趙彤 李博 袁紹紀(jì) 盧培剛
(1泰山醫(yī)學(xué)院研究生處,山東 泰安 271000; 2濟(jì)南軍區(qū)總醫(yī)院神經(jīng)外科,山東 濟(jì)南 250000)
·神經(jīng)損傷研究·
HCN通道功能變化在SAH后早期腦損傷中的作用研究
趙彤1,2李博2袁紹紀(jì)2盧培剛2*
(1泰山醫(yī)學(xué)院研究生處,山東 泰安 271000;2濟(jì)南軍區(qū)總醫(yī)院神經(jīng)外科,山東 濟(jì)南 250000)
目的觀察大鼠模型蛛網(wǎng)膜下腔出血(SAH)后早期腦內(nèi)超極化激活-環(huán)核昔酸門控的陽(yáng)離子(HCN)通道的表達(dá)變化。評(píng)估HCN通道功能變化在SAH后早期腦損傷發(fā)生中的作用。方法動(dòng)物模型的建立及分組;大鼠神經(jīng)功能評(píng)價(jià);檢測(cè)神經(jīng)元凋亡情況及腦脊液(CSF)中谷氨酸(Glu)含量。結(jié)果給予HCN通道阻斷劑(ZD7288)后進(jìn)一步加重神經(jīng)功能損害及神經(jīng)元凋亡,CSF中Glu含量進(jìn)一步增加;而給予非特異HCN通道激動(dòng)劑(NO/Sp)后并未改善神經(jīng)功能損害,未能顯著緩解神經(jīng)元凋亡情況及降低Glu含量。結(jié)論阻斷HCN通道后,神經(jīng)元損傷及神經(jīng)功能損害進(jìn)一步加重;給予NO/Sp干預(yù)后,神經(jīng)元及神經(jīng)功能損害情況并未顯著改善。
蛛網(wǎng)膜下腔出血; 超極化激活-環(huán)核昔酸門控的陽(yáng)離子通道(HCN通道); 神經(jīng)元興奮性; 神經(jīng)元凋亡; 早期腦損傷
神經(jīng)元興奮性紊亂在蛛網(wǎng)膜下腔出血(subarachnoid hemorrhage, SAH)后早期腦損傷過(guò)程中扮演重要角色,并最終導(dǎo)致SAH后繼發(fā)性神經(jīng)功能損害的發(fā)生[1]?!俺瑯O化激活-環(huán)核苷酸門控的陽(yáng)離子通道” (hyperpolarization-activated cyclic nucleotide-gated channel, HCN channel)在神經(jīng)元興奮性調(diào)節(jié)中發(fā)揮重要作用。前期體外研究結(jié)果顯示SAH后HCN通道功能異常導(dǎo)致神經(jīng)元興奮性紊亂發(fā)生,從而可能直接加重了SAH后早期的腦損傷[2]。本實(shí)驗(yàn)擬在前期研究基礎(chǔ)上,通過(guò)在體實(shí)驗(yàn)進(jìn)一步評(píng)估HCN通道功能變化在模型大鼠SAH后早期腦損傷發(fā)生中的作用。
本研究旨在為將來(lái)以HCN通道為核心的、特異性的SAH后早期腦損傷治療新策略和新藥物的開發(fā)提供理論依據(jù)和實(shí)驗(yàn)數(shù)據(jù),從而改變目前臨床SAH繼發(fā)性腦損傷治療缺乏有效手段的現(xiàn)狀。
一、實(shí)驗(yàn)動(dòng)物
SPF級(jí)健康成年雄性Wistar大鼠,體重270~300 g(購(gòu)于山東大學(xué)實(shí)驗(yàn)動(dòng)物中心),經(jīng)檢疫符合實(shí)驗(yàn)動(dòng)物標(biāo)準(zhǔn),實(shí)驗(yàn)進(jìn)行期間飼養(yǎng)于濟(jì)南軍區(qū)總醫(yī)院動(dòng)物房?jī)?nèi)。
二、主要試劑和儀器
Zeiss顯微鏡,小動(dòng)物立體定向儀,雙極電凝,1%戊巴比妥鈉,谷氨酸專用酶聯(lián)反應(yīng)試劑盒(Glutamate Assay Kit),非特異性HCN通道激動(dòng)劑一氧化氮/精胺(NO/Spermine, NO/Sp),HCN通道阻斷劑ZD7288(ZD7288),末端脫氧核苷酸轉(zhuǎn)移酶介導(dǎo)的生物素脫氧尿嘧啶核苷酸缺口末端標(biāo)法(terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick-end labeling/Neuronal Nuclei, TUNEL/NeuN)染色試劑盒。
