• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron delocalization enhances the thermoelectric performance of misfit layer compound(Sn1-xBixS)1.2(TiS2)2

    2022-11-21 09:40:26XinZhao趙昕XuanweiZhao趙軒為LiweiLin林黎蔚DingRen任丁BoLiu劉波andRanAng昂然
    Chinese Physics B 2022年11期
    關(guān)鍵詞:劉波

    Xin Zhao(趙昕) Xuanwei Zhao(趙軒為) Liwei Lin(林黎蔚) Ding Ren(任丁)Bo Liu(劉波) and Ran Ang(昂然)

    1Key Laboratory of Radiation Physics and Technology,Ministry of Education,Institute of Nuclear Science and Technology,Sichuan University,Chengdu 610064,China

    2Institute of New Energy and Low-Carbon Technology,Sichuan University,Chengdu 610065,China

    The misfit layer compound(SnS)1.2(TiS2)2 is a promising low-cost thermoelectric material because of its low thermal conductivity derived from the superlattice-like structure. However,the strong covalent bonds within each constituent layer highly localize the electrons thereby it is highly challenging to optimize the power factor by doping or alloying. Here,we show that Bi doping at the Sn site markedly breaks the covalent bonds networks and highly delocalizes the electrons. This results in a high charge carrier concentration and enhanced power factor throughout the whole temperature range.It is highly remarkable that Bi doping also significantly reduces the thermal conductivity by suppressing the heat conduction carried by phonons,indicating that it independently modulates phonon and charge transport properties. These effects collectively give rise to a maximum ZT of 0.3 at 720 K.In addition, we apply the single Kane band model and the Debye–Callaway model to clarify the electron and phonon transport mechanisms in the misfit layer compound(SnS)1.2(TiS2)2.

    Keywords: misfit layer sulfide,electron delocalization,carrier mobility,chemical bond

    1. Introduction

    Over 60%fossil fuels input for power generation is being rejected as low-grade heat annually.[1]Thermoelectric materials are able to directly convert such a huge amount of heat into utilizable electricity[2]without releasing any chemical residuals, showing great potential to contribute to solving the energy problem at present.[3,4]The efficiency of a thermoelectric device primary depends on the figure of merit, namely,ZT, of the thermoelectric materials used, which is defined asZT=S2σT/κtot,[4]whereSrepresents Seebeck coefficient,σdenotes electrical conductivity, their productS2σis called power factor,Tis the absolute temperature,andκtotis the total thermal conductivity with contribution from both charge carriers(κele)and phonons(κlat).

    In the past decades, theZTvalues of representative thermoelectric compounds have been considerably improved by applying innovative strategies, such as optimizing electrical transport properties[5–10]or suppressingκlat.[11,12]However, the majority thermoelectric materials contain toxic or expensive elements. For extensive application, thermoelectric community currently puts interest on searching economically-viable, environmentally benign thermoelectric materials.[13–15]The surprising and promising examples are the discovery of Mg3Sb2[8,16–18]and SnSe[19–22]based compounds with intrinsically low thermal conductivity. The former shows exceptionally highZTvalue of~1.5 around room temperature,exceeded conventional expensive Bi2Te3.[8,16,17]The latter exhibits extraordinary performance over a broad temperature window. Besides, the study of the physical mechanisms of novel materials is also very important. The single crystal 1T-TaS2sample exhibits strong coupling between phonon excitation and commensurate charge-densitywave lattice,which provides a deep insight into close association between electronic correlation and dynamical motions of phonons.[23]These findings unambiguously highlight the importance of discovering new compounds.

    (SnS)1.2(TiS2)2is an n-type misfit layer semiconductor built by alternately stacking two atomically thin TiS2slabs with a van der Waals (vdW) gap and SnS monolayer along theccrystallographic direction. Given the abundant interface formed between the TiS2and SnS layer,it shows intrinsically low thermal conductivity compared with other thermoelectric sulfides.[24,25]However, it is highly challenging to optimize its power factor because the metal cation easily forms covalent bonds with sulfur, highly localizing the electrons. For example, (Sn0.96Sb0.04S)1.2(TiS2)2shows carrier concentration nearly the same to the pristine one.[26]Here, we reveal that Bi doping can effectively improve the carrier concentration without degrading the carrier mobility by delocalizing the surrounding electrons. This gives rise to an enhanced power factor over the entire temperature investigated. Remarkably,the heavy Bi atom also significantly decreases the lattice thermal conductivity by generating point defects.[27]As a result,(Sn0.96Bi0.04S)1.2(TiS2)2shows aZTvalue of 0.3 at 723 K,one of the highest values reported in this compound.

    2. Experimental details

    2.1. Synthesis and sample preparation

    The appropriate molar ratio of high purity elements of tin (99.99%, aladdin), titanium (99.99%, aladdin), sulfur (99.99%, aladdin) and bismuth (99.999%, aladdin) corresponding to (Sn1-xBixS)1.2(TiS2)2(x= 0,0.02,0.04,0.06)was sealed in a quartz tube under a high vacuum(~10-4Pa).To minimize the risk of explosion, the sealed tubes were slowly heated to 773 K and dwelled for 12 h, afterward the temperature was raised to 1073 K and allowed to react for 48 h,and naturally cooled down to ambient temperature. The obtained ingots were hand-ground into fine powders in air using an agate and pestle. The resulting fine powder was loaded into a graphite die mold and hot pressed at 923 K for 45 min under an axial pressure of 50 MPa in a dynamic vacuum. The density of the sample was determined by the geometrical dimensions and masses, showing all the samples have density higher than 97.3%of the theoretical value.

