吳 迪,楊萬能,2,牛智有,黃成龍※
(1. 華中農(nóng)業(yè)大學工學院,武漢 430070;2. 華中農(nóng)業(yè)大學作物遺傳改良國家重點實驗室,武漢 430070)
小麥分蘗形態(tài)學特征X射線-CT無損檢測
吳 迪1,楊萬能1,2,牛智有1,黃成龍※1
(1. 華中農(nóng)業(yè)大學工學院,武漢 430070;2. 華中農(nóng)業(yè)大學作物遺傳改良國家重點實驗室,武漢 430070)
針對傳統(tǒng)小麥分蘗形態(tài)學特征需采用人工接觸或有損方法獲取,不僅過程繁瑣、主觀性強而且會影響小麥后續(xù)生長。為實現(xiàn)小麥分蘗性狀快速、準確、無損測量,該文提出一種基于X射線斷層成像的小麥分蘗形態(tài)學特征提取方法。首先構建了小麥分蘗X-ray CT斷層掃描成像系統(tǒng),采用濾波反投影(filtered back projection,F(xiàn)BP)斷層重建算法和圖形處理單元(graphics processing unit,GPU)加速算法快速獲取小麥分蘗莖稈斷層圖像,設計了專門的分蘗圖像分析算法實現(xiàn)對小麥分蘗形態(tài)學特征參數(shù)(分蘗數(shù)、分蘗角度、分蘗莖粗和分蘗壁厚)的無損檢測。該研究對107株小麥植株測量結果表明:分蘗數(shù)測量準確率可達100%,分蘗角度、莖粗和壁厚的平均測量誤差分別為 3.65%,4.84%和7.86%。該技術相較于人工測量方法和石蠟切片方法,能夠?qū)π←湻痔Y形態(tài)學特征進行較為精準無損檢測,實現(xiàn)單株測量效率約200 s,對于小麥功能基因組和抗倒伏能力品種的篩選具有重要的研究意義。
X射線;斷層重建;圖像處理;小麥分蘗;無損檢測
小麥是中國乃至世界最主要的糧食作物之一[1-3]。小麥是人類淀粉的主要攝取來源,同時富含蛋白質(zhì)、脂肪、礦物質(zhì)等豐富的營養(yǎng)[4-5]。為進一步提高小麥產(chǎn)量,小麥形態(tài)改良[6]逐漸從矮化育種轉向增加株高方向進行育種[7-8]。小麥分蘗起到了養(yǎng)分輸送與抗倒伏的作用,分蘗性狀與產(chǎn)量密切相關[9],小麥分蘗數(shù)與產(chǎn)量直接相關,分蘗角度影響小麥的株型結構,分蘗莖粗、壁厚決定小麥的抗倒伏能力[10-11],因此小麥分蘗性狀研究對小麥育種具研究具有十分重要的意義[12]。
隨著小麥功能基因組及分子育種的飛速發(fā)展,需要對大量品種進行表型鑒定。傳統(tǒng)的小麥分蘗檢測手段主要依靠人工完成,通過計量工具測量并計算水稻分蘗的分蘗數(shù)量、分蘗角度、分蘗莖粗、分蘗壁厚[13-14]。人工檢測為有損離體測量,具有測量精度低、可重復性差等缺點,已經(jīng)遠遠不能滿足當前小麥育種的需求。因此研發(fā)一種無損且精度高的小麥分蘗性狀提取技術,是小麥功能基因組發(fā)展急需解決的一個問題[15-16]。
近年來,機器視覺技術因其無損性和高效性正廣泛應用于農(nóng)產(chǎn)品檢測[17-18]。杜光源等[19]利用核磁共振可以測量小麥葉片衰老態(tài)勢,鄧繼忠等[20]采用圖像識別技術可以對小麥腥黑穗病進行特征提取與分類,張云鶴等[21]利用可見光視覺技術研發(fā)了作物分蘗直徑變化測量儀。Bauriegel等[22]采用高光譜成像技術可以對小麥鐮刀霉病進行早期預測。綜上所述,基于可見光、高光譜、核磁共振等反射成像技術,只能獲取對小麥表觀性狀的信息,無法用于獲取分蘗內(nèi)結構信息。而X射線作為一種透射成像技術,目前已經(jīng)應用于土壤孔隙檢測[23]、植物根系研究[24],木材內(nèi)部裂紋、孔洞缺陷檢測[25],水稻分蘗數(shù)測量[26],為小麥分蘗性狀獲取提供了一種可行的途徑。
本文通過采用自動控制系統(tǒng)、微型CT(computerized tomography)技術及圖像處理技術相結合的方式,研制了一套自動化的表型提取設備,以完成對小麥分蘗數(shù)、分蘗角度、分蘗莖粗、分蘗壁厚等形態(tài)學特征性狀的在體無損檢測。
