgrNAC1蛋白的亞細(xì)胞定位
盡管大部分NAC蛋白都屬于轉(zhuǎn)錄因子,為核定位蛋白,但仍有部分NAC基因家族成員,其編碼產(chǎn)物含有跨膜域,具有膜定位的屬性(Kimetal., 2010)。EgrNAC1融合GFP序列構(gòu)建表達(dá)載體,用基因槍轟擊洋蔥表皮細(xì)胞的結(jié)果發(fā)現(xiàn),EgrNAC1蛋白僅在細(xì)胞核中表達(dá)(圖3),與其不具備跨膜結(jié)構(gòu)域的預(yù)測(cè)相呼應(yīng),其應(yīng)該僅參與核內(nèi)基因表達(dá)調(diào)控作用。
2.44℃不同處理時(shí)間EgrNAC1基于數(shù)字表達(dá)譜的基因共表達(dá)分析
4 ℃不同處理時(shí)間(0,2,6,12,24,48 h)數(shù)字表達(dá)譜中,隨處理時(shí)間延長(zhǎng),EgrNAC1基因在葉片中的表達(dá)受到強(qiáng)烈誘導(dǎo),0,2,6,12,24,48 h的RPKM(Reads Per Kilobase per Million mapped reads,每百萬(wàn)reads中來(lái)自于某基因每千堿基長(zhǎng)度的reads數(shù))值分別為10.15,18.89,215.28,1 094.90,1 295.44,1 755.42,48 h處理的植株葉片RPKM值為對(duì)照(0 h)的173倍。將差異表達(dá)基因(11 458個(gè))與EgrNAC1進(jìn)行共表達(dá)分析,獲得與EgrNAC1表達(dá)高度相關(guān)(Pearson系數(shù)corgt;0.9)基因有128個(gè),占差異表達(dá)基因總數(shù)的1.1%。表3中為相關(guān)系數(shù)最高的20個(gè)基因,其中包括6個(gè)轉(zhuǎn)錄因子基因,即5個(gè)NAC轉(zhuǎn)錄因子基因和1個(gè)AP2基因。
表2 EgrNAC1啟動(dòng)子順式作用元件分析Tab.2 List of cis-elements in the promoter of EgrNAC1
2.54℃不同時(shí)間、不同溫度、干旱、高鹽、ABA以及茉莉酸甲酯處理對(duì)EgrNAC1基因表達(dá)的影響
4 ℃不同處理時(shí)間(0,2,6,12,24,48 h)下EgrNAC1基因?qū)崟r(shí)熒光定量 RT-PCR分析結(jié)果也表明,該基因隨4 ℃處理時(shí)間延長(zhǎng),誘導(dǎo)水平不斷提高,處理48 h后基因表達(dá)量是對(duì)照處理(0 h)的163倍(圖4b),與數(shù)字表達(dá)譜數(shù)據(jù)相吻合。同時(shí),不同低溫(-8,-4,0,4,8 ℃)和高溫(42 ℃)處理中,相對(duì)于25 ℃正常生長(zhǎng)溫度(CK),不同低溫條件下EgrNAC1基因表達(dá)水平都大幅度增強(qiáng),4 ℃處理和8 ℃處理2 h葉片中EgrNAC1表達(dá)水平分別達(dá)到了對(duì)照(25 ℃)的9.1倍和11.1倍;而高溫(42 ℃)處理卻能抑制EgrNAC1基因表達(dá),處理2 h后,基因表達(dá)水平僅為對(duì)照的0.13倍(圖4a)。
圖3 EgrNAC1的亞細(xì)胞定位Fig.3 Subcellular localization of EgrNAC1