三、大鼠線栓穿刺法蛛網(wǎng)膜下腔出血(SAH)模型的建立[3]
雄性Wistar大鼠(270~300 g),用1%戊巴比妥鈉腹腔注射(50 mg/kg) 麻醉后仰臥,固定頭部及四肢,常規(guī)消毒、鋪巾,取頸部正中切口2 cm,解剖手術(shù)顯微鏡下操作分離暴露右側(cè)頸總動(dòng)脈、頸內(nèi)動(dòng)脈、頸外動(dòng)脈,電凝切斷頸外動(dòng)脈近分叉處的分支,包括枕動(dòng)脈、甲狀腺上動(dòng)脈及咽升動(dòng)脈,分離結(jié)扎并切斷頸外動(dòng)脈,使頸外動(dòng)脈近心端成一約5 mm長(zhǎng)的殘端,把頸外動(dòng)脈殘端往下拉,使其與頸內(nèi)動(dòng)脈成一直線。用二個(gè)無(wú)損傷動(dòng)脈夾分別夾閉頸總動(dòng)脈和頸內(nèi)動(dòng)脈,隨后在頸外動(dòng)脈起始段約2~3 mm處用眼科剪剪一“V”型小切口,再將一長(zhǎng)約3 cm 4-0尼龍線從頸外動(dòng)脈上的“V”型小切口導(dǎo)入,經(jīng)右側(cè)頸總動(dòng)脈達(dá)頸內(nèi)動(dòng)脈,松開頸內(nèi)動(dòng)脈上的動(dòng)脈夾,順著頸內(nèi)動(dòng)脈向遠(yuǎn)端繼續(xù)插入尼龍線至頸內(nèi)動(dòng)脈顱內(nèi)段,遇有小的阻力感后再插入約2~3 mm刺破頸內(nèi)動(dòng)脈分叉部,然后迅速抽出尼龍線,用動(dòng)脈夾夾住頸外動(dòng)脈殘端,松開頸總動(dòng)脈上的動(dòng)脈夾讓血流恢復(fù),結(jié)扎頸外動(dòng)脈殘端,縫合頸部切口。假手術(shù)組除了不刺破頸內(nèi)動(dòng)脈分叉處血管壁外,其余操作均與模型組一致。
四、實(shí)驗(yàn)分組
依據(jù)已建立的SAH大鼠模型將大鼠分為四組:假手術(shù)組;SAH模型組;注射HCN通道阻斷劑組;注射HCN通道非特異性激動(dòng)劑組;每組5只大鼠。其中,后兩組于造模成功3 h內(nèi)分別向側(cè)腦室微量注射ZD7288 (10 mM, 5 μL)和NO/Sp (10 mM, 5 μL),速度0.25 μL/min。
五、神經(jīng)行為學(xué)評(píng)價(jià)
對(duì)模型大鼠SAH后24 h時(shí)的神經(jīng)功能損害程度評(píng)分。
六、免疫組織化學(xué)
TUNEL/NeuN檢測(cè)模型大鼠SAH后24 h時(shí)海馬和前額葉皮層的神經(jīng)元壞死情況。按1%戊巴比妥鈉腹腔注射(50 mg/kg) 麻醉,之后用100 mL生理鹽水和500 mL左右4%多聚甲醛溶液經(jīng)心臟灌注。灌注結(jié)束后完整取出腦組織,放入蔗糖溶液中進(jìn)行脫水,先放入20%蔗糖溶液中靜置2 d,之后轉(zhuǎn)移至30%蔗糖溶液中,再靜置2 d。用冰凍切片機(jī)切下切片,切片厚度25 μm。然后取海馬和前額葉皮層區(qū)腦組織并按照TUNEL/NeuN試劑盒說(shuō)明進(jìn)行染色,染色后在熒光顯微鏡下觀察并拍照。
七、谷氨酸含量檢測(cè)
枕大池(Cisterna Magna)抽取腦脊液,具體方法如下:動(dòng)物麻醉后頭部固定于立體定位儀,使頭頸部約成130°鈍角,剪去頸背部毛,兩耳根的連線處剪開一橫切口(2 cm),在其中點(diǎn)縱向剪開,將皮分離用止血鉗拉向兩側(cè)。緊貼大鼠顱底用鑷子和止血鉗逐層鈍性分離各層肌肉,暴露出寰枕筋膜。用事先拉制好的毛細(xì)玻璃管(內(nèi)徑約0.5 mm)刺入寰枕筋膜進(jìn)入枕大池,玻璃管尖端與水平面呈20°~30°,強(qiáng)烈突破感后腦脊液通過(guò)虹吸作用進(jìn)入玻璃管內(nèi)。將取好的腦脊液(20~50 mL)保存于-80 ℃冰箱,應(yīng)用谷氨酸專用酶聯(lián)反應(yīng)試劑盒檢測(cè)腦脊液中谷氨酸含量。