1.1 系統(tǒng)組成
本文設計的CT系統(tǒng)主要由計算機1(雙核CPU 3.2 GHz,內(nèi)存2.98 GB,顯卡ATI Radeon HD 5450)、PLC控制器 2(programmable logic controller)(CP1H,OMRON,日本)、微焦斑射線源3(Nova 600,OXFORD,英國)、旋轉平臺4、平板探測器5(2520DX,VARIAN,美國)等5個功能模塊組成[27-28],系統(tǒng)結構示意圖如圖1所示。先將待測樣本小麥放置在載物旋轉臺上,微焦斑射線源發(fā)射X射線穿透小麥樣本,通過計算機系統(tǒng)發(fā)送指令給PLC,PLC控制載物旋轉臺實現(xiàn)樣本的等間距旋轉,利用平板探測器獲取每個角度下的X射線吸收面陣列圖像,取同一高度的全部角度圖像組成新的圖像,即投影正弦圖,再結合濾波反投影 FBP(filtered backprojection)算法[29]和圖形處理GPU(graphics processing unit)加速算法[30]得到斷層重建圖像,最后基于圖像處理技術對斷層重建圖像進行圖像分析與處理,測算并提取出小麥分蘗的性狀參數(shù)[31]。CT重建的原理源于X射線通過物體時衰減的物理規(guī)律[32-33],即郎伯定律如式(1),然后結合Radon變換得到投影重建圖像。
式中I為平板探測器探測到的X射線的強度,I0為入射X射線的強度(Ci),μ為成像物質(zhì)的吸收系數(shù),L為物體的厚度(mm)。
圖1 CT系統(tǒng)組成示意圖Fig.1 Schematic diagram of CT system
本試驗的研發(fā)主要是基于美國國家儀器公司(National Instruments)的LabVIEW軟件、VARIAN公司的VIVA軟件、美國微軟公司的Microsoft Visual Studio軟件。首先通過 VIVA軟件完成平板探測器的偏移校準和增益校準。然后通過LabVIEW軟件完成X射線圖像采集和載物臺旋轉控制功能。再利用Microsoft Visual Studio軟件來實現(xiàn)斷層重建和分蘗圖像處理算法,并生成動態(tài)鏈接庫(dynamic link library,DLL)。最后利用LabVIEW將上述功能集成,實現(xiàn)小麥分蘗圖像校準、采集、處理一體化。
1.2 成像結構
由于微焦斑射線源的出射角為33°,結合平板探測器的尺寸(195 mm×244 mm),可計算出當射線源與平板探測器之間的距離為634 mm時射線源發(fā)出的X射線剛好全部覆蓋平板探測器,考慮到小麥樣本的實際尺寸并獲取盡可能高的空間分辨率,本試驗中選取的微焦斑射線源至試驗樣本的距離為305 mm,基于該成像結構可獲取的X-ray投影及重建分辨率可達61μm × 61μm。試驗選用的具體性能參數(shù)如表1所示。
表1 小麥CT系統(tǒng)性能參數(shù)Table 1 CT system performance parameters for wheat
2.1 試驗材料
本試驗一共選取5個不同的小麥品種(華麥2668,華麥 2533,華麥 166,華麥 2566,華麥 2153),每個品種有25株,一共125株小麥樣本,試驗樣本盆栽種植。用于種植試驗樣本小麥的土壤先在太陽下曬干,然后將曬干的土壤初步碾碎,通過8 mm的網(wǎng)篩去除土壤中的石頭和雜草,保證土壤的均一性,最后將氮、磷、鉀肥料按照 2∶1∶1的配比攪拌均勻。在小麥生長過程中提供正常的水肥管理,待小麥播種90 d后開始進行小麥分蘗形態(tài)參數(shù)的無損檢測及人工驗證。
2.2 試驗具體步驟
CT系統(tǒng)具體的控制操作步驟如下:1)打開X射線源冷卻裝置,使得射線源溫度控制在 20 ℃以內(nèi);2)打開射線源和探測器,對系統(tǒng)進行校準;3)探測器采集圖片,并判斷采集的圖片信噪比是否符合要求;4)采集完一株樣本后,放置下一株樣本繼續(xù)采集,直至全部樣本采集完成;5)關閉射線源、探測器和計算機。