    2.2. Powder x-ray diffraction

    The pulverized samples were used for powder x-ray diffraction (XRD). The powder diffraction patterns were recorded with CuKα(λ=1.5418 ?A) radiation in a reflection geometry on an Inel diffractometer operating at 40 kV and 20 mA (DX-2700 x-ray diffractometer). All measured samples are single phase within the detection limit of our laboratory XRD instrument,showing none of detectable secondary phases and unreacted elements.

    2.3. Charge carrier transport

    The densified samples were cut into different shapes using a wire saw for charge and thermal transport properties measurement respectively. The rectangular bar with the dimension of 2×3×8 mm3was used for simultaneously measuring the electrical conductivity and Seebeck coefficient employing a CTApro instrument under a low-pressure helium atmosphere from 320 K to 720 K.The Hall charge carrier concentration and mobility were measured from 320 K to 720 K by a home-built apparatus with a unidirectional 1.5 T magnetic field under a high vacuum.

    2.4. Thermal conductivity

    Thermal diffusivities with respect to temperature were measured using disks with a diameter of 6 mm or 8 mm and a thickness of 1.5 mm using the laser flash diffusivity method on a Netzsch LFA 467 instrument. The surface of the disks was protected by a thin layer of graphite to minimize the thermal radiation at elevate temperature. The thermal conductivity was calculated by the equationκtot=ρ·D·Cp,whereρis the mass density,Dis the measured thermal diffusivity, andCprepresents the temperature-dependent heat capacity that can be determined byCp= [0.17078+(2.64876×10-5)×T]J·g-1·K-1,whereTis the absolute temperature. The electrical contribution to the total thermal conductivity was calculated based on the relationκele=LσT,whereLis the Lorenz number estimated using a single parabolic band(see supporting information for the details),σis the electrical conductivity,andTis the absolute temperature. Lattice thermal conductivityκlatwas calculated by the relationκlat=κtot-κele.

    2.5. Electronic structure calculation

    The first-principles calculations were performed by utilizing the Perdew–Burke–Ernzerhof (PBE)[28]formalism and generalized gradient approximation (GGA)[29,30]implemented in Viennaab initiosimulation package (VASP)[31,32]code. The plane-wave basis was truncated at the energy cutoff of 600 eV. To reduce the computational load, we only sampled the momentum space at theΓ-point and a 4×1×1 mesh.All geometry structures were fully relaxed until the calculated Hellmann–Feynman force on every atom were less than 0.03 eV·?A-1under the convergence condition of 10-4eV.

    3. Results and discussion

    Covalent bonds in(SnS)1.2(TiS2)2strongly trap the electrons so that softening these bonds may release the localized electrons. Note that, the bond dissociation energy for Bi–S is 315 kJ·mol-1, much lower than 467 kJ·mol-1for Sn–S and 387 kJ·mol-1for Sb–S.[33]This indicates Bi doping can weaken the covalent bonds and give rise to a higher carrier concentration than the Sb doped system. To verify our hypothesis,we synthesized samples with the composition of (Sn1-xBixS)1.2(TiS2)2(x=0,0.02,0.04,0.06) using hightemperature solid-state reaction.All the phases can be fully indexed as the misfit layer structure,showing neither detectable impurity phases nor unreacted residual within the resolution limit of lab XRD measurements (Fig. 1(a) and Fig. S1). To accurately determine the lattice parameter, we performed Rietveld refinement on the recorded XRD patterns(Fig.S2 and Table S1). The refined unit cell dimensions gradually shrink as the Bi content increases, suggesting that Bi atoms are homogenously dissolved over the matrix apparently (Fig. 1(b)).This finding agrees well with the microscopic elemental map collected by scanning electron microscopy equipped with an energy dispersive spectroscopy(SEM-EDS,Fig.S3).

    Fig. 1. (a) Powder XRD patterns of (Sn1-xBixS)1.2(TiS2) samples (x =0,0.02,0.04,0.06). (b)Lattice parameters with respect to the Bi content.

    Trivalent Bi3+substituting divalent Sn2+could increase charge carrier properties significantly. In accordance,we measured the temperature-dependent Hall carrier concentration and mobility for the (Sn1-xBixS)1.2(TiS2)2(x=0,0.02,0.04,0.06) samples. Note that although we measured all properties along both parallel and perpendicular to the hot press direction, we will mainly concentrate on those perpendicular to the press direction because it shows higherZT. The transport properties collected parallel to the press direction are shown in Fig.S4.As the concentration of Bi doping increases,we can see an enhancement of the electrical properties. This is consistent with the results observed in the in-plane, which also can confirm our hypothesis.

    All samples show nearly constant Hall carrier concentration (nH) over the entire temperature range investigated, and their values monotonously increase with higher Bi concentration (Fig. 2(a)). It should be noted that the electron doping efficiency,namely,the number of electrons per Bi atom to the matrix is markedly higher than previously reported values for other dopants in(SnS)1.2(TiS2)-based materials. For example,x=0.04 sample showsnHof 1.8×1021cm-3at 300 K, indicating its electron doping efficiency amounts to 0.63 e-. In sharp contrast,(Sn0.96Sb0.04S)1.2(TiS2)exhibits annHclose to the matrix at 300 K as indicated by the green dashed line,[26]revealing Sb has negligible electron doping efficiency. These verify that Bi atom acts as an efficient electron donor to the(SnS)1.2(TiS2)lattice.

