• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inconsistency between univariate and multiple logistic regressions

    2017-11-29 03:16:10HongyueWANGJingPENGBokaiWANGXiangLUJuliaZHENGKejiaWANGXinTUChangyongFENG2
    上海精神醫(yī)學 2017年2期
    關鍵詞:分析模型研究

    Hongyue WANG Jing PENG Bokai WANG Xiang LU Julia Z. ZHENG, Kejia WANG Xin M. TU,Changyong FENG2,*

    ?Biostatistics in psychiatry (38)?

    Inconsistency between univariate and multiple logistic regressions

    Hongyue WANG1,Jing PENG1, Bokai WANG1, Xiang LU1, Julia Z. ZHENG3, Kejia WANG1, Xin M. TU4,Changyong FENG1,2,*

    Conditional expectation; model selection; logistic regression[Shanghai Arch Psychiatry. 2017;29(2): 124-128.

    http://dx.doi.org/10.11919/j.issn.1002-0829.217031]

    1. Introduction

    Many medical studies have binary primary outcomes.For example, to study the treatment effect of a new intervention on patients with severe anxiety disorders,patients are randomized to the new intervention or treatment as usual (control) groups. The outcome is significant clinical improvement (yes or no) within a period such as 12 months. For this kind of outcome,we use 1 (0) to denote the occurrence or success (no occurrence or failure) of the outcome of interest such as significant (no significant) clinical improvements.The treatment effects can be measured by the difference or ratio of success rates in the two groups.Pearson’s chi-square test (or Fisher’s exact test) can be easily used if the treatment effect of the treatment method is better than the current method.

    It is not uncommon that treatment effect is confounded by differences between treatment groups such as age, medication use and comorbid conditions.If such confounding covariates are categorical, such as gender and smoking status, contingency table methods can be easily used to study treatment differences. For continuous covariates such as age,although still possible to apply such methods by categorizing them into categorical variables, results depend on how continuous variables are categorized such as the number of end cut-points for categories.

    The multiple logistic regression[1]provides a more objective approach for studying effects of covariates on the binary outcome. It addresses both categorical and continuous covariates, without imposing any subjective element to categorize a continuous covariate. Coefficients of continuous as well as noncontinuous covariates, which are readily obtained using well-established estimation procedures such as the maximum likelihood, have clear interpretation.Also, its ability to model relationships for case-control studies has made logistic regression one of the favorite statistical models in epidemiologic studies.[2]

    Model selection offers advantages of increasing power for detecting as well as improving interpretation of effects of covariates on the binary outcome, especially when there are numerous covariates to consider. Here is how model selection was carried out in multiple logistic regression in a paper recently published in JAMA surgery[3]:

    ‘Associations between preoperative factors and adenocarcinoma or HGD were determined with univariate binary logistic regression analysis. Variables with statistically significant association on univariate analysis were included in a multivariable binary logistic regression model.’

    Such a univariate analysis screening (UAS) method to select covariates for multiple logistic regression has been widely used in research studies published in top medical journals[4-6]since it seems very intuitive, reasonable,and easy to understand. In this paper we take a closer look at this popular approach and show that the UAS is quite flawed, as it may miss important covariates in the multiple logistic regression and lead to extremely biased estimates and wrong conclusions. The paper is organized as follows. In Section 2 we give a brief overview of the logistic regression model. In Section 3 we study the relationship between the univariate regression analysis,the basis for selecting covariates for further consideration in multiple logistic regression, and the multiple logistic regression model. In Section 4 we use the theoretical findings derived, along with simulation studies, to show the flaws of the UAS. In Section 5, we give our concluding remarks.

    2. Logistic regression model

    We use Y=1 or 0 to denote ‘success’ or ‘failure’ of the outcome. Here ‘success’ and ‘failure’ only indicate two opposite statuses and should not be interpreted literally. For example, if we are interested in the relation between the exposure of high density of radiation and cancer, we can use Y=1 to denote that the subject develops cancer after the exposure. Aside from the outcome, we also observe some factors(covariates) which may have significant effects on the outcome, denoting them by X1, X2, ..., Xp. The relation between the outcome and the covariates is characterized by the conditional probability distribution of Y given X1, X2, ... Xp. In multiple logistic regression, the conditional distribution is assumed to be of the following form

    where β1β2... βp≠ 0. This is the model on which our following discussions will be based. The covariates may include both continuous and categorial variables. A more familiar equivalent form of (1) is

    where the left hand side is called the conditional logodds.

    Given a random sample, the parameters(β0, β1, … ,βp) in (1) can be easily estimated by maximum likelihood estimation (MLE) method, see for example.[7,8]

    3. Univariate regression model

    Suppose we are interested in the marginal relation between the outcome and a single factor X1, i.e. we need to find.