由于天氣等外在原因,最終用于試驗的小麥樣本為107株小麥。人工測量的具體測量步驟為:1)2名試驗人員分別對每株小麥數(shù)取分蘗數(shù)量,用量角器分別獲取分蘗角度,取 2人所得值的平均值做為分蘗數(shù)和分蘗角度的人工測量值;2)對每株小麥進行CT系統(tǒng)檢測,采集投影圖片;3)將每株小麥剪剩至1根分蘗為止(方便后期與人工值進行匹配對應),對其再次進行 CT系統(tǒng)檢測,采集投影圖片;4)2名試驗人員利用游標卡尺,分別對剩下的1根分蘗測量分蘗莖粗和分蘗壁厚,取2人所得值的平均值做為分蘗莖粗和分蘗壁厚的人工測量值。
2.3 試驗方法和性狀提取
本文提出的基于X射線微型CT的小麥分蘗性狀無損提取方法,技術路線如圖 2所示,具體效果如圖 3所示。
圖2 小麥分蘗性狀提取技術路線Fig.2 Flow chart of technical route for wheat tiller traits extraction
圖3 圖像處理及分蘗性狀提取流程Fig.3 Flow chart of image processing and tiller traits extraction
2.3.1 小麥分蘗斷層結構快速重建
對于小麥植株如圖 3a,首先利用 CT系統(tǒng)獲取小麥分蘗X-ray投影圖像如圖3b,然后選取兩個不同高度及360個角度下的投影圖像組成正弦圖如圖3c,再基于濾波反投影FBP算法,并結合平板探測器的偏移校準、增益校準降噪方法來獲取清晰的小麥分蘗斷層結構,其重建效果如圖3d所示。
本研究還利用感興趣區(qū)域(region of interest,ROI)算法和圖像處理單元加速算法,進一步減少CT斷層重建所消耗的時間,實現(xiàn)小麥分蘗內(nèi)部斷層結構的快速重建。
2.3.2 小麥分蘗內(nèi)部性狀的提取
小麥分蘗斷層圖像處理及性狀提取步驟如下所述。
針對小麥分蘗斷層重建圖像,首先采用大津算法(OTSU)自動計算分割閾值,利用該閾值將圖像進行二值化[32](如圖3e),然后利用去除小區(qū)域算法消除背景噪聲(如圖3f),再采用連通區(qū)域標記方法識別出單個小麥分蘗區(qū)域(如圖3g),最后計算出小麥分蘗性狀的分蘗數(shù)、分蘗莖粗、分蘗壁厚和分蘗角度(如圖3h),具體計算方法如下。
分蘗數(shù)量的計算:數(shù)取連通區(qū)域的個數(shù);
分蘗角度α的計算:對同一對象,分別在兩個不同高度的斷層面取質(zhì)心,投影到同一平面后,計算平面內(nèi) 2點的歐氏距離x,并且系統(tǒng)已知兩個斷層面的垂直距離y,因此可以計算出分蘗角度α(°)。
分蘗莖粗D的計算:將單個分蘗先進行旋轉,再測量長軸a與短軸b,從而計算出莖粗
分蘗壁厚d的計算:按莖粗的計算方法先獲取內(nèi)部髓腔的直徑d1,從而計算出壁厚
2.3.3 系統(tǒng)評估
基于上述圖像分析過程,將系統(tǒng)測量的 107份小麥植株分蘗數(shù)、分蘗角度、分蘗莖粗、分蘗壁厚與人工測量值對比來評價該方法的精度。測量結果所得的平均絕對百分比誤差(mean absolute percentage error,MAPE)和標準差(root mean square error,RMSE)的計算方法為
式中n為樣本數(shù),xai為系統(tǒng)測量值,xmi為人工測量值。
3.1 系統(tǒng)測量精度
基于上述小麥分蘗重建和圖像分析過程,本試驗對107份小麥植株提取的所有分蘗內(nèi)部性狀進行分析。將本系統(tǒng)測量的分蘗數(shù)、分蘗角度、莖粗和壁厚與人工測量值對比來評價本系統(tǒng)的精度。其中,人工測量小麥樣本的植株位置與系統(tǒng)測量高度基本一致(均為距離土面5 cm處),以減少不同高度下所產(chǎn)生的分蘗角度、莖粗和壁厚誤差。