干旱處理1天后,EgrNAC1表達(dá)水平為未進(jìn)行干旱處理的7.2倍,而隨著處理時(shí)間延長(zhǎng),其表達(dá)水平又有所下降,處理第5天時(shí),下降為對(duì)照的2.68倍,但仍處于誘導(dǎo)狀態(tài)。鹽脅迫(200 mmol·L-1NaCl)對(duì)EgrNAC1的誘導(dǎo)作用需要較長(zhǎng)時(shí)間,處理48 h后,EgrNAC1表達(dá)水平才有較為明顯的上升,在72 h處理時(shí)誘導(dǎo)效應(yīng)表現(xiàn)強(qiáng)烈。EgrNAC1對(duì)100 μmol·L-1脫落酸(ABA)的誘導(dǎo)效應(yīng)也需要24 h才能體現(xiàn)出來(lái); 而100 μmol·L-1茉莉酸甲酯(MeJA)對(duì)EgrNAC1的誘導(dǎo)在2 h后就已發(fā)生,而且這種誘導(dǎo)作用比較穩(wěn)定,24 h內(nèi)沒有隨時(shí)間延長(zhǎng)而發(fā)生較大幅度變動(dòng)(圖5)。
表3 4 ℃不同處理時(shí)間共表達(dá)分析中與EgrNAC1表達(dá)相關(guān)性最強(qiáng)的20個(gè)基因Tab.3 Top 20 genes for the co-expression analysis of EgrNAC1 under time course treatment at 4 ℃
圖4 不同溫度(a)和4 ℃不同時(shí)間(b)處理下EgrNAC1的相對(duì)表達(dá)差異Fig.4 Relative expression of EgrNAC1 under different temperatures (a) and time course treatment at 4 ℃ (b)
圖5 干旱、高鹽、ABA和MeJA處理下EgrNAC1的相對(duì)表達(dá)差異Fig.5 Relative expression of EgrNAC1 under drought, high salinity, ABA and MeJA treatments
NAC基因家族中,有約20%~25%的成員參與至少1種以上逆境因子響應(yīng)(Puraniketal., 2012)。而且,基于蛋白質(zhì)序列的系統(tǒng)進(jìn)化分類中,參與逆境響應(yīng)的NAC類轉(zhuǎn)錄因子往往同屬于一個(gè)子類(Fangetal., 2008; Leetal., 2011; Wangetal., 2016)。在Ooka等(2003)的分類系統(tǒng)中EgrNAC1屬于Ⅰ類亞家族ATAF子組,同時(shí)也屬于基于逆境脅迫NAC分類中的SNAC-A亞類。而擬南芥、水稻ATAF子組中基因基本都屬于SNAC-A亞類(Ookaetal., 2003; Nakashimaetal., 2012)。ATAF子組中的代表基因ATAF1在擬南芥中是逆境脅迫響應(yīng)中的一個(gè)負(fù)調(diào)控因子,其表達(dá)水平被干旱、高鹽和機(jī)械損傷所誘導(dǎo),擬南芥超表達(dá)ATAF1會(huì)提高植株對(duì)干旱、鹽、ABA和氧化脅迫的敏感性 (Luetal., 2007; Wuetal., 2009)。但是,ATAF1超表達(dá)轉(zhuǎn)基因水稻植株則能提高其對(duì)鹽脅迫的耐受性(Liuetal., 2016)。暗示了該NAC轉(zhuǎn)錄因子在調(diào)控植物應(yīng)對(duì)逆境脅迫響應(yīng)中的復(fù)雜性。ATAF子組中水稻NAC轉(zhuǎn)錄因子基因OsNAC5和OsNAC6超表達(dá)轉(zhuǎn)基因植株和對(duì)照相比,抗旱、耐低溫和耐鹽程度則都得到不同程度提升(Takasakietal., 2010; Songetal., 2011)。由此可見,進(jìn)化上即使親緣關(guān)系較近的NAC轉(zhuǎn)錄因子在不同物種中,參與逆境響應(yīng)的功能也有很大差異?;谄湓谀婢趁{迫響應(yīng)中的重要性,對(duì)不同植物中逆境相關(guān)的NAC轉(zhuǎn)錄因子進(jìn)行深入研究是非常必要的。