    From the property of conditional expectation[9]we know that

    If the joint distribution of X1, X2,…,Xpis unknown,generally it is impossible to find the analytical form of (2). In this section we consider the univariate regression model with following some specific distributions.

    3.1 Univariate regression with categorical covariate

    First assume X1is a 0-1 valued covariate. For example,in the randomized clinical trial, we can use X1as the group indicator (=1 for the treatment group and for the control group). It is easy to prove that there exist unique constants α0and α1such that

    where both α0and α1are functions of β0, β1, … ,βp.Usually the form of these functions are complex as they depend on the joint distribution of X1, X2,…,Xp.There is no obvious qualitative relation between α1in(3) and β1in (1).

    Equation (3) indicates the marginal relation between Y and X1still satisfies the logistic regression model, and

    which means that α1in (2) is the log odds ratio.Furthermore, if X1is independent of (X1, X2, ..., Xp), we can prove that (i) α1>0 if and only if β1>0, (ii) α1<0 if and only if β1<0, and (iii) α1=0 if and only if β1=0.The independent assumption is true for completely randomized clinical trials. However, it seldom holds in practice, especially in observational studies.

    Now assume X1is a covariate with k-categories,denoted by 1, ... k. Let Zj=1{X1=j}. We can also prove that there exist constant α0, α1, … ,α(k-1)such that

    All those parameters have similar interpretation as in the binary case.

    This section shows that for categorical covariate,the univariate regression still has the form of logistic regression. However, the interpretation of the parameter is different from that in multiple logistic regression.

    3.2 Univariate regression with cont i nuous covariate

    Assume X1is a continuous covariate, for example, the age of the patient. We want to know if Pr{Y=1|X1}can be written in the (3) if (1) is the true multiple logistic regression model. Before answering this question, let’s us take a look a the following example.Example 1. Suppose there are only two covariates in the multiple logistic regression model (1), where X1is a continuous covariate with range R, X2is 0-1 valued random variable with Pr{X2=1}=1/2, and X1and X2are independent.We further assume β0=β1=β2=1 in (1). Then

    If (3) is true, then we should have

    Let X1→∞ in (4) we have α1=1. Let X1=0 in (4) we have

    However, if X1=1 in (4), then

    Since these two solutions of α0do not match, model (3)does not hold.

    This example shows that, for continuous covariate X1, the regression of Y on X1does not in general satisfy the univariate logistic regression model even if X1is an essential component in the multiple logistic regression. Hence, the univariate logistic regression model should not be used to estimate the marginal relation between the outcome and a continuous covariate.

    4. Inconsistency between univariate and mul ti ple logis ti c regressions

    In Section 3 we show that in multiple logistic regression,the univariate regression of the outcome on each individual covariate may not satisfy the logistic regression any more. This fact has serious implications for model selection and interpretation of results in data analysis. In this section, we demonstrate this important issue using simulation studies.

    4.1 Signi fi cant e ff ect in mul ti ple but not in univariate logis ti c regression

    In this section we show an example where a continuous covariate is a necessary part in the multiple logistic, but the univariate regression indicates that the covariate has no effects in the univariate regression. The following preliminary result will be used in our discussion.

    Lemma 1.Suppose c is a positive constant and the random variable X has standard normal distribution. Then E[X/(1+cexp(θX))]=0 if and only if θ=0.

    The proof of this result is available from authors upon request.

    Example 2.Let X2and X3be independent random variables with standard normal distributions, and X1=X2+2X3. Consider the following multiple logistic regression model

    where α1=-α2/5,α2≠0. Using the result in Lemma 1 we can prove that if

    then θ1=0.

    What does this result mean within the current context? Although X1and X2both are in the multiple logistic regression, if their coefficients satisfy the condition (5), the regression of Y on X1is no longer a univariate logistic regression. Moreover, if (Yi1, Xi1,Xi2),i=1,…,n is a random sample from (5), X1and X2will become increasingly significant in the multiple logistic regression, but X1will remain nonsignificant regardless of sample size, as illustrated by the following simulation results.

    The data was generated according (5) with α0=1,α1=-3/5,α2=3. Shown in Table 1 are the estimates and standard deviations of the coefficient of X1in both univariate and multiple logistic regression after 10,000 Monte Carlo (MC) replicates. The parameters were estimated by MLE. For a wide range of sample sizes, the maximum likelihood estimator of the coefficient of X1in the multiple logistic regression was very close to the true value, and the standard errors decreased with the sample size, as expected.However, the estimated coefficient in the univariate analysis was consistently close to 0 in all cases.

    Table 1 also reports the chance that p-value is>0.2 (or >0.1) in the univariate logistic regression.It shows that although X1is a necessary part of the multiple logistic regression, X1will most likely be excluded from the multiple logistic regression, if the cutoff of the p-value is set at 0.2 (or 0.1).