圖4a是分蘗數(shù)的系統(tǒng)測量值與人工測量值的對比散點圖,可看出R2= 1,MAPE = 0%,RMSE = 0,本系統(tǒng)測量分蘗數(shù)的準確性為100%。圖4b是分蘗角度的系統(tǒng)測量值與人工測量值的對比散點圖,可看出R2= 0.77,MAPE = 3.65%,RMSE = 2.96°。圖4c是莖粗的系統(tǒng)測量值與人工測量值的對比散點圖,可看出R2= 0.91,MAPE =4.84%,RMSE = 0.17 mm,散點大部分落1∶1線右側,說明大部分系統(tǒng)測量值較人工測量大,這可能是由于試驗人員用游標卡尺對分蘗莖粗進行測量時,卡尺用力將莖稈夾緊時,莖稈變細導致的人工測量誤差。圖4d是壁厚的系統(tǒng)測量值與人工測量值的對比散點圖,可看出R2= 0.87,MAPE = 7.86%,RMSE=0.12 mm。結果表明本系統(tǒng)具有較高的測量精度,系統(tǒng)測量值與人工測量值具有較好的一致性,本研究結果說明基于X-ray CT技術可以準確的測量小麥分蘗形態(tài)學特征。
3.2 系統(tǒng)測量效率
本套系統(tǒng)的圖像采集時間大約200 s/株,圖像重建、圖像分析和性狀提取時間大約120 s/株,由于圖像重建、圖像分析和性狀提取可以與圖像采集并行執(zhí)行,故只需要考慮二者最長的時間,即本系統(tǒng)的測量效率為200 s/株。如該系統(tǒng)一天連續(xù)工作24 h,理論上1 d可以測量432株小麥。
人工測量效率會受到分蘗復雜程度的影響,分蘗越復雜,人工測量效率越慢,可重復性差,容易產(chǎn)生測量誤差,但系統(tǒng)不會受到分蘗復雜程度的影響,能準確的測量小麥分蘗形態(tài)學特征。
圖4 系統(tǒng)測量與人工測量結果Fig.4 Results of system measurement and manual measurement
3.3 系統(tǒng)對比分析
本研究系統(tǒng)與其它測量方法的對比結果如表2所示。本方法與人工測量方法相比,首先可以實現(xiàn)無損表型性狀的獲取,其次在測量效率上人工處理該107株小麥植株花費時間大約為 30 h,平均每株測量效率約為1 000 s,而本系統(tǒng)大約只需要6 h,測量效率提高約5倍,在測量精度上本系統(tǒng)可以與人工測量相比具有較高的一致性,并能克服人工測量上存在主觀、易疲勞的缺點。與石蠟切片法相比,同樣可以克服有損的缺點并與其報道的測量效率相比提高約 9倍[34]。與基于多光譜的可見光預測方法相比,本方法不但可以獲取小麥分蘗的內(nèi)部信息如分蘗壁厚,還能克服小麥分蘗之間的交疊提供更精準的小麥分蘗性狀,以分蘗數(shù)測量為例可見光預測方法能達到的最高決定系數(shù)為0.85[35],而本系統(tǒng)可達到1。
表2 該系統(tǒng)與其它測量方法的性能對比Table 2 Performance comparison between CT system and other methods
小麥分蘗為小麥生長提供營養(yǎng)輸送作用,其莖粗、壁厚與抗倒伏能力密切相關,分蘗數(shù)、分蘗角度直接影響小麥的株型,小麥分蘗形態(tài)學特征性狀研究對小麥遺傳育種及功能基因研究具有要用意義,本研究提出了一種基于X-CT測量小麥分蘗形態(tài)的方法。
1)本文針對小麥分蘗形態(tài)學特征性狀獲取,構建了一套X射線斷層成像系統(tǒng),通過該系統(tǒng)可以無損、快速獲取小麥莖稈的斷層圖像,最后采用圖像分析算法實現(xiàn)對小麥分蘗形態(tài)學特征的在體、無損、自動檢測。針對107株小麥植株進行分蘗斷層重建,自動獲取分蘗性狀參數(shù)包括分蘗數(shù)、分蘗角度、莖粗和壁厚,試驗結果顯示測量精度(mean absolute percentage error,MAPE)分別為100%、96.35%、95.16%、92.14%;標準差(root mean square error,RMSE)分別為 0、2.96°、0.17 mm、0.12 mm。以上結論表明本套系統(tǒng)具有較高的測量精度。