EgrNAC1蛋白序列具有典型NAC結(jié)構(gòu)域,結(jié)構(gòu)域中含有DNA結(jié)合結(jié)構(gòu)域和核定位序列,這些都是轉(zhuǎn)錄因子的明顯特征。植物中部分NAC蛋白在C末端還存在跨膜結(jié)構(gòu)域,負(fù)責(zé)蛋白的質(zhì)膜和內(nèi)質(zhì)網(wǎng)膜錨定作用,它們參與轉(zhuǎn)錄調(diào)控的同時(shí),還參與環(huán)境信號(hào)響應(yīng)和細(xì)胞分裂調(diào)控作用(Kimetal., 2010; Lietal., 2016)。但無(wú)論跨膜域預(yù)測(cè)結(jié)果還是亞細(xì)胞定位試驗(yàn),都表明EgrNAC1不具備跨膜結(jié)構(gòu)域,其應(yīng)該是一個(gè)在細(xì)胞核內(nèi)發(fā)揮基因調(diào)控作用的轉(zhuǎn)錄因子。
干旱、低溫和高鹽都對(duì)EgrNAC1基因表達(dá)具有誘導(dǎo)作用。2 h處理?xiàng)l件下,不同低溫(-8,-4,0,4,8 ℃)相對(duì)于正常溫度對(duì)EgrNAC1都有明顯誘導(dǎo)作用,而且在較高低溫(8 ℃)下即產(chǎn)生明顯響應(yīng),當(dāng)溫度降至0 ℃以下時(shí),誘導(dǎo)水平反而有所下降,暗示EgrNAC1基因表達(dá)對(duì)低溫有比較強(qiáng)的敏感性,這對(duì)植物提前感知低溫,在生理上提高低溫適應(yīng)能力,降低低溫傷害具有重要意義。4 ℃不同時(shí)間(0,2,6,12,24,48 h)處理下,隨時(shí)間延長(zhǎng),EgrNAC1基因誘導(dǎo)水平持續(xù)增強(qiáng); 鹽脅迫條件下,EgrNAC1基因響應(yīng)速度則比較慢,處理72 h后,誘導(dǎo)效應(yīng)才有明顯體現(xiàn); 而干旱處理下,EgrNAC1的誘導(dǎo)表現(xiàn)出先強(qiáng)后弱的特點(diǎn)。另外,高溫(42 ℃)處理對(duì)EgrNAC1有抑制作用。這些都說(shuō)明EgrNAC1廣泛參與了非生物逆境脅迫響應(yīng)過程,但不同逆境中,其參與調(diào)控的途徑和方式可能有很大不同。
非生物逆境響應(yīng)中,ABA和MeJA 2種激素具有重要作用,很多逆境響應(yīng)相關(guān)基因都與它們有密切關(guān)系(Turneretal., 2002; Wasternack, 2007; Agarwaletal., 2010),NAC類轉(zhuǎn)錄因子也不例外(Chenetal., 2014)。ATAF1,OsNAC5和OsNAC6基因表達(dá)都受ABA和MeJA誘導(dǎo)(Luetal., 2007; Takasakietal., 2010)。EgrNAC1表達(dá)在MeJA處理2 h后就受到穩(wěn)定誘導(dǎo),而ABA對(duì)基因的誘導(dǎo)則需要24 h。結(jié)合其他非生物逆境處理下EgrNAC1的表達(dá)情況,說(shuō)明不同逆境響應(yīng)中,該基因?qū)@2種激素信號(hào)的反應(yīng)可能也是不同的。