八、數(shù)據(jù)處理及統(tǒng)計(jì)學(xué)分析
一、神經(jīng)行為學(xué)評(píng)價(jià)模型大鼠SAH后24 h時(shí)的神經(jīng)功能損害程度
實(shí)驗(yàn)組SAH出血分級(jí)均在12~14分之間(圖1A),神經(jīng)行為學(xué)評(píng)分:假手術(shù)組為16分,SAH組評(píng)分明顯下降。側(cè)腦室給予HCN通道阻斷劑ZD7288之后,神經(jīng)行為學(xué)評(píng)分進(jìn)一步下降(圖1B,n=6,Plt;0.05)。給予HCN通道非特異性激動(dòng)劑NO/Sp后大鼠神經(jīng)行為學(xué)評(píng)分雖有改善趨勢(shì),但并無(wú)統(tǒng)計(jì)學(xué)差異(圖1B,n=6,Pgt;0.05)。
二、免疫組織化學(xué)
使用TUNEL/NeuN免疫熒光雙標(biāo)檢測(cè)模型大鼠SAH后24 h海馬和前額葉皮層神經(jīng)元的凋亡情況。如圖2所示,SAH后24 h模型大鼠海馬腦區(qū)調(diào)亡神經(jīng)元數(shù)目顯著增加,給予ZD7288阻斷HCN通道后進(jìn)一步加重了神經(jīng)元的凋亡情況,表現(xiàn)為凋亡神經(jīng)元數(shù)目再次急劇上升(n=6,Plt;0.05);而給予HCN通道非特異性激動(dòng)劑NO/Sp后,神經(jīng)元凋亡情況雖有一定改善,但仍無(wú)統(tǒng)計(jì)學(xué)意義(n=6,Pgt;0.05)。SAH后24 h后前額葉皮層神經(jīng)元凋亡變化情況亦同上(圖3)。
圖1 SAH后24 h各組大鼠神經(jīng)行為學(xué)評(píng)分
Fig 1 Neurological examination at 24 h after SAH
A: SAH granding at 24 h after SAH; B: Neurological examination (Modified Garcia) at 24 h after SAH.
aPlt;0.01,vsSAH+vehicle group;bPlt;0.05,vsSAH+vehicle group.
圖2 SAH后24 h 各組模型動(dòng)物海馬區(qū)神經(jīng)元凋亡情況
Fig 2 Cell death of hippocampus detection at 24 h after SAH
A: TUNEL-positive cells showed green fluorescence; NeuN-positive cells showed red fluorescence; TUNEL/NeuN-positive cells showed yellow fluorescence; B: Number of TUNEL-positive cells; C: Number of TUNEL/NeuN-positive cells.
aPlt;0.01,vsSAH+vehicle group;bPlt;0.05,vsSAH+vehicle group.
圖3 SAH后24 h 各組模型動(dòng)物前額葉皮層神經(jīng)元凋亡情況
Fig 3 Cell death detection of PFC at 24 h after SAH
A: TUNEL-positive cells showed green fluorescence; NeuN-positive cells showed red fluorescence; TUNEL/NeuN-positive cells showed yellow fluorescence;B: Number of TUNEL-positive cells; C: Number of TUNEL/NeuN-positive cells.
aPlt;0.01,vsSAH+vehicle group.