    Reported in Table 2 are the estimates of the coefficient of X2in the logistic regression if X1is mistakenly excluded due to UAS method. The true coefficient of X3is 3 in the multiple logistic regression, but the estimated coefficient of X2became extremely biased if X1was excluded.

    Table 1. Estimate of regression coefficient of X1 in Example 2

    Table 2. Estimates of coefficients of X2 in logisticregression with X1 being removed inExample 2

    Taken together, the results show that the UAS not only most likely misses some important covariates in the multiple logistic regression, but also leads to severely biased estimates of effects of other covariates on the response.

    4.2 Signi fi cant e ff ect in univariate but not in mul ti ple regression

    In this section we show a case where a continuous covariate has significant effect in the univariate regression, but is not significant if it is included in the multiple regression.

    Example 3. Suppose X1, X2, X4and ε are independent standard normal random variables, and X3=X1+X4. Consider the following multiple logistic regression model

    where α1α2≠0.

    In the simulation study, the data was generated according model (7) with α0=0,α1=2,α2=1. Shown in Table 3 are the estimates of the coefficient of X3in both univariate and multiple linear regression (with X1,X2and X3as covariates) after 10000 replicates. For all sample sizes, X3shows very significant effect on Yin the univariate regression, but no significant effect in the multiple logistic regression.

    Table 3. Estimate of the regression coefficient of X3

    5. Discussion

    Although the logistic regression is a very powerful analytical method for binary outcome, the results from the univariate and multiple logistic regressions tend to be conflicting. A covariate may show very significant effect in the univariate analysis but has no role in the multiple logistic regression model. On the other hand, a covariate may be an essential part of the multiple logistic regression but shows no significant effect on the outcome in the univariate regression.The UAS method uses the univariate analysis as an initial step to select covariates for further consideration in the multiple regression. This method may mistakenly exclude important covariates in the multiple logistic regression and lead to extremely biased estimates of the effects of other covariates in the multiple model. Hence the UAS is not a valid method in model selection. It should be removed from the tool kits of biomedical researchers and even some PhD statisticians. Formal model selection methods based on solid theory, such as Akaike’s information criterion (AIC) and Schwarz’ Bayesian information criterion (BIC) discussed in[10]should be implemented in all regression analyses.

    Funding

    None

    Conflict of interest statement

    The authors report no conflict of interest related to this manuscript.

    Authors’ contribution

    Hongyue Wang, Bokai Wang, Xiang Lu, Xin M. Tu and Changyong Feng: theoretical derivation and revision Julia Zheng, Jing Peng, and Kejia Wang: Simulation studies and manuscript drafting

    1. Cox DR. The regression analysis of binary sequences (with discussion). J Roy Stat Soc B. 1958;20: 215–242

    2. Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrica. 1979;63: 403–411. doi:http://dx.doi.org/10.1093/biomet/66.3.403

    3. Postlewait LM, Ethun CG, McInnis MR, Merchant N, Parikh A, Idrees K, et al. Association of preoperative risk factors with malignancy in pancreatic mucinous cystic neoplasms:A multicenter study. JAMA Surg. 2017;152(1): 19-25. doi:http://dx.doi.org/10.1001/jamasurg.2016.3598

    4. Karcutskie CA, Meizoso JP, Ray JJ, Horkan D, Ruiz XD,Schulman CI, et al. Association of mechanism of injury with risk for venous thromboembolism after trauma. JAMA Surg. 2017;152(1): 35-40. doi: http://dx.doi.org/10.1001/jamasurg.2016.3116

    5. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, et al. Clinical features and outcomes of takotsubo (stress) cardiomyopathy. N Engl J Med.2015;373(10): 929-38. doi: http://dx.doi.org/10.1056/NEJMoa1406761

    6. Nor AM, Davis J, Sen B, Shipsey D, Louw SJ, Dyker AG. The Recognition of Stroke in the Emergency Room (ROSIER)scale: Development and validation of a stroke recognition instrument. Lancet Neurol. 2005;4(11): 727-734. doi: http://dx.doi.org/10.1016/S1474-4422(05)70201-5

    7. McCullagh P, Nelder JA. Generalized Linear Models (2nd ed).New Yrok: Chapman & Hall; 1989

    8. Agresti A. Categorical Data Analysis (3rd ed). Hoboken, NJ:Wiley; 2010

    9. Durrett R. Probability: Theory and Examples (4th ed). New York: Cambridge University Press; 2010

    10. Claeskens G, Hjort NL. Model Selection and Model Averaging.New York: Cambridge University Press; 2008

    單因素與多因素邏輯回歸的不一致性

    WANG H, PENG J, WANG B, LU X, ZHENG J, WANG K, TU X, FENG C

    條件期望;模型選擇;邏輯回歸

    Summary:Logistic regression is a popular statistical method in studying the effects of covariates on binary outcomes. It has been widely used in both clinical trials and observational studies. However, the results from the univariate regression and from the multiple logistic regression tend to be conflicting. A covariate may show very strong effect on the outcome in the multiple regression but not in the univariate regression, and vice versa. These facts have not been well appreciated in biomedical research. Misuse of logistic regression is very prevalent in medical publications. In this paper, we study the inconsistency between the univariate and multiple logistic regressions and give advice in the model section in multiple logistic regression analysis.