另外,EgrNAC1啟動(dòng)子上的順式作用元件在一定程度上也說(shuō)明該基因與非生物逆境脅迫關(guān)系密切。DREB上結(jié)合的轉(zhuǎn)錄因子往往參與干旱和低溫逆境響應(yīng)(Agarwaletal., 2006); 植物中相當(dāng)數(shù)量的MYB和MYC蛋白參與干旱、低溫和ABA調(diào)控基因的表達(dá)(Abeetal., 1997),而EgrNAC1啟動(dòng)子上的MBS和MCS元件分別有7個(gè)和5個(gè); 與WRKY轉(zhuǎn)錄因子結(jié)合的W-BOX序列也有5個(gè),WRKY在非生物逆境因子和生物逆境因子響應(yīng)的基因表達(dá)調(diào)控中都發(fā)揮重要作用(Eulgemetal., 2007; Chenetal., 2012); 與ERE相結(jié)合的乙烯響應(yīng)蛋白則可能從正、負(fù)2個(gè)方向調(diào)控下游逆境相關(guān)基因表達(dá)(Fujimotoetal., 2000); ABRE和JARE元件的存在則呼應(yīng)了EgrNAC1基因在ABA和MeJA處理下的表達(dá)情況。另外,其他NAC類轉(zhuǎn)錄因子也可能參與EgrNAC1調(diào)控,因?yàn)樵贓grNAC1啟動(dòng)子上也存在NACR元件。
基因共表達(dá)分析在一定程度上可以揭示基因間的關(guān)系,對(duì)研究基因功能和調(diào)控機(jī)制具有重要意義(Aokietal., 2007; Maoetal., 2009)。在低溫不同處理中,參與葉綠體淀粉降解、LEA蛋白積累、果膠分解、多囊泡體轉(zhuǎn)運(yùn)等的基因,以及有5個(gè)NAC和1個(gè)AP2轉(zhuǎn)錄因子基因與EgrNAC1基因協(xié)同表達(dá)關(guān)系非常強(qiáng)。這些基因涉及的代謝途徑都與非生物逆境脅迫有密切關(guān)系,如葉綠體淀粉酶在冷脅迫下可促進(jìn)葉綠體淀粉降解,提高葉片中可溶性糖含量,增強(qiáng)植物抗寒性(Nagaoetal., 2005)。LEA在低溫、干旱等逆境下發(fā)揮清除氧自由基、穩(wěn)定膜結(jié)構(gòu)的功能(Shaoetal., 2005)。ESCRT(endosomal sorting complex required for transport,內(nèi)體蛋白分選復(fù)合物)則在多囊泡體蛋白轉(zhuǎn)運(yùn)尤其是泛素化蛋白分揀中有重要功能,與逆境下細(xì)胞代謝平衡關(guān)系密切(Reyesetal., 2011)。CBS結(jié)構(gòu)域蛋白具有AMP(腺苷一磷酸)激活的蛋白激酶活性,參與鹽脅迫的SOS信號(hào)轉(zhuǎn)導(dǎo)途徑(Kushwahaetal., 2009)。ARM重復(fù)蛋白在植物激素信號(hào)傳遞和抗病反應(yīng)中發(fā)揮重要功能(Samueletal., 2006)。此外,巨桉中多個(gè)其他NAC轉(zhuǎn)錄因子和AP2轉(zhuǎn)錄因子基因與EgrNAC1的共表達(dá)關(guān)系,暗示了NAC類轉(zhuǎn)錄因子在逆境脅迫中參與基因調(diào)控的復(fù)雜性。這些信息為EgrNAC1基因在低溫逆境下參與的基因和代謝途徑調(diào)控研究提供了線索,為進(jìn)一步對(duì)其逆境條件下在桉樹中所發(fā)揮功能的研究指明了方向。
EgrNAC1屬于典型NAC類轉(zhuǎn)錄因子,基于蛋白序列的聚類分析表明其屬于參與逆境脅迫響應(yīng)的子類成員。低溫逆境下EgrNAC1基因共表達(dá)分析,不同非生物逆境及ABA、MeJA處理下的表達(dá)變化,都暗示EgrNAC1參與了低溫、干旱和高鹽脅迫響應(yīng),并可能與ABA、MeJA信號(hào)轉(zhuǎn)導(dǎo)有交叉互作效應(yīng)。
王亞紅,劉 縉,王玉國(guó). 2010. 高質(zhì)量提取銀杏種仁總 RNA 的改良方法. 中國(guó)農(nóng)學(xué)通報(bào), 26(15): 48-52.