三、谷氨酸檢測(cè)
如圖4所示,大鼠SAH后24 h腦脊液中Glu含量顯著增加,給予側(cè)腦室注射ZD7288腦脊液中Glu含量有增加趨勢(shì)(n=4,Plt;0.05);給予NO/Sp后并未能顯著影響腦脊液中Glu含量變化。
圖4 SAH后24 h各組模型動(dòng)物細(xì)胞外谷氨酸含量比較 (n=4)
Fig 4 CSF Glu assessment at 24 h after SAH (n=4)
aPlt;0.05,vsSAH+vehicle group.
蛛網(wǎng)膜下腔出血是最常見的出血性腦血管意外之一,主要為顱內(nèi)動(dòng)脈瘤破裂所致。顱內(nèi)動(dòng)脈瘤本身多可通過(guò)外科手術(shù)或介入治療獲得治愈,但其伴發(fā)的SAH 卻導(dǎo)致超過(guò)40%的患者死殘,為制約破裂動(dòng)脈瘤療效的關(guān)鍵環(huán)節(jié)及研究熱點(diǎn)[4]。SAH后繼發(fā)性腦損傷機(jī)制至今尚未闡明。既往大部分研究著眼于SAH后顱內(nèi)大動(dòng)脈的痙攣上[5-6]。但近些年研究顯示大動(dòng)脈痙攣并不是SAH后遲發(fā)性缺血性神經(jīng)功能障礙及臨床不良結(jié)果的主要原因[7]。因此,國(guó)際上最近又提出了SAH后“早期腦損傷”理論,認(rèn)為在SAH后早期(72 h內(nèi))機(jī)體一系列病理過(guò)程即已啟動(dòng)。其中,以“皮質(zhì)播散性去極化”為代表的神經(jīng)元興奮性紊亂可能在SAH后繼發(fā)性腦損傷中扮演重要的角色[8-9]。
“超極化激活/環(huán)核苷酸依賴(HCN)通道”電流在上個(gè)世紀(jì)七十年代最早被記錄發(fā)現(xiàn),三十多年來(lái),其電生理功能的多樣性一直吸引著眾多科學(xué)家對(duì)其進(jìn)行深入研究。近年來(lái),其在中樞神經(jīng)系統(tǒng)興奮性維持中的重要作用已備受關(guān)注。目前普遍觀點(diǎn)認(rèn)為HCN通道是神經(jīng)環(huán)路興奮性穩(wěn)態(tài)調(diào)控的重要靶點(diǎn),并將其比喻為神經(jīng)系統(tǒng)中的“制動(dòng)器(brake)”[10],尤其值得注意的是在某些中樞神經(jīng)系統(tǒng)疾病(例如癲癇、腦缺血等)中,HCN通道的功能狀態(tài)變化將直接導(dǎo)致或者參與了相關(guān)神經(jīng)環(huán)路興奮性紊亂的發(fā)生[11-12]。我科長(zhǎng)期以來(lái)從事SAH后繼發(fā)性腦損傷的臨床與基礎(chǔ)研究,從2010年開始,在國(guó)家自然科學(xué)基金(NO.81000506)的支持下,以HCN通道為切入點(diǎn),研究其在SAH后神經(jīng)元興奮性紊亂中的作用及其相關(guān)機(jī)制,離體腦組織片研究結(jié)果顯示在“血性(含Hb)”腦脊液灌流條件下,海馬CA1區(qū)錐體神經(jīng)元異常放電,同時(shí)伴有記錄神經(jīng)元HCN通道電流的減小,并且此過(guò)程可以受NO/cGMP信號(hào)通路調(diào)節(jié)[13]。本實(shí)驗(yàn)是在前期研究基礎(chǔ)上,通過(guò)在體實(shí)驗(yàn)重點(diǎn)評(píng)估由HCN通道功能變化在大鼠模型SAH后早期腦損傷發(fā)生中的作用,并進(jìn)一步深入探討以HCN通道為靶點(diǎn)的干預(yù)手段在SAH 后早期腦損傷中的治療作用,旨在為SAH繼發(fā)性腦損傷治療新策略和新藥物的開發(fā)提供重要理論依據(jù)和實(shí)驗(yàn)數(shù)據(jù)。