2)本套系統(tǒng)方便擴展應用于水稻、玉米、油菜等其他作物,該技術可與現(xiàn)有植物表型提取技術(可見光、近紅外、紅外成像等)相集成,為植物表型性狀獲取提供一種新的技術手段。
3)傳統(tǒng)的測量小麥分蘗形態(tài)學特征主要有可見光檢測、人工有損檢測和石蠟切片電鏡檢測。其中可見光只能獲取作物的表面信息,分蘗之間的遮擋對測量精度影響較大,且無法測量壁厚,后兩種方法雖然可以實現(xiàn)本研究目標,但均為有損檢測,不僅效率低下且無法重復。因此本研究為小麥分蘗形態(tài)測量提供了一種新的方法。
[1] Qin X, Zhang F, Liu C, et al. Wheat yield improvements in China: Past trends and future directions[J]. Field Crops Research, 2015, 177(6): 117-124.
[2] Slafer G A, Savin R, Sadras V O. Coarse and fine regulation of wheat yield components in response to genotype and environment[J]. Field Crops Research, 2014, 157(2): 71-83.
[3] 錢永蘭,毛留喜,周廣勝. 全球主要糧食作物產(chǎn)量變化及其氣象災害風險評估[J]. 農(nóng)業(yè)工程學報,2016,32(1):226-235.Qian Yonglan, Mao Liuxi, Zhou Guangsheng. Changes in global main crop yields and its meteorological risk assessment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016,32 (1): 226-235. (in Chinese with English abstract)
[4] Shangguan Z, Shao M, Dyckmans J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat[J]. Journal of Plant Physiology, 2000, 156(1): 46-51.
[5] Annison G. The role of wheat non-starch polysaccharides in broiler nutrition[J]. Crop and Pasture Science, 1993, 44(3):405-422.
[6] Gupta P K, Varshney R K, Sharma P C, et al. Molecular markers and their applications in wheat breeding[J]. Plant breeding, 1999, 118(5): 369-390.
[7] Lupton F G H. History of wheat breeding[M]. Springer Netherlands, 1987: 51-70.
[8] Zuber U, Winzeler H, Messmer M M, et al. Morphological traits associated with lodging resistance of spring wheat(Triticum aestivum L.)[J]. Journal of Agronomy and Crop Science, 1999, 182(1): 17-24.
[9] Kipp S, Mistele B, Baresel P, et al. High-throughput phenotyping early plant vigour of winter wheat[J]. European Journal of Agronomy, 2014, 52(2): 271-278.