(Wang Y H, Liu J, Wang Y G. 2010. An improved method of RNA isolation from seeds ofGinkgobilobaL. Chinese Agricultural Science Bulletin, 26(15):48-52. [in Chinese])
魏曉玲, 程龍軍, 竇錦青, 等. 2015. 巨桉EgrDREB2A基因結(jié)構(gòu)及表達(dá)特性分析. 林業(yè)科學(xué),51(2): 80-89.
(Wei X L, Cheng L J, Dou J Q,etal. 2015.The structure and expression characteristics ofEgrDREB2Agene inEucalyptusgrandis. Scientia Silvae Sinicae, 51(2):80-89. [in Chinese])
Abe H, Yamaguchi-Shinozaki K, Urao T,etal. 1997. Role ofArabidopsisMYC and MYB homologs in drought- and abscisic acid-regulated gene expression. The Plant Cell, 9(10): 1859-1868.
Agarwal P K, Agarwal P, Reddy M K,etal. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25(12): 1263-1274.
Agarwal P K, Jha B. 2010.Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biologia Plantarum, 54(2): 201-212.
Aoki K, Ogata Y, Shibata D. 2007. Approaches for extracting practical information from gene co-expression networks in plant biology. Plant and Cell Physiology, 48(3): 381-390.
Chen L, Song Y, Li S,etal. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochimicaet Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2): 120-128.
Chen X, Wang Y, Lv B,etal. 2014. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant and Cell Physiology, 55(3): 604-619.
Cheong J J, Do Choi Y. 2003. Methyl jasmonate as a vital substance in plants. TRENDS in Genetics, 19(7): 409-413.
Cramer G R, Urano K, Delrot S,etal. 2011. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11(1): 1-14.
Eulgem T, Somssich I E. 2007. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10(4): 366-371.
Fang Y, You J, Xie K,etal. 2008. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics and Genomics, 280(6): 547-563.
Fujimoto S Y, Ohta M, Usui A,etal. 2000.Arabidopsisethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. The Plant Cell, 12(3): 393-404.
Hu R, Qi G, Kong Y,etal. 2010. Comprehensive analysis of NAC domain transcription factor gene family inPopulustrichocarpa. BMC Plant Biology, 10(1): 1-23.
Jiang Y, Deyholos M K. 2006. Comprehensive transcriptional profiling of NaCl-stressedArabidopsisroots reveals novel classes of responsive genes. BMC Plant Biology, 6(1): 1-20.
Kim S G, Lee S, Seo P J,etal. 2010. Genome-scale screening and molecular characterization of membrane-bound transcription factors inArabidopsisand rice. Genomics, 95(1): 56-65.
Kushwaha H R, Singh A K, Sopory S K,etal. 2009. Genome wide expression analysis of CBS domain containing proteins inArabidopsisthaliana(L.) Heynh andOryzasativaL. reveals their developmental and stress regulation. BMC Genomics, 10(1): 1-22.
Le D T, Nishiyama R, Watanabe Y,etal. 2011. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Research, 18(4): 263-276.
Li S, Wang N, Ji D,etal. 2016. Evolutionary and functional analysis of membrane-bound NAC transcription factor genes in soybean. Plant Physiology, 172(3): 1804-1820.
Liu Q, Zhao N, Yamaguch-Shinozaki K,etal. 2000. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chinese Science Bulletin, 45(11): 970-975.
Liu Y, Jie S, Wu Y. 2016.ArabidopsisATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. Journal of Plant Research, 129(5): 1-8.
Lobell D B, Schlenker W, Costaroberts J. 2011. Climate trends and global crop production since 1980. Science, 333(6042): 616-620.
Lu P L, Chen N Z, An R,etal. 2007. A novel drought-inducible gene,ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes inArabidopsis. Plant Molecular Biology, 63(2): 289-305.
Mao L, Van Hemert J L, Dash S,etal. 2009.Arabidopsisgene co-expression network and its functional modules. BMC Bioinformatics, 10(1): 1-24.
Nagao M, Minami A, Arakawa K,etal. 2005. Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the mossPhyscomitrellapatens. Journal of Plant Physiology, 162(2): 169-180.