    Fig.2. Charge transport properties of the(Sn1-xBixS)1.2(TiS2)2 samples(x=0,0.02,0.04,0.06). (a)Temperature-dependent Hall carrier concentration nH. The experimental data of(Sn0.96Sb0.04S)1.2(TiS2)2 from previously report is included for comparison(green dashed line).[26] (b)Temperature dependent Hall mobility μH, (c) conductivity σ and (d) Seebeck coefficient. (e) Carrier concentration-dependent Seebeck coefficient at 320 K and 720 K.(f)Temperature-dependent power factor.

    Although Bi doping considerably increases thenH, it marginally reduces the charge carrier mobility (μH). In fact,all samples exhibit nearly identicalμHover the entire temperature range (Fig. 2(b)). Their values rapidly drop with the raising temperature, following the same power law trend of~T-1.5over the entire temperature range, which evident the phonon scattering dominates the charge carrier scattering.This observation confirms Bi uniformly spreading over the crystalline matrix,rather than forming secondary phases or aggregate at the grain boundary,otherwise theμHwould be significantly decreased. Indeed,it contrasts with the general understanding that increasing charge carrier concentration usually decreases with raisingnHbecause of enhanced carrier–carrier scattering, implying Bi doping marginally affects the charge carrier transport.

    Figure 2(c) shows the electrical conductivity (σ) with respect to temperature for the (Sn1-xBixS)1.2(TiS2)2(x=0,0.02,0.04,0.06)samples. Because Bi doping markedly improves thenHwith negligible degradingμHin the full temperature range,it gives rise to higherσat every single temperature point compared to the pristine sample. For example,theσof the title compound(Sn0.96Bi0.04S)1.2(TiS2)is~1100 S·cm-1and~300 S·cm-1at 300 K and 723 K, respectively, much higher than~900 S·cm-1and 250 S·cm-1at the same temperature for the pristine sample.

    The Seebeck coefficient(S)of all samples is negative over the entire temperature range, demonstrating they are n-type semiconductor(Fig.2(d)).Note that Bi doping marginally impacts the magnitude of Seebeck among samples because all the samples have very highnHon the order of~1021cm-3. To examine any possible modulation in electron effective massm*, we calculated the theoretical Pisarenko relation betweenSandnHfor undoped (SnS)1.2(TiS2) in the frame of single Kane band model by assuming that the phonon scattering governs the charge carrier scattering. The black and red lines denotem*=4meat 320 K andm*=5meat 720 K,respectively(Fig.2(e)).TheSvalues for all the samples in this work match well on the lines, suggesting that doped Bi does not alter the band structure in the vicinity of the Fermi level.

    Due to the doped Bi considerably increasesσwithout significantly reducingS,it optimizes the power factor particularly for the best composition(Sn0.96Bi0.04S)1.2(TiS2)(Fig.2(f)).In fact,the(Sn0.96Bi0.04S)1.2(TiS2)sample shows a power factor higher than the pristine one over the entire temperature range.Note that it is challenging to improve the power factor of misfit layer compounds because the highly distorted interface derived from the constituent layers typically leads to a very low electrical conductivity and thereby a low power factor.

    To better understand the enhanced charge transport properties in the (Sn1-xBixS)1.2(TiS2)2compounds, we carried out first-principles calculation within density functional theory regime. Given the high electron doping efficiency as we discussed earlier,the doped Bi atom was placed at the Sn site to mimic the experimental observation. We first analyzed the charge transfer in Bi doped (SnS)1.2(TiS2) for examining the possible charge transfer between Bi and the matrix. For clarity,we only display the charge transfer between one TiS2layer and its neighboring SnS slab(Fig.3(a)). The result shows that the electrons of Bi flow toward the nearest sulfur atom in the adjunct TiS2layer as indicated by the blue ellipsoid, forming electronic bridge to connect large van der Waals gap and facilitate the charge transfer over the matrix. For comparison,we also similarly calculated the Sb doped (SnS)1.2(TiS2). It reveals that the electrons from Sb atom are isolated between the van der Waals gap.

    Fig.3. The charge transfer analysis for(a)Bi and(b)Sb doped(SnS)1.2(TiS2). The Sn,Ti,S,Bi and Sb atoms are depicted by grey,blue,yellow,violet, and orange spheres, respectively. Blue ellipsoids surrounding the atoms denote a loss of electrons. Electron localization function (ELF)contour mapped along the〈100〉z(mì)one axis for(a)Bi and(b)Sb doped(SnS)1.2(TiS2). ELF values ranging from 0 to 1 are depicted by the color bar shown in(c), where blue color denotes the electrons with almost no localization or no electrons, and the red color corresponds to the perfect localization of electrons. The red arrow in (c) indicates Bi substituting Sn delocalized electrons. The black arrow in (d) points out the Sb atom forms covalent bond with adjunct sulfur atom,which heavily localized the electrons.