[10] 袁志華,馮寶萍,趙安慶,等. 作物莖稈抗倒伏的力學分析及綜合評價探討[J]. 農(nóng)業(yè)工程學報,2002,18(6):30-31.Yuan Zhihua, Feng Baoping, Zhao Anqing, et al. Dynamic analysis and comprehensive evaluation of crop-stem lodging resistance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002,18(6): 30-31. (in Chinese with English abstract)
[11] 胡婷,付志一,焦群英. 小麥莖稈抗彎性能研究[J]. 農(nóng)業(yè)工程學報,2006,22(10):31-35.Hu Ting, Fu Zhiyi, Jiao Qunying. Experimental study on the bending mechanical properties of wheat stalk[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2006, 22(10): 31-35. (in Chinese with English abstract)
[12] Deiss L, Moraes A, Pelissari A, et al. Oat tillering and tiller traits under different nitrogen levels in an eucalyptus agroforestry system in Subtropical Brazil[J]. Ciência Rural,2014, 44(1): 71-78.
[13] Yang W, Duan L, Chen G, et al. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies[J]. Current Opinion in Plant Biology, 2013, 16(2): 180-187.
[14] Yang W, Guo Z, Huang C, et al. Genome-wide association study of rice (Oryza sativaL.) leaf traits with a highthroughput leaf scorer[J]. Journal of Experimental Botany,2015, 66(18): 5605-5615.
[15] Cabrera‐Bosquet L, Crossa J, von Zitzewitz J, et al.High-throughput phenotyping and genomic selection: The frontiers of crop breeding converge[J]. Journal of Integrative Plant Biology, 2012, 54(5): 312-320.
[16] Andrade-Sanchez P, Gore M A, Heun J T, et al. Development and evaluation of a field-based high-throughput phenotyping platform[J]. Functional Plant Biology, 2014, 41(1): 68-79.
[17] 丁為民,趙思琪,趙三琴,等. 基于機器視覺的果樹樹冠體積測量方法研究[J]. 農(nóng)業(yè)機械學報,2016,47(6):1-10.Ding Weimin, Zhao Siqi, Zhao Sanqin, et al. Measurement methods of fruit tree canopy volume based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 1-10. (in Chinese with English abstract)
[18] 伍艷蓮,曹衛(wèi)星,湯亮,等. 基于OpenGL的小麥形態(tài)可視化技術[J]. 農(nóng)業(yè)工程學報,2009,25(1):121-126.Wu Yanlian, Cao Weixing, Tang Liang, et al. Open GL-based visual technology for wheat morphology[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2009, 25(1): 121-126. (in Chinese with English abstract)
[19] 杜光源,唐燕,張嵩午,等. 小麥葉片衰老態(tài)勢核磁共振分析[J]. 農(nóng)業(yè)機械學報,2014,45(4):264-270.Du Guangyuan, Tang Yan, Zhang Songwu, et al.Investigating senescence status of wheat leaves by nuclear magnetic resonance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 264-270. (in Chinese with English abstract)
[20] 鄧繼忠,李敏,袁之報,等. 基于圖像識別的小麥腥黑穗病害特征提取與分類[J]. 農(nóng)業(yè)工程學報,2012,28(3):172-176.Deng Jizhong, Li Min, Yuan Zhibao, et al. Feature extraction and classification of Tilletia diseases based on image recognition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012,28(3): 172-176. (in Chinese with English abstract)
[21] 張云鶴,喬曉軍,王成,等. 基于機器視覺的作物莖稈直徑變化測量儀研發(fā)[J]. 農(nóng)機化研究,2011,33(12):158-160.Zhang Yunhe, Qiao Xiaojun, Wang Cheng, et al.Development of diameter micro-variation measurement instrument for plant stem based on machine vision technology[J]. Journal of Agricultural Mechanization Research,2011, 33(12): 158-160. (in Chinese with English abstract)
[22] Bauriegel E, Giebel A, Geyer M, et al. Early detection of Fusarium infection in wheat using hyper-spectral imaging[J].Computers and Electronics in Agriculture, 2011, 75(2):304-312.