    1Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA

    2Department of Anesthesiology, University of Rochester, Rochester, NY, USA

    3Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada

    4Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA

    *correspondence: Dr. Changyong Feng. Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Ave., Box 630,Rochester, NY, 14642, USA. E-mail: Changyong_feng@urmc.rochester.edu

    概述:邏輯回歸是研究協(xié)變量對二元結果影響的一種常用的統(tǒng)計方法。它已被廣泛應用于臨床試驗和觀察性研究。然而,單因素回歸得到的結果和多元邏輯回歸得到的結果往往是相互矛盾的。在多元回歸中可能對結果會顯示出非常強烈的影響的一個協(xié)變量在單因素回歸中可能不會,反之亦然。這些事實在生物醫(yī)學研究中并沒有引起足夠的重視。誤用邏輯回歸在醫(yī)學出版物中非常普遍。在本文中,我們研究了單因素和多因素邏輯回歸分析的不一致性,并在多元邏輯回歸分析的模型部分中給出建議。

    Hongyue Wang obtained her BS in Scientific English from the University of Science and Technology of China(USTC) in 1995, and PhD in Statistics from the University of Rochester in 2007. She is a Research Associate Professor in the Department of Biostatistics and Computational Biology at the University of Rochester Medical Center. Her research interests include longitudinal data analysis, missing data, survival data analysis,and design and analysis of clinical trials. She has extensive and successful collaboration with investigators from various areas, including Infectious Disease, Nephrology, Neonatology, Cardiology, Neurodevelopmental and Behavioral Science, Radiation Oncology, Pediatric Surgery, and Dentistry. She has published more than 80 statistical methodology and collaborative research papers in peer-reviewed journals.