Nakashima K, Yamaguchi-Shinozaki K. 2005. Molecular studies on stress-responsive gene expression inArabidopsisand improvement of stress tolerance in crop plants by regulon biotechnology. Japan Agricultural Research Quarterly, 39(4): 221-229.
Nakashima K, Takasaki H, Mizoi J,etal. 2012. NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819(2): 2260-2290.
Narusaka Y, Nakashima K, Shinwari Z K,etal. 2003. Interaction between two cis-cting elements, ABRE and DRE, in ABA-dependent expression ofArabidopsisrd29Agene in response to dehydration and high salinity stresses. The Plant Journal, 34(2): 137-148.
Nuruzzaman M, Manimekalai R, Sharoni A M,etal. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene, 465(1/2): 30-44.
OlsenA N, Ernst H A, Leggio L L,etal. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science, 10(2): 79-87.
Ooka H, Satoh K, Doi K,etal. 2003. Comprehensive analysis of NAC family genes inOryzasativaandArabidopsisthaliana. DNA Research, 10(6): 239-247.
Puranik S, Sahu P P, Srivastava P S,etal. 2012. NAC proteins: regulation and role in stress tolerance. Trends in Plant Science, 17(6): 369-381.
Reyes F C, Buono R, Otegui M S. 2011. Plant endosomal trafficking pathways. Current Opinion in Plant Biology, 14(6): 666-673.
Rodríguez M, Canales E, Borras-Hidalgo O. 2005. Molecular aspects of abiotic stress in plants. Biotecnologia Aplicada, 22(1):1-10.
Samuel M A, Salt J N, Shiu S H,etal. 2006. Multifunctional ARM repeat domains in plants. International Review of Cytology, 253: 1-26.
Shao H, Wang H, Tang X. 2015. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Frontiers in Plant Science, 6: 902.
Shao H B, Liang Z S, Shao M A. 2005. LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids amp; Surfaces B: Biointerfaces, 45(3/4): 131-135.
Shulaev V, Cortes D, Miller G,etal. 2008. Metabolomics for plant stress response. Physiologia Plantarum, 132(2): 199-208.
Song S Y, Chen Y, Chen J,etal. 2011. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta, 234(2): 331-345.
Souer E, van Houwelingen A, Kloos D,etal. 1997. Thenoapicalmeristemgene ofPetuniais required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 85(2): 159-170.
Takasaki H, Maruyama K, Kidokoro S,etal. 2010. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics, 284(3): 173-183.
Turner J G, Ellis C, Devoto A. 2002. The jasmonate signal pathway. The Plant Cell, 14: S153-S164.
von Koskull-D?rinring P, Scharf K D, Nover L. 2007. The diversity of plant heat stress transcription factors. Trends in Plant Science, 12(10): 452-457.
Wang Y X, Liu Z W, Wu Z J,etal. 2016. Transcriptome-wide identification and expression analysis of theNACgene family in tea plant [Camelliasinensis(L.) O. Kuntze]. PLoS One, 11(11): e0166727.
Wasternack C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100: 681-697.
Wu Y, Deng Z, Lai J,etal. 2009. Dual function ofArabidopsisATAF1 in abiotic and biotic stress responses. Cell Research, 19(11): 1279-1290.
Xiong L, Zhu J K. 2001. Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiologia Plantarum, 112(2): 152-166.
Yoshida T, Fujita Y, Sayama H,etal. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal, 61(4): 672-685.
Zhou Q Y, Tian A G, Zou H F,etal. 2008. Soybean WRKY-type transcription factor genes,GmWRKY13,GmWRKY21, andGmWRKY54, confer differential tolerance to abiotic stresses in transgenicArabidopsisplants. Plant Biotechnology Journal, 6(5): 486-503.