[23] 王金滿,郭凌俐,白中科,等. 基于CT分析露天煤礦復墾年限對土壤有效孔隙數(shù)量和孔隙度的影響[J]. 農(nóng)業(yè)工程學報,2016,32(12):229-236.Wang Jinman, Guo Lingli, Bai Zhongke, et al. Effects of land reclamation time on soil pore number and porosity based on computed tomography (CT) images in opencast coal mine dump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12):229-236. (in Chinese with English abstract)
[24] 羅錫文,周學成,嚴小龍,等. 基于XCT技術的植物根系原位形態(tài)可視化研究[J]. 農(nóng)業(yè)機械學報,2004,35(2):104-106.Luo Xiwen, Zhou Xuecheng, Yan Xiaolong,et al.Visualization of plant root morphology in situ based on X-ray CT imaging technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(2): 104-105.(in Chinese with English abstract)
[25] 葛浙東,侯曉鵬,魯守銀,等. 基于反投影坐標快速算法的木材CT檢測系統(tǒng)研究[J]. 農(nóng)業(yè)機械學報,2016,47(3):335-341.Ge Zhedong, Hou Xiaopeng, Lu Shouyin, et al. Wood CT Detection system based on fast algorithm of inverse projection coordinate[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 335-341. (in Chinese with English abstract)
[26] Yang W, Xu X, Duan L, et al. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography[J]. Review of Scientific Instruments, 2011, 82(2):761-793.
[27] 方正.適于小動物研究的μCT系統(tǒng)開發(fā)研制. [D]. 武漢:華中科技大學,2008.Fang Zheng. Development of μCT System for Small Animal Study[D]. Wuhan: Huazhong University of Science and Technology, 2008. (in Chinese with English abstract)
[28] 湯漾平,張振峰, 馮清秀.基于PLC的微型CT自動掃描系統(tǒng)[J].機電工程,2010,27(9):46-48.Tang Yangping, Zhang Zhenfeng, Feng Qingxiu. PLC-based automatic scanning system of micro-CT[J]. Journal of Mechanical & Electrical Engineering, 2010,27(9):46-48.(in Chinese with English abstract)
[29] Mayo S C, Chen F, Evans R. Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography[J]. Journal of structural biology, 2010, 171(2): 182-188.
[30] Jia X, Lou Y, Lewis J, et al. GPU-based fast low-dose cone beam CT reconstruction via total variation[J]. Journal of X-ray Science and Technology, 2011, 19(2): 139-154.
[31] Miller N D, Haase N J, Lee J, et al. A robust, highthroughput method for computing maize ear, cob, and kernel attributes automatically from images[J]. Plant Journal, 2017,89(1): 169-178.
[32] Paulus M J, Gleason S S, Kennel S J, et al. High resolution X-ray computed tomography: An emerging tool for small animal cancer research[J]. Neoplasia, 2000, 2(1/2): 62-70.
[33] Otsu N. A threshold selection method from gray-level histograms[J]. Automatica, 1975, 11 (285/296): 23-27.
[34] 王秀文. 石蠟切片法中染色技術的改良[J]. 植物研究,2015,35(1):158-160.Wang Xiuwen. The improved stained methods of paraffin sections production[J]. Bulletin of Botanical Research, 2015,35(1): 158-160. (in Chinese with English abstract)
[35] 張猛,孫紅,李民贊,等. 基于4波段作物光譜測量儀的小麥分蘗數(shù)預測[J]. 農(nóng)業(yè)機械學報,2016,47(9):341-347.Zhang Meng, Sun Hong, Li Minzan, et al. Prediction of winter wheat tiller number based on 4 waveband crop monitor with spectral reflectance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9):341-347. (in Chinese with English abstract)
Non-destructive detection of wheat tiller morphological traits based on X-ray CT technology
Wu Di1, Yang Wanneng1,2, Niu Zhiyou1, Huang Chenglong1※
(1.College of Engineering, Huazhong Agricultural University, Wuhan430070,China;2.National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan430070,China)
Wheat tillers play an important role for nutrition transport to support the wheat growth. The wheat stem diameter and thickness are closely related to lodging resistance. Meanwhile tiller number and tiller angle directly determine the plant type of wheat. Therefore, the morphological trait extraction of wheat tillers is very important to the study of wheat genetics research, breeding improvement and functional genes location. With the development of the wheat cultivation and genetic breeding, the fast and accurate measurement of morphological traits for wheat tillers is imperative. However, the traditional method for tiller trait measurement is still manual, which is destructive and time consuming. Although a lot of efforts had been made to extract the tillers