    It is worth noting that quantitative Bader charge transfer analysis shows that Bi donates 1.27 e-to the interacting S atom,coincidentally to the value of 1.28 e-of Sb transferred to the system. This supports our hypothesis that Bi doping weakly localized the electrons. We calculated the electron localization function(ELF)for both Bi and Sb doped systems(Figs.3(c)and 3(d)). This measures the electron localization in atomic and molecular systems, directly evaluating the chemical interaction between the adjunct atoms.[34]The magnitude of ELF increases from 0 to 1 which denotes the electron transiting from no localization to perfect localization and is visualized by the color code varying from blue to red color. The ELF contour mapped along the〈100〉z(mì)one axis of Bi doped system reveals the ELF value between Bi and S atoms smaller than 0.5 (Fig. 3(c)). This indicates that electrons surrounding Bi are highly mobile,consistent with our observation that incorporating Bi atom negligibly affectsμH.By contrast,electron localization domains are clearly observed between Sb and S atoms in Sb doped(SnS)1.2(TiS2)as indicated by the black arrow. This suggests that the Sb atom is prone to form covalent bond with nearby sulfur atom,trapping the free electrons and reducing the electron doping efficiency. In fact, the EFL results agree well with the fact that the Bi–S bond has lower enthalpy and dissociation energy than the Sb–S bond as we discussed in the previously section, confirming that the weak bond contributes to the exceptionally charge transfer of Bi.

    Figure 4(a)presents temperature-dependent total thermal conductivity(κtot)for the(Sn1-xBixS)1.2(TiS2)2samples(x=0,0.02,0.04,0.06). It is highly remarkable that all Bi-doped samples show suppressedκtotcompared with the pristine sample despite they exhibit much higherσthan the latter.This observation implies that the Bi doping significantly impedes heat conduction by phonons. As a result, we extracted the lattice thermal conductivityκlatby invoking the Widemann–Franz law to subtract electronic thermal conductivityκelefromκtot(see Appendix A for details). All doped samples show much lowerκlatthan the undoped one(Fig.4(b)). For example,theκlatat 320 K markedly decreases from~1.7 W·m-1·K-1for thex=0 sample to~1.2 W·m-1·K-1for thex=0.04 sample. To better understand the effect of Bi doping on thermal conductivity,we calculated the temperature-dependentκlatby the Debye–Callaway model. The black line represents the calculatedκlatfor the pristine sample (Fig. 4(b)), which only considers Umklapp (U) and normal (N) processes. The calculated results fit well with the experimental value, reflecting that the U and N processes dominate the phonon scattering. Since neither secondary phase nor element aggregation is present in the Bi doped samples, we further introduced point defects to the Bi doped system as indicated by the red dash line. The calculated value for thex= 0.04 sample lies far below the pristine one, supporting that the point defect contributes significantly to reducingκlat. In fact, the title compound (Sn0.96Bi0.04S)1.2(TiS2)2shows much lowerκlatthan that of previously reported thermoelectric sulfides(Fig.4(c)).Similarly,the out-of-planeκtotis reached 0.7 W·m-1·K-1for thex=0.04 sample at 723 K,as shown in Fig.S4(e).It should be noted that these data are close to our previous work about(Sn1-xSbxS)1.2(TiS2)2and reflect the good reproducibility of the series of works.[26]

    Fig. 4. Temperature-dependent (a) total thermal conductivity κtot and (b) lattice thermal conductivity κlat for (Sn1-xBixS)1.2(TiS2)2 (x =0,0.02,0.04,0.06). The black and red dashed lines correspond to the calculated temperature-dependent κlat for the pristine and x=0.04 samples using the Debye–Callaway model. (c)A κlat comparison with typical thermoelectric sulfides including TiS2[25] and PbS.[24]

    Fig. 5. Temperature-dependent ZT of (Sn1-xBixS)1.2(TiS2)2 (x =0,0.02,0.04,0.06)samples. The ZT values of pristine TiS2[25] and SnS[35]are given for comparison.

    Figure 5 shows the temperature-dependent dimensionless figure of merit,ZT, for the (Sn1-xBixS)1.2(TiS2)2samples (x= 0,0.02,0.04,0.06). The (Sn0.96Bi0.04S)1.2(TiS2)2exhibits higherZTvalues over the entire temperature range with a maximum reaching to 0.3 at 720 K. It is one of the highest among misfit layer compounds. The achieved performance out-performs previously reported TiS2and state-of-theart polycrystalline SnS,indicating its great potential as a lowcost thermoelectric material for power generation.

    4. Conclusions

    Misfit layer compounds emerge as promising low-cost thermoelectric sulfides. However, it is challenging to optimize its carrier concentration because dopants tend to form covalent bond with sulfur. We demonstrated that Bi weakly bonded with sulfur, delocalized the charge carrier and facilitated the charge transfer. Highly mobile electrons significantly enhanced electrical conductivity and power factor of(Sn0.96Bi0.04S)1.2(TiS2)2over the entire temperature range.The heavy Bi atom also exceptionally reducedκlatby introducing mass fluctuation. By virtue of the Bi doping on charge and thermal transport properties,(Sn0.96Bi0.04S)1.2(TiS2)2shows a maximumZTof 0.3 at 720 K,excelling many state-of-the-art thermoelectric sulfides including SnS and PbS.

    Appendix A

    Density of state mass calculation

    The density of state mass(m*)is calculated according to the following equations[36,37]using the Seebeck coefficient(S)and carrier concentration(nH):

    whereμis the reduced Fermi level,Fj(μ) is the Fermi integral,kBis the Boltzmann constant,his the Planck constant,andλ=0 is the scattering parameter corresponding to acoustic phonon scattering.

