高彩云
(山西大同大學(xué)物理與電子科學(xué)學(xué)院,山西大同037009)
定滑輪兩側(cè)繩內(nèi)張力差及摩擦力分析
高彩云
(山西大同大學(xué)物理與電子科學(xué)學(xué)院,山西大同037009)
選擇定滑輪和繩組成的質(zhì)點系為研究對象,根據(jù)質(zhì)點系角動量定理,計算了定滑輪兩側(cè)繩所受的張力差,并且分析了僅當(dāng)定滑輪質(zhì)量不能忽略時的情況。結(jié)果表明,滑輪兩側(cè)所受拉力與繩和滑輪的質(zhì)量、輪的半徑、軸摩擦力矩以及滑輪的角加速度有關(guān),在極限情況下,滑輪兩側(cè)繩內(nèi)張力趨于相等。定滑輪輪緣與繩子之間的靜摩擦在促使滑輪加速轉(zhuǎn)動。
張力;角動量;摩擦力;力矩;定滑輪
定滑輪實質(zhì)是個等臂杠桿,根據(jù)杠桿平衡條件得出定滑輪可以改變力的方向,但不省力、不省距離的結(jié)論[1],定滑輪兩側(cè)繩內(nèi)的張力是相等的,這是中學(xué)物理教材中對于定滑輪的界定。但是這個結(jié)論成立條件是滑輪是“理想”的,即滑輪質(zhì)量、繩的質(zhì)量軸承摩擦均不計,也就是常見的“輕繩”、“輕滑輪”、“滑輪光滑”等字眼,最典型的例子就是阿特伍德機。[2]事實上,繩的張力并沒有直接作用在滑輪上,當(dāng)滑輪轉(zhuǎn)動時,繩的張力是通過轉(zhuǎn)化為摩擦力矩或支承力矩間接起作用的。[3]并且,在滑輪運動的過程中,繩作用于滑輪的靜摩擦力對滑輪做了功,但繩與滑輪之間的一對靜摩擦力對系統(tǒng)做的總功為零,故系統(tǒng)的機械能守恒。[4]繩對輪緣的摩擦力矩的總和使輪子的角動量變化,而輪緣對繩元的摩擦力則與張力合力的切向分量平衡。[5]已有的文獻側(cè)重討論的是滑輪中靜摩擦力的問題,本文將重點分析定滑輪兩側(cè)繩內(nèi)的張力的差與定滑輪的質(zhì)量、繩的質(zhì)量以及軸承的摩擦的具體定量關(guān)系。
定滑輪系統(tǒng)如圖1所示,將定滑輪視作質(zhì)量為m,半徑為R的均質(zhì)圓盤,設(shè)均質(zhì)繩的質(zhì)量為m0,繩總長度為L,滑輪轉(zhuǎn)動時受軸承摩擦力矩為M。[6]兩側(cè)繩端下懸重物,釋放重物后滑輪角加速度為α(逆時針),且設(shè)此瞬間滑輪左側(cè)繩比右側(cè)繩長l。
選擇滑輪和繩組成的質(zhì)點系作為研究對象,建立直角坐標(biāo)系Oxyz。整個質(zhì)點系對z軸的角動量分為滑輪和繩的兩部分,其中,滑輪對z軸的角動量為:
設(shè)繩的一質(zhì)元mi,它對z的角動量為mivR,故繩對z軸的角動量為:
因繩與輪間無相對滑動,故:
質(zhì)點系總角動量為
圖1 定滑輪結(jié)構(gòu)圖
質(zhì)點系受力分析如圖2,因滑輪兩側(cè)繩的對稱部分所受重力對z軸的合力矩為零,故只有左側(cè)多余部分繩所受的重力會產(chǎn)生力矩??紤]到α表示角加速度。
圖2 質(zhì)點系受力圖
根據(jù)質(zhì)點系角動量定理,有:
于是,繩兩端的張力差為:
由(2)式可知,定滑輪兩端存在張力差,與滑輪、繩的質(zhì)量,以及軸承摩擦力矩都有關(guān)系。如果滑輪是“理想”的,繩與滑輪的質(zhì)量不計,軸承摩擦不計,繩不伸長。即m,m0,M都忽略不計,則滑輪兩側(cè)的張力相等。
根據(jù)上述計算結(jié)果,如果不考慮繩的質(zhì)量和軸承摩擦力矩,而滑輪的質(zhì)量不能忽略,那么繩子兩端的張力差為:
圖3 繩子受力圖
隔離分析滑輪的受力情況就會知道,輪緣和繩子之間一定存在靜摩擦力,并且正是這個力在促使滑輪加速轉(zhuǎn)動。下面我們通過計算進行驗證。
在繩子AB上假想地截取一段小弧,對應(yīng)于平面角dθ,對其受力分析,T和T′為小弧兩端的拉力,設(shè)T′=T+dT,f為靜摩擦力,分別在切向列出動力學(xué)方程:
因dθ很 小 ,cos(dθ∕2)≈ 1 ,sin(dθ∕2)≈dθ∕2 ,dT-f=0,積分得,
故,靜摩擦力的對滑輪的力矩為:
定滑輪兩側(cè)繩內(nèi)張力差與繩的質(zhì)量、定滑輪的質(zhì)量、輪的半徑、軸摩擦力矩以及定滑輪轉(zhuǎn)動時的角加速度大小都有關(guān)系。