本實(shí)驗(yàn)采用的大鼠線栓穿刺法蛛網(wǎng)膜下腔出血(SAH)模型,更好的模擬了人類動(dòng)脈瘤破裂導(dǎo)致的蛛網(wǎng)膜下腔出血的真實(shí)過(guò)程,更適合于對(duì)SAH后早期腦損傷的研究[8]。HCN通道功能改變與SAH后早期腦損傷有著密不可分的聯(lián)系[13],HCN通道功能下調(diào),失去制動(dòng)器(brake)作用,使得神經(jīng)興奮性異常增加,導(dǎo)致早期腦損傷的發(fā)生。本實(shí)驗(yàn)中阻斷HCN通道進(jìn)一步加重了早期腦損傷,在生理病理生化上表現(xiàn)為神經(jīng)元凋亡增加,腦脊液中谷氨酸含量增加。前額葉皮層和海馬腦區(qū)作為神經(jīng)元活動(dòng)最豐富的區(qū)域,是SAH早期腦損傷的敏感區(qū)。此結(jié)果進(jìn)一步驗(yàn)證了HCN通道的功能變化在早期腦損傷中的重要作用。
HCN通道功能下調(diào)導(dǎo)致SAH后早期腦損傷,因此,我們推測(cè)糾正HCN通道功能紊亂可以有效緩解神經(jīng)興奮性異常,進(jìn)而阻止早期腦損傷的發(fā)生。但是,當(dāng)給予HCN通道非特異性激動(dòng)劑NO/Sp后,神經(jīng)元凋亡情況雖有一定改善,但仍無(wú)統(tǒng)計(jì)學(xué)意義(n=6,Pgt;0.05),也并未能顯著影響腦脊液中Glu含量變化(n=5,Pgt;0.05)。我們分析原因如下:①在體SAH動(dòng)物模型實(shí)驗(yàn)與體外細(xì)胞組織實(shí)驗(yàn)不同,其整體性與復(fù)雜性更強(qiáng)。②動(dòng)脈瘤破裂后的血液成分更加復(fù)雜,并且氧合血紅蛋白對(duì)HCN通道功能的影響及NO的消耗是持續(xù)存在的,因而一次性注入的NO/Sp并不一定能夠彌補(bǔ)消耗的NO量,更談不上有效上調(diào)HCN通道功能。也就是說(shuō),給予一定量的NO/Sp并不能使HCN通道功能紊亂得到改善,所以不能有效防治早期腦損傷的發(fā)生。那么,我們?nèi)绾稳ソ鉀Q這些問(wèn)題呢,我們覺(jué)得可以從以下幾個(gè)方面入手:①增加NO/Sp的給予量,并且延長(zhǎng)作用時(shí)長(zhǎng)。保證HCN通道功能恢復(fù)到生理水平。②尋找HCN通道激活鏈下游的調(diào)定點(diǎn),比如(cGMP/Camp),他們不受血液降解產(chǎn)物的直接影響?;蛟S能夠更好的激動(dòng)HCN通道。③通過(guò)基因手段,使HCN通道過(guò)表達(dá)。
總之,HCN通道功能改變?cè)赟AH早期腦損傷中扮演極其重要的角色,本實(shí)驗(yàn)表明在體情況下,HCN通道功能下調(diào)所致的神經(jīng)元興奮性紊亂將直接加重神經(jīng)元的損傷,并可能最終導(dǎo)致SAH后繼發(fā)性神經(jīng)功能損害的發(fā)生。
1IADECOLA C. Bleeding in the brain: killer waves of depolarization in subarachnoid bleed [J]. Nat Med, 2009, 15(10): 1131-1132.
2DREIER J P. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease [J]. Nat Med, 2011, 17(4): 439-447.
3LI B, HE Y, XU L, et al. Progranulin reduced neuronal cell death by activation of sortilin 1 signaling pathways after subarachnoid hemorrhage in rats [J]. Crit Care Med, 2015, 43(8): e304-311.
4SUAREZ J I, TARR R W, SELMAN W R. Aneurysmal subarachnoid hemorrhage [J]. N Engl J Med, 2006, 354(4): 387-396.