    Lorenz number calculation

    The Lorenz numberLwas obtained by single parabolic band(SPB)model with acoustic scattering(λ=0 for acoustic phonon scattering):

    The disorder scattering parameterΓcalcis calculated by the model of Slack[43]and by Abeles[42]assumingΓcalc=ΓM+ΓS,whereΓMandΓSare mass fluctuations scattering parameter and strain field fluctuations scattering parameter, respectively. The mass and strain fluctuation scattering parameters are determined by[40]

    Acknowledgments

    This work was financially supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702100), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility (Grant No. U1932106), and the Sichuan University Innovation Research Program of China(Grant No.2020SCUNL112).

    猜你喜歡
    劉波
    汪安陽 劉波設(shè)計(jì)作品
    毛紡科技(2023年1期)2023-02-24 00:37:40
    劉波作品
    國(guó)畫家(2023年1期)2023-02-16 07:57:50
    Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100?
    Retrieval of multiple scattering contrast from x-ray analyzer-based imaging*
    晚霞
    赤水源(2018年6期)2018-12-06 08:38:08
    劉波:大海與我作伴
    商周刊(2017年16期)2017-10-10 01:32:47
    千萬別動(dòng)手
    “故事大王”講故事
    大連大學(xué)美術(shù)學(xué)院劉波繪畫作品選
    女人的復(fù)仇
    99国产精品免费福利视频| 伊人久久精品亚洲午夜| 国产精品不卡视频一区二区| 人妻一区二区av| 国产在线视频一区二区| 女人久久www免费人成看片| 色网站视频免费| 国产免费福利视频在线观看| 亚洲成人中文字幕在线播放| 99久久精品热视频| 丰满迷人的少妇在线观看| 亚洲欧美清纯卡通| 国产无遮挡羞羞视频在线观看| 熟妇人妻不卡中文字幕| 夜夜爽夜夜爽视频| 亚洲最大成人中文| 永久网站在线| 亚洲熟女精品中文字幕| 国产精品国产三级国产av玫瑰| 看非洲黑人一级黄片| 国产一区二区在线观看日韩| 久久久久久伊人网av| 久久久久久久精品精品| 日韩一区二区三区影片| 高清视频免费观看一区二区| 国产 一区精品| 国产精品免费大片| 国产精品99久久99久久久不卡 | 国产亚洲欧美精品永久| 在线 av 中文字幕| 亚洲av中文字字幕乱码综合| 久久久午夜欧美精品| 夫妻午夜视频| 免费在线观看成人毛片| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 天堂8中文在线网| 亚洲av免费高清在线观看| 极品少妇高潮喷水抽搐| 制服丝袜香蕉在线| 精品一区在线观看国产| 亚洲成人一二三区av| 国产伦理片在线播放av一区| 欧美日韩视频精品一区| 欧美一区二区亚洲| 日本黄色片子视频| 亚洲性久久影院| 一区二区三区精品91| 国产亚洲最大av| 亚洲欧美一区二区三区国产| 亚洲久久久国产精品| 在线观看免费日韩欧美大片 | 日韩三级伦理在线观看| 精品人妻熟女av久视频| 国产毛片在线视频| 久久久久精品久久久久真实原创| 一区二区三区乱码不卡18| 97在线人人人人妻| 插逼视频在线观看| 丰满人妻一区二区三区视频av| 王馨瑶露胸无遮挡在线观看| 免费少妇av软件| 日本-黄色视频高清免费观看| 少妇人妻久久综合中文| 国产精品免费大片| 日本爱情动作片www.