    猜你喜歡
    分析模型研究
    一半模型
    FMS與YBT相關性的實證研究
    遼代千人邑研究述論
    隱蔽失效適航要求符合性驗證分析
    重要模型『一線三等角』
    重尾非線性自回歸模型自加權M-估計的漸近分布
    視錯覺在平面設計中的應用與研究
    科技傳播(2019年22期)2020-01-14 03:06:54
    EMA伺服控制系統(tǒng)研究
    電力系統(tǒng)不平衡分析
    電子制作(2018年18期)2018-11-14 01:48:24
    電力系統(tǒng)及其自動化發(fā)展趨勢分析
    а√天堂www在线а√下载| 日韩人妻高清精品专区| 香蕉av资源在线| 日本免费a在线| 1024手机看黄色片| 国产精品一区二区免费欧美| 老熟妇乱子伦视频在线观看| 搡老岳熟女国产| 欧美性感艳星| 非洲黑人性xxxx精品又粗又长| 天堂影院成人在线观看| av天堂中文字幕网| 他把我摸到了高潮在线观看| 日本一二三区视频观看| 久久久精品大字幕| 久久久久久九九精品二区国产| 美女高潮喷水抽搐中文字幕| 日本 欧美在线| 亚洲avbb在线观看| 色综合色国产| 日韩欧美一区二区三区在线观看| 色播亚洲综合网| 久久精品国产99精品国产亚洲性色| 中文字幕av在线有码专区| 我的老师免费观看完整版| 亚洲一级一片aⅴ在线观看| 中亚洲国语对白在线视频| 亚洲av不卡在线观看| 欧美+日韩+精品| 午夜福利在线在线| 精品免费久久久久久久清纯| 亚洲美女搞黄在线观看 | 波野结衣二区三区在线| 亚洲美女视频黄频| 日本 欧美在线| 日韩欧美在线二视频| 国内精品一区二区在线观看| 黄色女人牲交| 在线观看午夜福利视频| 亚洲欧美日韩高清在线视频| 国产爱豆传媒在线观看| 国产精品日韩av在线免费观看| 午夜精品久久久久久毛片777| 成人综合一区亚洲| 精品一区二区三区人妻视频| 久久久久久久午夜电影| 欧美在线一区亚洲| 亚洲国产色片| 精品久久久久久久久久免费视频| 两个人的视频大全免费| 嫩草影院精品99| 在线免费观看不下载黄p国产 | 精品免费久久久久久久清纯| 亚洲图色成人| 精品一区二区三区人妻视频| 久久人人爽人人爽人人片va| 国产精品一区www在线观看 | 校园人妻丝袜中文字幕| 免费黄网站久久成人精品| 黄色一级大片看看| 久久99热这里只有精品18| 中亚洲国语对白在线视频| 在线播放国产精品三级| 九九在线视频观看精品| 长腿黑丝高跟| 亚洲人成伊人成综合网2020| 亚洲最大成人中文| 丰满的人妻完整版| 久久久色成人| 亚洲三级黄色毛片| 亚洲av中文av极速乱 | 麻豆久久精品国产亚洲av| 国产精品一及| 成人性生交大片免费视频hd| 91狼人影院| 少妇人妻一区二区三区视频| 亚洲五月天丁香| 国内久久婷婷六月综合欲色啪| 国产午夜精品论理片| 国产免费一级a男人的天堂| 波野结衣二区三区在线| 国产成人福利小说| 天堂动漫精品| 深夜精品福利| 深爱激情五月婷婷| 亚洲精品久久国产高清桃花| 国产美女午夜福利| 性欧美人与动物交配| 国产成人aa在线观看| 在线免费十八禁| 久9热在线精品视频| 春色校园在线视频观看| videossex国产| 亚洲欧美日韩高清专用| 色播亚洲综合网| 男女视频在线观看网站免费| av女优亚洲男人天堂| 亚洲国产色片| 国产精品久久电影中文字幕| 真人做人爱边吃奶动态| 特级一级黄色大片| 国产一区二区三区视频了| 黄片wwwwww| a级毛片免费高清观看在线播放| 男女边吃奶边做爰视频| 深爱激情五月婷婷| av在线观看视频网站免费| 精品久久久久久久人妻蜜臀av| 色av中文字幕| 欧美3d第一页| 99riav亚洲国产免费| 精品久久久久久久末码| 51国产日韩欧美| 国产精品久久电影中文字幕| 黄色欧美视频在线观看| 久久久久久久久久成人| 小说图片视频综合网站| 免费在线观看影片大全网站| 午夜免费成人在线视频| 日本精品一区二区三区蜜桃| avwww免费| 国产成年人精品一区二区| 国产av不卡久久| 成人午夜高清在线视频| 日本a在线网址| 在线免费观看的www视频| 我的女老师完整版在线观看| 色吧在线观看| 亚洲精品成人久久久久久| 日韩精品中文字幕看吧| 熟女人妻精品中文字幕| 精品一区二区三区视频在线| 亚洲欧美日韩高清专用| 日本一二三区视频观看| 精品欧美国产一区二区三| 精品人妻一区二区三区麻豆 | 97超级碰碰碰精品色视频在线观看| 啦啦啦观看免费观看视频高清| 成人高潮视频无遮挡免费网站| 免费看光身美女| 国产精品人妻久久久久久| 女的被弄到高潮叫床怎么办 | 色av中文字幕| 三级毛片av免费| 国产久久久一区二区三区| 国产又黄又爽又无遮挡在线| 别揉我奶头 嗯啊视频| 久久九九热精品免费| 亚洲熟妇熟女久久| 欧美一区二区国产精品久久精品| 久久国产精品人妻蜜桃| 国产大屁股一区二区在线视频| 亚洲av五月六月丁香网| 18禁黄网站禁片免费观看直播| 午夜亚洲福利在线播放| 两人在一起打扑克的视频| 最近最新中文字幕大全电影3| 欧美人与善性xxx| 久久欧美精品欧美久久欧美| 国产黄a三级三级三级人| 一区二区三区免费毛片| 亚洲av电影不卡..