5HANSEN-SCHWARTZ J, VAJKOCZY P, MACDONALD R L, et al. Cerebral vasospasm: looking beyond vasoconstriction [J]. Trends Pharmacol Sci, 2007, 28(6): 252-256.
6田衛(wèi)東, 趙冬, 許暉, 等. 大鼠蛛網(wǎng)膜下腔出血后早期腦損傷模型的建立 [J]. 中華神經(jīng)外科疾病研究雜志, 2012,11(2): 128-131.
7CONNOLLY E S, Jr, RABINSTEIN A A, CARHUAPOMA J R, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association [J]. Stroke, 2012, 43(6): 1711-1737.
8SEHBA F A, HOU J, PLUTA R M, et al. The importance of early brain injury after subarachnoid hemorrhage [J]. Prog Neurobiol, 2012, 97(1): 14-37.
9CHEN S, FENG H, SHERCHAN P, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage [J]. Prog Neurobiol, 2014, 115: 64-91.
10LEWIS A S, CHETKOVICH D M. HCN channels in behavior and neurological disease: too hyper or not active enough? [J]. Mol Cell Neurosci, 2011, 46(2): 357-367.
11POWELL K L, NG C, O'BRIEN T J, et al. Decreases in HCN mRNA expression in the hippocampus after kindling and status epilepticus in adult rats [J]. Epilepsia, 2008, 49(10): 1686-1695.
12HUANG Z, WALKER M C, SHAH M M. Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis [J]. J Neurosci, 2009, 29(35): 10979-10988.
13LI B, LUO C, TANG W, et al. Role of HCN channels in neuronal hyperexcitability after subarachnoid hemorrhage in rats [J]. J Neurosci, 2012, 32(9): 3164-3175.
TheroleofHCNchannelsinearlybraininjuryafterSAH
ZHAOTong1, 2,LIBo2,YUANShaoji2,LUPeigang2
1PostgraduateDepartmentofTaishanMedicalUniversity,Tai'an271000;2DepartmentofNeurosurgery,GeneralHospitalofJinanMilitaryCommand,Jinan250000, China
ObjectiveThe role of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in early brain injury after subarachnoid hemorrhage (SAH) was discussed and evaluated.MethodsSAH models (the arterial puncture model) in Wistar rats were established and divided into four groups with 5 rats in each including Sham group, SAH+vehicle group, SAH+ZD7288 group, and SAH+NO/Spermine (NO/Sp) group. SAH Grading and neurological examination (Modified Garcia) were performed at 24 h after SAH in different groups. Cell death detection were performed at 24 h after SAH in different groups. Assessment of cerebrospinal fluid (CSF) and Glutamic acid (Glu) concentration were performed at 24 h after SAH in different groups.ResultsInhibition of HCN channel further aggravated neurological impairment at 24 h after SAH. However unfortunately, there was no amelioration for neurological function after the treatment of NO/Sp. Neurons apoptosis in hippocampus and medial prefrontal cortex (mPFC) was observed at 24 h after SAH, especially in hippocampus. Inhibition of HCN channel by ZD7288 increased the amount of neuronal apoptosis at 24 h after SAH. However, there was no change for neuronal apoptosis between SAH and NO/Sp-treament groups. Inhibition of HCN channel by ZD7288 had a trend of increasing the Glu concentration in CSF at 24 h after SAH.ConclusionHCN channels play an important role in early brain injury after SAH. Neuronal excitability disorders caused by its function cut will directly result in the neuronal damage and eventually lead to nerve function damage after SAH. Inhibition of HCN channels will promote the vicious cycle, further aggravate the neuronal damage and neurological deficits; however, giving HCN channels nonspecific agonists does not significantly improve this ( the neuronal damage and neurological damage) situation. So this still needs further experimental research.
SAH; HCN channels; Neuronal excitability; Neurons apoptosis; Early brain injury
1671-2897(2017)16-105-05
R 651
A
國(guó)家自然科學(xué)基金資助項(xiàng)目(81471214);濟(jì)南軍區(qū)總醫(yī)院院長(zhǎng)基金資助項(xiàng)目(2014-01)
趙彤,碩士研究生,E-mail:whateveryouknow@126.com
*通訊作者: 盧培剛,主任醫(yī)師,碩士生導(dǎo)師,E-mail:pglu912@126.com
2016-08-11;
2016-12-12)