在线观看| 欧美xxxx性猛交bbbb| a级一级毛片免费在线观看| 亚洲av日韩在线播放| 亚洲av福利一区| 欧美日韩国产mv在线观看视频 | 久久久久国产网址| 中国美白少妇内射xxxbb| 亚洲欧美精品自产自拍| 欧美bdsm另类| 黑人高潮一二区| av在线观看视频网站免费| 自拍偷自拍亚洲精品老妇| 国国产精品蜜臀av免费| 好男人视频免费观看在线| 国产亚洲一区二区精品| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线观看99| 亚洲精品日韩av片在线观看| 国产精品精品国产色婷婷| 人人妻人人添人人爽欧美一区卜 | 亚洲精品乱码久久久v下载方式| 精品视频人人做人人爽| 全区人妻精品视频| 日产精品乱码卡一卡2卡三| 99久久精品热视频| 日日摸夜夜添夜夜爱| 99久久精品国产国产毛片| 丝袜脚勾引网站| 中文字幕制服av| 人妻制服诱惑在线中文字幕| 亚洲精品日韩在线中文字幕| av免费在线看不卡| 六月丁香七月| 国产精品久久久久久精品古装| 在线播放无遮挡| 肉色欧美久久久久久久蜜桃| 街头女战士在线观看网站| 五月伊人婷婷丁香| 人人妻人人添人人爽欧美一区卜 | 美女脱内裤让男人舔精品视频| 日本vs欧美在线观看视频 | 性色av一级| 国产精品人妻久久久久久| 91午夜精品亚洲一区二区三区| 一级毛片电影观看| 最近的中文字幕免费完整| 亚洲av中文字字幕乱码综合| 久久久久久九九精品二区国产| 亚洲欧美成人综合另类久久久| 国产高清国产精品国产三级 | 国产午夜精品久久久久久一区二区三区| av免费观看日本| 观看av在线不卡| 美女国产视频在线观看| 偷拍熟女少妇极品色| 99久久综合免费| 97精品久久久久久久久久精品| 日本欧美国产在线视频| 国产美女午夜福利| 特大巨黑吊av在线直播| 久久久a久久爽久久v久久| 久久婷婷青草| 国产成人一区二区在线| 一级毛片黄色毛片免费观看视频| 午夜福利在线在线| 久久久成人免费电影| 丰满迷人的少妇在线观看| 在线免费十八禁| 久久久久久久大尺度免费视频| 久久久久久久久久久免费av| 国产精品三级大全| 国产精品蜜桃在线观看| 精品国产一区二区三区久久久樱花 | 日本av手机在线免费观看| 纯流量卡能插随身wifi吗| 精品国产一区二区三区久久久樱花 | 国内精品宾馆在线| 国产探花极品一区二区| 国产精品久久久久久精品电影小说 | 午夜日本视频在线| 亚洲精品久久午夜乱码| 精品亚洲乱码少妇综合久久| 国产成人精品久久久久久| 夫妻午夜视频| 内地一区二区视频在线| 亚洲欧美精品自产自拍| 成人特级av手机在线观看| 免费看日本二区| 色网站视频免费| 一级a做视频免费观看| 国产视频内射| 国产av码专区亚洲av| 国产精品免费大片| 久久精品国产亚洲av天美| 亚洲欧美精品自产自拍| 久久6这里有精品| 精品亚洲成国产av| 一区二区三区精品91| 午夜福利视频精品| 久热这里只有精品99| 欧美日韩在线观看h| 欧美xxxx黑人xx丫x性爽| 夜夜爽夜夜爽视频| 一区在线观看完整版| 最近手机中文字幕大全| 中国美白少妇内射xxxbb| 亚洲美女视频黄频| 国产精品99久久99久久久不卡 | 欧美老熟妇乱子伦牲交| 视频区图区小说| 男人和女人高潮做爰伦理| 蜜桃在线观看..| 久久精品久久久久久噜噜老黄| 国产精品嫩草影院av在线观看| kizo精华| 在线观看三级黄色| 中文字幕制服av| av在线蜜桃| 偷拍熟女少妇极品色| 极品少妇高潮喷水抽搐| 91aial.com中文字幕在线观看| 亚洲国产最新在线播放| 小蜜桃在线观看免费完整版高清| 色婷婷av一区二区三区视频| 久久人人爽人人片av| 波野结衣二区三区在线| 视频中文字幕在线观看| 午夜免费观看性视频| 免费观看a级毛片全部| 天天躁日日操中文字幕| 美女中出高潮动态图| 深夜a级毛片| 亚洲va在线va天堂va国产| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 久久人人爽人人片av| 夫妻性生交免费视频一级片| a级毛片免费高清观看在线播放| 欧美高清性xxxxhd video| 日韩国内少妇激情av| 制服丝袜香蕉在线| 久久国产精品男人的天堂亚洲 | 夜夜看夜夜爽夜夜摸| 又大又黄又爽视频免费| 观看美女的网站| 国产成人aa在线观看| 亚洲第一av免费看| 免费大片黄手机在线观看| 国产免费一级a男人的天堂| 99热网站在线观看| 精品一区二区三区视频在线| 国产一区二区三区综合在线观看 | 人妻一区二区av| 高清日韩中文字幕在线| 美女视频免费永久观看网站| 日本黄大片高清| 国产黄片视频在线免费观看| 亚洲三级黄色毛片| 色婷婷av一区二区三区视频| 91精品国产九色| 成人毛片a级毛片在线播放| 亚洲色图综合在线观看| 国产伦理片在线播放av一区| 国产精品免费大片| 国产深夜福利视频在线观看| 国产一区二区三区av在线| 国产精品久久久久成人av| 亚洲人成网站在线观看播放| 中国三级夫妇交换| 婷婷色av中文字幕| 成年美女黄网站色视频大全免费 | 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂| 汤姆久久久久久久影院中文字幕| 亚洲欧美中文字幕日韩二区| 99视频精品全部免费 在线| 成人18禁高潮啪啪吃奶动态图 | 国产精品久久久久成人av| 一个人看视频在线观看www免费| 亚洲自偷自拍三级| av线在线观看网站| 亚洲精品日韩av片在线观看| 三级国产精品片| 免费观看在线日韩| 最近中文字幕高清免费大全6| 精品一品国产午夜福利视频| 日韩中文字幕视频在线看片 | 国产亚洲91精品色在线| 99热这里只有精品一区| 亚洲真实伦在线观看| 美女cb高潮喷水在线观看| 内射极品少妇av片p| 麻豆国产97在线/欧美| 内地一区二区视频在线| av国产免费在线观看| 国产 精品1| 插逼视频在线观看| 王馨瑶露胸无遮挡在线观看| 女人久久www免费人成看片| a级毛片免费高清观看在线播放| 老师上课跳d突然被开到最大视频| 日本与韩国留学比较| 国产精品熟女久久久久浪| 看十八女毛片水多多多| 国精品久久久久久国模美| 人人妻人人看人人澡| 亚洲精品色激情综合| 国产爽快片一区二区三区| 男人舔奶头视频| 午夜福利影视在线免费观看| .