traits generally based on visible light, it is not able to acquire the inner information of wheat tiller and is affected seriously by tillers overlap. To solve the problem, a nondestructive technology for wheat tillers measurement was proposed and equipped with X-ray CT imaging device. In this study, the X-ray CT imaging system was constructed with the Micro-focus X-ray source and flat detector, which was used to obtain the sinogram images of wheat tiller with the spatial resolution 61 μm by 61 μm, and totally 360 images were collected for every one degree rotation for each plant. Then the FBP and GPU algorithms were adopted to reconstruct the tomography image of wheat tillers based on the sinogram images,and the inner information of wheat tiller was visible in the image. Moreover, the specialized image analysis algorithms were designed to analyze the wheat tomography image, in which the algorithms of background subtraction, OTSU segmentation, removing small region, and connected region identification were applied to extract the tiller regions. After that, the wheat tiller morphological traits were extracted by the following methods, the tiller numbers were counted based on the number of connected areas, the stem diameter was computed by the information of area external rectangle, the tiller wall thickness was extracted with the information of area external rectangle and cavity rectangle, and tiller angle was obtained by the triangle relation of tomography images at different heights. Finally this method was evaluated by 107 wheat plants, which belonged to five different wheat varieties. After the wheat plants were measured by the system automatically, the plants were measured by manual method for comparison to evaluate the system measurement accuracy. The experimental results showed that the system measurement accuracy of the tiller number was 100%, the mean absolute percentage error of tiller angle, the stem diameter and the stem wall thickness were 3.65%,4.84% and 7.86%, respectively and the RMSE for above traits were 2.96, 0.17 mm, 0.12 mm,respectively . The R2 value of tiller angle, the stem diameter and the stem wall thickness were 0.77, 0.91 and 0.87, respectively.The results demonstrated that this method had a good consistency with manual method, and performed a high accuracy for wheat tiller morphological trait measurements. In this study, the image acquisition efficiency was about 200 s per plant and the time used for image analysis was about 120 s per plant. Considering the parallel implement of image acquisition and analysis,the system efficiency was about 200 s per plant and was able to measure approximate 432 wheat plants in one day. Compared with manual method, this technology was able to detect the internal information of wheat tiller with high-accuracy and nondestructive. Moreover, it was able to extract novel phenotypic traits, which may contribute to the functional genomics and lodging resistance research of wheat plants. In future, more detailed information of wheat tiller such as vascular bundle, leaf sheath could be analyzed based on the higher resolution X-ray imaging device and more intelligent algorithms.
X rays; computerized tomography; image processing; wheat tiller; nondestructive testing
10.11975/j.issn.1002-6819.2017.14.027
S512;S123
A
1002-6819(2017)-14-0196-06
吳 迪,楊萬能,牛智有,黃成龍. 小麥分蘗形態(tài)學特征X射線-CT無損檢測[J]. 農(nóng)業(yè)工程學報,2017,33(14):196-201.
10.11975/j.issn.1002-6819.2017.14.027 http://www.tcsae.org
Wu Di, Yang Wanneng, Niu Zhiyou, Huang Chenglong. Non-destructive detection of wheat tiller morphological traits based on X-ray CT technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(14): 196-201. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.14.027 http://www.tcsae.org
2017-02-26
2017-06-20
國家高新技術發(fā)展計劃(863計劃,2013AA102403);國家自然科學基金項目(31600287);湖北省科研條件與資源研究開發(fā)(2015BCE044)作者簡介:吳迪,博士生,主要從事農(nóng)業(yè)信息無損檢測研究。武漢 華中農(nóng)業(yè)大學工學院,430070。Email:380524590@qq.com
※通信作者:黃成龍,講師,研究方向為植物表型無損測量研究。武漢 華中農(nóng)業(yè)大學工學院,430070。Email:hcl@mail.hzau.edu.cn