根據(jù)計算結(jié)果可以看到:
(1)繩和滑輪的質(zhì)量越大,張力差就越大;滑輪軸承的摩擦力越大,張力差越大;只有當(dāng)繩和滑輪的質(zhì)量極小,軸摩擦極小,則在這兩個條件同時具備的極限情況下,滑輪兩側(cè)繩內(nèi)張力趨于相等,這種極限情況即常提到的理想滑輪。除此以外,只要其中一個不能忽略不計,滑輪兩側(cè)的拉力就不相等。
(2)定滑輪兩側(cè)繩內(nèi)張力差是不斷變化的,即在不同的時刻有不同的取值,具體大小取決于兩側(cè)繩子長度的差,長度差越大張力差反而越小。
(3)繩子兩側(cè)的張力實際上并沒有直接作用在滑輪上,彼此之間是始終存在著靜摩擦力,恰是這個靜摩擦力既維持繩子相對于滑輪的相對靜止,又在促使滑輪的加速轉(zhuǎn)動。所以,理想滑輪忽略的是滑輪軸承的摩擦力,對于輪緣和繩子之間的靜摩擦力是必須存在的。在只考慮滑輪重量的情況下,繩子和滑輪輪緣之間的靜摩擦力的大小正好等于繩子兩端的張力差。
[1]課程教材研究所.八年級上冊物理[M].北京:人民教育出版社.2012:84.
[2]陳鋼,晏世雷.質(zhì)點系中阿特伍德機對有關(guān)定理的檢驗意義[J].物理與工程,2013,23(4):14-15.
[3]蔡厚貴.解析滑輪的轉(zhuǎn)動[J].貴陽學(xué)院學(xué)報(自然科學(xué)版)(季刊),2011,6(3):13-17.
[4]楊毅.滑輪轉(zhuǎn)動中的摩擦力做功問題[J].教育心地,2006(35):67.
[5]冀敏,蔣平.定滑輪中的力學(xué)原理[J].物理與工程,2016,26(3):9-11.
[6]漆安慎,杜嬋英.力學(xué)[M].2版.北京:高等教育出版社,2005.
〔責(zé)任編輯 高彩云〕
Analysis of the Tension Difference between the Ropes on Both Sides of the Fixed Pulley and the Friction Force
GAO Cai-yun
(School of Physics and Electronic Science,Shanxi Datong University,Datong Shanxi,037009)
The particle system composed of fixed pulley and rope is chosen as the object of study.According to the angular mo?mentum theorem of the particle system,the tension difference between the ropes on both sides of the fixed pulley is calculated,and the condition that the quality of the fixed pulley can not be neglected is analyzed.The results show that the tension between the two sides of the pulley is related to the quality of the rope and pulley,the radius of the wheel,the friction moment of the shaft,and the angular accel?eration of the pulley.In the extreme case,the tension between the two sides of the pulley tends to be equal.The static friction between the flange of the fixed pulley and the rope causes the pulley to rotate rapidly.
tension;angular momentum;friction;torque;fixed pulley
O313.3
A
1674-0874(2017)05-0022-03
2016-11-15
高彩云(1980-),女,山西五臺人,碩士,講師,研究方向:物理教育。