国产精品久久| 精品少妇久久久久久888优播| 成人午夜精彩视频在线观看| 国产男女内射视频| 精品亚洲成国产av| 七月丁香在线播放| av在线app专区| 精品久久久久久久久亚洲| 99热全是精品| 亚洲精品视频女| 日本欧美国产在线视频| 肉色欧美久久久久久久蜜桃| 91精品伊人久久大香线蕉| 伦精品一区二区三区| 国国产精品蜜臀av免费| 久久国产精品大桥未久av | 亚洲美女搞黄在线观看| 欧美激情国产日韩精品一区| 美女主播在线视频| 18禁在线无遮挡免费观看视频| 欧美一级a爱片免费观看看| 欧美精品一区二区大全| 99久久中文字幕三级久久日本| 婷婷色综合www| 亚洲丝袜综合中文字幕| 国产亚洲5aaaaa淫片| 伦理电影免费视频| a级一级毛片免费在线观看| 国产一区亚洲一区在线观看| 一级爰片在线观看| 国产精品人妻久久久影院| 国产乱人偷精品视频| 欧美bdsm另类| 中文字幕免费在线视频6| 只有这里有精品99| 午夜激情福利司机影院| 日日啪夜夜撸| 国产乱来视频区| 纵有疾风起免费观看全集完整版| 一本一本综合久久| 成年美女黄网站色视频大全免费 | 免费大片18禁| 国产成人一区二区在线| 青青草视频在线视频观看| 少妇的逼水好多| 777米奇影视久久| 极品少妇高潮喷水抽搐| 日本wwww免费看| 嘟嘟电影网在线观看| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 日韩av在线免费看完整版不卡| 国产淫片久久久久久久久| 亚洲电影在线观看av| 亚洲婷婷狠狠爱综合网| 免费av不卡在线播放| 久久精品久久精品一区二区三区| 国产成人freesex在线| 爱豆传媒免费全集在线观看| 午夜老司机福利剧场| 国国产精品蜜臀av免费| 欧美精品亚洲一区二区| 亚洲av综合色区一区| 精品视频人人做人人爽| 99热国产这里只有精品6| 狂野欧美白嫩少妇大欣赏| 网址你懂的国产日韩在线| 一边亲一边摸免费视频| 国产精品伦人一区二区| 交换朋友夫妻互换小说| 99久久综合免费| 久久久久久人妻| 久久久亚洲精品成人影院| av在线播放精品| 99热这里只有是精品50| 男的添女的下面高潮视频| 美女xxoo啪啪120秒动态图| 99久久精品一区二区三区| 亚洲内射少妇av| 男人添女人高潮全过程视频| 多毛熟女@视频| 国产欧美日韩精品一区二区| 国产亚洲午夜精品一区二区久久| 一级毛片aaaaaa免费看小| 中文精品一卡2卡3卡4更新| 国产成人a区在线观看| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美亚洲二区| av免费在线看不卡| 国产免费又黄又爽又色| 高清av免费在线| 久久精品熟女亚洲av麻豆精品| 欧美精品国产亚洲| 午夜视频国产福利| 亚洲国产精品一区三区| 欧美老熟妇乱子伦牲交| 嫩草影院新地址| 内射极品少妇av片p| 色视频在线一区二区三区| 99re6热这里在线精品视频| 天美传媒精品一区二区| 日韩,欧美,国产一区二区三区| 欧美一区二区亚洲| 久久久久国产网址| av国产久精品久网站免费入址| 欧美日韩综合久久久久久| 午夜老司机福利剧场| 熟女电影av网| 日韩亚洲欧美综合| 亚洲精品视频女| 久久久久性生活片| 深夜a级毛片| 亚洲国产成人一精品久久久| 一区二区av电影网| 涩涩av久久男人的天堂| 大片电影免费在线观看免费| 午夜免费男女啪啪视频观看| 欧美日韩视频高清一区二区三区二| 久久av网站| 精品少妇久久久久久888优播| 看免费成人av毛片| 成人无遮挡网站| 人体艺术视频欧美日本| 日韩亚洲欧美综合| 日日啪夜夜撸| 中文字幕亚洲精品专区| 美女国产视频在线观看| 大又大粗又爽又黄少妇毛片口| 久久久国产一区二区| 秋霞伦理黄片| 成人特级av手机在线观看| 日韩成人伦理影院| 一二三四中文在线观看免费高清| 久久国产精品大桥未久av | 妹子高潮喷水视频| 精品国产三级普通话版| 国产色爽女视频免费观看| xxx大片免费视频| 秋霞伦理黄片| 国产综合精华液| 大香蕉久久网| 美女cb高潮喷水在线观看| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影小说 | 久久 成人 亚洲| 看十八女毛片水多多多| 大香蕉97超碰在线| 在线观看av片永久免费下载| 久久99热6这里只有精品| 91aial.com中文字幕在线观看| 久久久久久久大尺度免费视频| 99久久精品热视频| 中文字幕久久专区| 成人漫画全彩无遮挡| 国产一区二区三区综合在线观看 | 亚洲精品亚洲一区二区| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 