在线观看| 成人精品一区二区免费| 亚洲av五月六月丁香网| 成人高潮视频无遮挡免费网站| 国产在线精品亚洲第一网站| 真实男女啪啪啪动态图| 国产精品电影一区二区三区| 人妻丰满熟妇av一区二区三区| 国产午夜精品论理片| 精品不卡国产一区二区三区| 神马国产精品三级电影在线观看| 亚洲av.av天堂| 嫩草影院新地址| 男人和女人高潮做爰伦理| 99久久成人亚洲精品观看| 日本一本二区三区精品| 国产麻豆成人av免费视频| 久久国内精品自在自线图片| 两人在一起打扑克的视频| 亚洲第一电影网av| 中文字幕高清在线视频| 国产精品久久久久久久电影| www日本黄色视频网| 91在线精品国自产拍蜜月| 免费在线观看成人毛片| 国产aⅴ精品一区二区三区波| 午夜久久久久精精品| 在线观看午夜福利视频| 少妇猛男粗大的猛烈进出视频 | 国产爱豆传媒在线观看| 夜夜看夜夜爽夜夜摸| 欧美一区二区精品小视频在线| 女生性感内裤真人,穿戴方法视频| 午夜激情欧美在线| 亚洲欧美精品综合久久99| 免费一级毛片在线播放高清视频| 久久久久久久亚洲中文字幕| 国产亚洲91精品色在线| 亚洲内射少妇av| 少妇猛男粗大的猛烈进出视频 | 最近最新免费中文字幕在线| 一进一出抽搐动态| 一本精品99久久精品77| 亚洲国产日韩欧美精品在线观看| 国产亚洲精品久久久久久毛片| 一a级毛片在线观看| 一夜夜www| 中出人妻视频一区二区| 赤兔流量卡办理| 国产精品综合久久久久久久免费| 99在线人妻在线中文字幕| 午夜福利18| 国产精品福利在线免费观看| 香蕉av资源在线| 深爱激情五月婷婷| 狂野欧美激情性xxxx在线观看| 免费高清视频大片| 嫩草影院入口| 99热6这里只有精品| 国产色爽女视频免费观看| 国产精品98久久久久久宅男小说| 一级a爱片免费观看的视频| 久久午夜福利片| 少妇的逼水好多| 免费av毛片视频| 99热这里只有是精品在线观看| 99视频精品全部免费 在线| 国产精品一及| 日韩高清综合在线| 三级毛片av免费| 国内精品久久久久久久电影| 最新在线观看一区二区三区| 免费黄网站久久成人精品| 国产亚洲精品综合一区在线观看| 人人妻人人看人人澡| av在线蜜桃| 国产精品免费一区二区三区在线| www.www免费av| 色尼玛亚洲综合影院| 亚洲成人免费电影在线观看| 亚州av有码| 午夜老司机福利剧场| 色视频www国产| 国产在视频线在精品| 亚洲欧美日韩高清在线视频| 又黄又爽又刺激的免费视频.| 看十八女毛片水多多多| 在线观看av片永久免费下载| 国产精品日韩av在线免费观看| 亚洲人成伊人成综合网2020| 午夜日韩欧美国产| 国产精品综合久久久久久久免费| 午夜影院日韩av| 一a级毛片在线观看| 一个人看视频在线观看www免费| 成人精品一区二区免费| 欧美日韩综合久久久久久 | 日本-黄色视频高清免费观看| 观看美女的网站| 免费观看精品视频网站| 丰满人妻一区二区三区视频av| 一级av片app| 两个人的视频大全免费| 国产高清视频在线观看网站| 国产成人影院久久av| 桃色一区二区三区在线观看| 最近最新中文字幕大全电影3| 麻豆一二三区av精品| 欧美+日韩+精品| 中文字幕av成人在线电影| 久久亚洲精品不卡| 日韩强制内射视频| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久亚洲av鲁大| 嫩草影院精品99| 麻豆精品久久久久久蜜桃| 亚洲天堂国产精品一区在线| 中文字幕av在线有码专区| 亚洲av电影不卡..