(責(zé)任編輯 徐 紅)
TheStructureandExpressionofEgrNAC1GeneAssociatedwithStressResponseinEucalyptusgrandis
Sun Lijuan Wang Xiaorong Ni Xiaoxiang Cheng Longjun
(TheStateKeyLaboratoryofSubtropicalSilvicultureZhejiangAamp;FUniversityHangzhou311300)
【Objective】 NAC(NAM,ATAF and CUC2 proteins) is a family of special transcriptional factors in plants. The members in this family play important roles in life process of plants such as growth, development, signal transduction of hormones and stress responses.In order to provide more clues for further studies of the functions ofEgrNAC1(Eucgr.I00058) gene, which possibly plays a very important role inEucalyptusgrandis, EgrNAC protein sequence, subcellular localization, gene expression under low temperature, high temperature, drought, salinity, ABA and MeJA were analyzed.【Method】 Firstly, sequences of gene, promoter, and protein ofEgrNAC1 were downloaded from genome database ofEucalyptusgrandis. Then, bioinformatics software of SMART, MatInspector, and MEGA were applied to analyze the coding protein structure and cis-elements in promoter ofEgrNAC1. EgrNAC1∷sGFP fused expression vector was also constructed with enzyme cutting method in the primary vector of pCAMBIA1300. And, the plasmid of EgrNAC1∷sGFP was transformed into onion epidermal cells via gene gun bombardment to identify subcellular localization of EgrNAC1 protein. Secondly, with the DGE (digital gene expression) data from the treatment of different time course under 4 ℃ with 3-month-old seedlings, genes co-expression withEgrNAC1 were analyzed with WGCNA software. Finally, to get more information of expression pattern ofEgrNAC1 under different abiotic stress conditions, expression ofEgrNAC1 under different temperatures (-8, -4, 0, 4, 8 ℃), time courses(0,2,6,12,24,48 h)at 4 ℃, high temperature (42 ℃), drought, salinity, ABA and MeJA were evaluated by real time fluorescence quantitative RT-PCR method .【Result】 The NAC domain in EgrNAC1 contains 5 classical sub-domains A, B, C, D and E, including 2 α-helix and 5 β-sheets. There was also one nuclear localization sequence but no transmembrane region was found in the protein sequence. Phylogenetic analysis result showed that EgrNAC1 was classified into ATAF group in subfamilyⅠof NAC. In the NACs that were involved in stress responses, it belongs to SNAC-A subclass. ABRE, MBS, MCS, DREB and other cis-elements were found in the promoter ofEgrNAC1 and most of them are related with abiotic stresses.Result of EgrNAC1 merged protein with GFP in onion cells showed the EgrNAC1 mainly expressed in the nuclear. InEgrNAC1 co-expression analysis under treatment of different time courses(0,2,6,12,24,48 h)at 4 ℃, among the 20 genes with the highest correlation coefficients,most were involved in the stress responses.EgrNAC1 was induced under the low temperature. The expression level of it increased with the time course under 4 ℃ treatment. For different low temperature treatments, the improvement ofEgrNAC1 expression was higher under 4, 8 ℃ compared to the other low temperature. The induction ofEgrNAC1 were also found under treatment of drought, high salinity (200 mmol·L-1NaCl), ABA(100 μmol·L-1) and MeJA(100 μmol·L-1). After 1-day treatment of drought stress,EgrNAC1 expression level increased, followed by a slow decrease. It only needs 2 hours to stimulateEgrNAC1 expression under MeJA treatment, but for the induction by ABA, it needs 24 hours.【Conclusion】EgrNAC1 is an important NAC gene which is not only involved in responses to abiotic stresses such as low temperature, drought, high salinity, but also possibly have interactions with ABA and MeJA hormone signal transduction in these stress responses.
Eucalyptusgrandis; NAC gene; abiotic stress; gene expression
10.11707/j.1001-7488.20171007
2017-01-25;
2017-03-13。
國(guó)家自然科學(xué)基金項(xiàng)目(31270657); 浙江省科技廳林木新品種選育重大科技專項(xiàng)“沿海防護(hù)林重點(diǎn)樹種高抗品種選育”(2016C02056-9)。
*程龍軍為通訊作者。
S718.46
A
1001-7488(2017)10-0060-10