日日啪夜夜爽| 精品久久国产蜜桃| 欧美激情国产日韩精品一区| 六月丁香七月| 大话2 男鬼变身卡| 久久99热6这里只有精品| 五月伊人婷婷丁香| tube8黄色片| 一边亲一边摸免费视频| 欧美激情国产日韩精品一区| av国产久精品久网站免费入址| 日本黄大片高清| 在线免费观看不下载黄p国产| 在线观看免费日韩欧美大片 | 性色av一级| 国内揄拍国产精品人妻在线| 久久久a久久爽久久v久久| 国产亚洲午夜精品一区二区久久| 日日摸夜夜添夜夜添av毛片| 日韩三级伦理在线观看| 精品一区二区三卡| 超碰av人人做人人爽久久| 国产白丝娇喘喷水9色精品| 免费观看的影片在线观看| 久久久亚洲精品成人影院| 成人二区视频| 一级毛片 在线播放| 精品一区二区三卡| 综合色丁香网| 国产熟女欧美一区二区| 熟女人妻精品中文字幕| 成人黄色视频免费在线看| 久久精品国产a三级三级三级| 亚洲国产欧美在线一区| 在线播放无遮挡| 少妇猛男粗大的猛烈进出视频| 久久人妻熟女aⅴ| 在线免费观看不下载黄p国产| 观看av在线不卡| 观看免费一级毛片| 日韩强制内射视频| 人人妻人人澡人人爽人人夜夜| 日本欧美国产在线视频| 国产午夜精品久久久久久一区二区三区| 老熟女久久久| 九色成人免费人妻av| 91狼人影院| 欧美成人a在线观看| 国产成人精品久久久久久| 麻豆精品久久久久久蜜桃| 精品人妻视频免费看| 99久久人妻综合| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品偷伦视频观看了| 九九爱精品视频在线观看| 国产精品人妻久久久影院| 日韩成人伦理影院| 一区二区三区免费毛片| 亚洲精品亚洲一区二区| 亚洲不卡免费看| 少妇的逼好多水| 国产成人freesex在线| 高清欧美精品videossex| 2022亚洲国产成人精品| 亚洲图色成人| a级毛片免费高清观看在线播放| 国产在线免费精品| 男人和女人高潮做爰伦理| 街头女战士在线观看网站| 又爽又黄a免费视频| a级毛片免费高清观看在线播放| 日韩,欧美,国产一区二区三区| 毛片女人毛片| 国产 一区精品| 中文在线观看免费www的网站| a级毛片免费高清观看在线播放| 女人久久www免费人成看片| 亚洲国产色片| 久久精品久久久久久噜噜老黄| 青春草视频在线免费观看| 国产黄片视频在线免费观看| 在线看a的网站| 亚洲精品456在线播放app| 爱豆传媒免费全集在线观看| 欧美+日韩+精品| 高清欧美精品videossex| 日本与韩国留学比较| 精品亚洲成国产av| 欧美一区二区亚洲| 亚洲第一区二区三区不卡| 国产乱来视频区| 美女国产视频在线观看| 日韩成人伦理影院| 亚洲欧美清纯卡通| 国产一区二区三区av在线| 国产精品麻豆人妻色哟哟久久| 在线观看国产h片| 国产av精品麻豆| 99热全是精品| 成人国产av品久久久| 中文字幕亚洲精品专区| 一级片'在线观看视频| 国产一区二区三区综合在线观看 | 亚洲精品日韩av片在线观看| 黄色欧美视频在线观看| 国产av国产精品国产| 欧美精品一区二区大全| 熟妇人妻不卡中文字幕| a级毛片免费高清观看在线播放| 久久女婷五月综合色啪小说| 狂野欧美白嫩少妇大欣赏| 日韩制服骚丝袜av| 日韩成人伦理影院| 久久国内精品自在自线图片| av播播在线观看一区| 久久久久久久亚洲中文字幕| 最近中文字幕高清免费大全6| 国产女主播在线喷水免费视频网站| 18禁动态无遮挡网站| 麻豆国产97在线/欧美| 亚洲经典国产精华液单| 久久久久性生活片| 亚洲精品色激情综合| 亚洲欧美日韩东京热| 人妻少妇偷人精品九色| 九九久久精品国产亚洲av麻豆| 久久久欧美国产精品| 插阴视频在线观看视频| 亚洲欧美精品专区久久| 男人添女人高潮全过程视频| 久久韩国三级中文字幕| 精品人妻偷拍中文字幕| 97在线人人人人妻| 综合色丁香网| 成人毛片a级毛片在线播放| 久久精品国产亚洲av天美| 中国国产av一级| 日本-黄色视频高清免费观看| 如何舔出高潮| 丰满乱子伦码专区| 美女脱内裤让男人舔精品视频| 妹子高潮喷水视频| 亚洲内射少妇av| av天堂中文字幕网| 热re99久久精品国产66热6| 国产成人精品婷婷| 黄色日韩在线| 妹子高潮喷水视频| 国产精品免费大片| 国产av精品麻豆| 免费看日本二区| 国产精品欧美亚洲77777| 99精国产麻豆久久婷婷| 男人狂女人下面高潮的视频| 一边亲一边摸免费视频| 国产男女超爽视频在线观看| 99热这里只有是精品在线观看| 亚洲自偷自拍三级| 国产白丝娇喘喷水9色精品| 国产视频内射| 久久久国产一区二区| av天堂中文字幕网| 男人狂女人下面高潮的视频| 国产亚洲午夜精品一区二区久久| 精品国产露脸久久av麻豆| 欧美成人精品欧美一级黄| 亚洲精品国产成人久久av| 久久人妻熟女aⅴ| 免费黄网站久久成人精品| 亚洲av电影在线观看一区二区三区| 国产免费福利视频在线观看| 丝瓜视频免费看黄片| 国产精品精品国产色婷婷| 纵有疾风起免费观看全集完整版| 亚洲国产精品国产精品| 嫩草影院新地址| 国产黄色免费在线视频| 精品久久久噜噜| av国产久精品久网站免费入址| 亚洲精品日韩av片在线观看| 少妇的逼水好多|