在线观看| 色5月婷婷丁香| av在线蜜桃| 亚洲熟妇熟女久久| 国产综合懂色| 欧美又色又爽又黄视频| a级毛片免费高清观看在线播放| 嫩草影院入口| 女人被狂操c到高潮| 精品一区二区三区av网在线观看| 黄色一级大片看看| 成人三级黄色视频| 91久久精品国产一区二区三区| 日韩亚洲欧美综合| 国产精品国产高清国产av| 深夜精品福利| 男人和女人高潮做爰伦理| 啦啦啦韩国在线观看视频| 国内精品一区二区在线观看| 一区二区三区高清视频在线| 91午夜精品亚洲一区二区三区 | 亚洲内射少妇av| 免费搜索国产男女视频| 国产久久久一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 综合色av麻豆| 精品午夜福利视频在线观看一区| 亚洲av五月六月丁香网| 搡老岳熟女国产| 欧美一区二区亚洲| 99热这里只有是精品在线观看| 国产aⅴ精品一区二区三区波| 国产高清不卡午夜福利| 久久久久久久久大av| 国产精品久久视频播放| 午夜久久久久精精品| 久久精品91蜜桃| 日本免费a在线| 人人妻人人看人人澡| 少妇的逼好多水| 校园春色视频在线观看| 一区福利在线观看| 欧美丝袜亚洲另类 | 日日撸夜夜添| 在线天堂最新版资源| 综合色av麻豆| 国产精品一区www在线观看 | 国产午夜精品久久久久久一区二区三区 | 国内精品宾馆在线| 熟妇人妻久久中文字幕3abv| 久久久久久久久大av| 欧美色视频一区免费| 精品久久久久久成人av| 国产一区二区三区视频了| 精品免费久久久久久久清纯| 国产精品一区二区免费欧美| 国产白丝娇喘喷水9色精品| 久久亚洲精品不卡| 成人性生交大片免费视频hd| 成人国产综合亚洲| 淫秽高清视频在线观看| 成人亚洲精品av一区二区| 精品一区二区三区人妻视频| 国产精品爽爽va在线观看网站| 中文字幕精品亚洲无线码一区| 久久久久久久久久成人| 91麻豆精品激情在线观看国产| 可以在线观看的亚洲视频| 国内精品美女久久久久久| 99久久精品国产国产毛片| 熟女电影av网| 给我免费播放毛片高清在线观看| 国产精品一区二区性色av| 亚洲精品久久国产高清桃花| 国产精品久久久久久久电影| 给我免费播放毛片高清在线观看| av在线蜜桃| 最近在线观看免费完整版| 亚洲中文字幕一区二区三区有码在线看| 嫁个100分男人电影在线观看| 国产老妇女一区| 一区二区三区免费毛片| 夜夜看夜夜爽夜夜摸| 高清毛片免费观看视频网站| 国内精品美女久久久久久| 亚洲欧美日韩高清专用| 久久久久久九九精品二区国产| 简卡轻食公司| 此物有八面人人有两片| 在线看三级毛片| 国产男靠女视频免费网站| aaaaa片日本免费| 人人妻人人澡欧美一区二区| 国产精品伦人一区二区| 久久精品夜夜夜夜夜久久蜜豆| 欧美另类亚洲清纯唯美| 99热网站在线观看| 99热这里只有是精品50| 精品久久久久久久久av| 日韩欧美在线乱码| 日本免费a在线| 亚洲va日本ⅴa欧美va伊人久久| 国产黄色小视频在线观看| 国产伦一二天堂av在线观看| 狠狠狠狠99中文字幕| 欧美精品啪啪一区二区三区| 日本 欧美在线| 在线a可以看的网站| 中国美女看黄片| 小说图片视频综合网站| 久久九九热精品免费| 成年女人看的毛片在线观看| 久久久国产成人免费| 日本免费一区二区三区高清不卡| xxxwww97欧美| 少妇被粗大猛烈的视频| 久久精品国产鲁丝片午夜精品 | 久久国产精品人妻蜜桃| 国产国拍精品亚洲av在线观看| 免费观看精品视频网站| 亚洲最大成人av| 亚洲无线观看免费| 久久久久久久精品吃奶| 亚洲自偷自拍三级| 久久久精品大字幕| 亚洲内射少妇av| 中文字幕av在线有码专区| 亚洲狠狠婷婷综合久久图片| 亚洲最大成人中文| 成人无遮挡网站| 中文亚洲av片在线观看爽| 国产亚洲精品久久久com| 精品一区二区三区视频在线观看免费| 午夜爱爱视频在线播放| 国产精品福利在线免费观看| 老司机福利观看| 久久亚洲精品不卡| 精品一区二区三区av网在线观看| 欧美性猛交黑人性爽| 中文资源天堂在线| 免费搜索国产男女视频| 成年女人看的毛片在线观看| 午夜激情欧美在线| 国产 一区精品| 亚洲男人的天堂狠狠| 99热网站在线观看| 美女被艹到高潮喷水动态| 综合色av麻豆| 黄色配什么色好看| 男人的好看免费观看在线视频| 麻豆久久精品国产亚洲av| 国产麻豆成人av免费视频| 亚洲美女黄片视频| 国内久久婷婷六月综合欲色啪| 亚洲一级一片aⅴ在线观看| 中文字幕久久专区| 国产精品精品国产色婷婷| 久久久久国产精品人妻aⅴ院| 天天躁日日操中文字幕| 国产精品一区二区性色av| 在线免费观看不下载黄p国产 | 在线播放国产精品三级| 国产国拍精品亚洲av在线观看| av中文乱码字幕在线| 搡老妇女老女人老熟妇| 三级毛片av免费| 国产毛片a区久久久久| АⅤ资源中文在线天堂| 成人鲁丝片一二三区免费| 一区二区三区高清视频在线| 国产精品久久视频播放| 国产精品乱码一区二三区的特点| 欧美精品国产亚洲| 国产成人a区在线观看| 黄色女人牲交| 特大巨黑吊av在线直播| av中文乱码字幕在线| 成人av在线播放网站| 一个人看视频在线观看www免费| 国产午夜精品久久久久久一区二区三区 | 亚洲精品国产成人久久av| 51国产日韩欧美| 国产高清不卡午夜福利| 校园人妻丝袜中文字幕| 18+在线观看网站| 欧美成人性av电影在线观看| 国产精品久久久久久久电影| 在线免费观看不下载黄p国产 | 老女人水多毛片| 国产一区二区亚洲精品在线观看| 欧美人与善性xxx| 亚洲性夜色夜夜综合| 午夜日韩欧美国产| 88av欧美| 一本精品99久久精品77| 在线观看一区二区三区| 性色avwww在线观看| 欧美潮喷喷水| 成人国产麻豆网| 国产美女午夜福利| 国产亚洲精品久久久久久毛片| 国产黄色小视频在线观看| 美女被艹到高潮喷水动态| 精品乱码久久久久久99久播| 成人二区视频| 亚洲av中文av极速乱 | 在线观看66精品国产| 欧美在线一区亚洲| 中文字幕av在线有码专区| 精品乱码久久久久久99久播| 国产精品一区www在线观看 | 美女大奶头视频| 淫秽高清视频在线观看| av黄色大香蕉| 亚洲av中文av极速乱 | 白带黄色成豆腐渣| 我要搜黄色片| 精品国内亚洲2022精品成人| 免费高清视频大片| 别揉我奶头 嗯啊视频| 色噜噜av男人的天堂激情| 最新在线观看一区二区三区| av在线蜜桃| 精品欧美国产一区二区三| 免费观看在线日韩| 成年免费大片在线观看| 色吧在线观看| 91在线观看av| a在线观看视频网站| 欧美又色又爽又黄视频| 一级av片app| 精品久久久久久久久亚洲 | 欧美日本亚洲视频在线播放| 一进一出抽搐动态| 国产极品精品免费视频能看的| 极品教师在线免费播放| 成年女人毛片免费观看观看9| 永久网站在线| 欧美激情在线99| 久久久久久久久久成人| or卡值多少钱| 国产精品野战在线观看| 国产一区二区在线av高清观看| 免费观看精品视频网站| 亚洲国产欧洲综合997久久,| 欧美最黄视频在线播放免费| 色哟哟·www| 国产欧美日韩精品一区二区| 国产男人的电影天堂91| av黄色大香蕉| 久久精品国产自在天天线| 一进一出抽搐动态| 久久精品91蜜桃| 精品久久久久久久末码| 欧美精品啪啪一区二区三区| 一夜夜www| 欧美精品啪啪一区二区三区| 亚洲无线在线观看| 人妻丰满熟妇av一区二区三区| 亚洲精品色激情综合| 人妻丰满熟妇av一区二区三区| 亚洲无线在线观看| 欧美日韩综合久久久久久 | 亚洲专区国产一区二区| 一级黄片播放器| 一进一出好大好爽视频| 搡老熟女国产l中国老女人| 嫁个100分男人电影在线观看| 免费在线观看影片大全网站| 国产成人aa在线观看| 嫩草影视91久久| 国产人妻一区二区三区在| 亚洲一区二区三区色噜噜| 男人和女人高潮做爰伦理| 国产高清不卡午夜福利| 偷拍熟女少妇极品色| 国产精品电影一区二区三区| 精品午夜福利在线看| 国产综合懂色| 精品乱码久久久久久99久播| 亚洲天堂国产精品一区在线| www.色视频.com| 高清在线国产一区| 免费电影在线观看免费观看| 精品一区二区三区av网在线观看| 国产精品爽爽va在线观看网站| 搞女人的毛片| 免费搜索国产男女视频| 国产精品1区2区在线观看.| 99久久精品国产国产毛片| 一区二区三区高清视频在线| 99精品久久久久人妻精品| 三级国产精品欧美在线观看| 高清毛片免费观看视频网站| 免费无遮挡裸体视频| 丝袜美腿在线中文| 欧美激情久久久久久爽电影| 日本免费a在线| 看十八女毛片水多多多| 亚洲精品久久国产高清桃花| 精品不卡国产一区二区三区| 97热精品久久久久久| 悠悠久久av| bbb黄色大片| 久久99热这里只有精品18| 搡老熟女国产l中国老女人| 亚洲四区av| 国产 一区精品| 国产大屁股一区二区在线视频| 成年女人永久免费观看视频| 成人永久免费在线观看视频| 久久午夜福利片| 国产视频一区二区在线看| 麻豆成人午夜福利视频| 免费在线观看影片大全网站| 久久九九热精品免费| 国产熟女欧美一区二区| 国产欧美日韩一区二区精品| ponron亚洲| 麻豆精品久久久久久蜜桃| 国产一区二区在线观看日韩| 中文字幕人妻熟人妻熟丝袜美| 五月玫瑰六月丁香| 欧美潮喷喷水| 一个人免费在线观看电影| 黄色一级大片看看| 国产成人aa在线观看| 久久中文看片网| 欧美激情久久久久久爽电影| x7x7x7水蜜桃| 精品乱码久久久久久99久播| 在线国产一区二区在线| 亚洲欧美日韩卡通动漫| 亚洲专区国产一区二区| 一进一出抽搐动态| 日韩欧美国产一区二区入口|