• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids

    2017-11-21 12:54:46FnShiwngGuoJunhongYuJing
    CHINESE JOURNAL OF AERONAUTICS 2017年1期

    Fn Shiwng,Guo Junhong,*,Yu Jing,b

    aSchool of Science,Inner Mongolia University of Technology,Hohhot 010051,China

    bCollege of General Education,Inner Mongolia Normal University,Hohhot 010022,China

    Anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids

    Fan Shiwanga,Guo Junhonga,*,Yu Jinga,b

    aSchool of Science,Inner Mongolia University of Technology,Hohhot 010051,China

    bCollege of General Education,Inner Mongolia Normal University,Hohhot 010022,China

    Cracks;Conformal mapping;Hole;Piezoelectric material;Stroh-type formulism

    By constructing a new numerical conformal mapping and using the Stroh-type formulism,an anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids is investigated.The explicit expressions of the complex potential function,field intensity factors,energy release rates and mechanical strain energy release rate near the crack tip are obtained under the assumptions that the surfaces of the cracks and hole are electrically permeable and electrically impermeable.Numerical examples are presented to show the influences of the geometrical parameters of defects and applied mechanical/electrical loads on the energy release rate and mechanical strain energy release rate under two electrical boundary conditions.

    1.Introduction

    Due to the excellent coupling effect between mechanical and electrical fields,the piezoelectric devices have been used in aviation and aerospace industry,such as structural health monitoring,precision positioning and vibration control.The actuators and sensor in smart structures,which scale down favorably in terms of power output and efficiency,have yielded the novel compact piezoelectric hydraulic pumps in the aerospace industry.1However,the brittleness of piezoelectric materials inevitably leads to many kinds of defects(e.g.,cracks and holes)during the processing,manufacturing and in-service periods.Therefore,it is of great significance to understand the fracture behavior of the complicated defects in piezoelectric materials,especially for cracks emanating from holes.

    In past decades,many crack problems was considered by researchers.For example,Gao and Yu2addressed the generalized two-dimensional plane problems of a semi-infinite crack in a piezoelectric medium subjected to a line force and a line charge based on the Stroh formalism,and obtained the explicit expressions of the field intensity factors and the Green’s functions.By comparing the electrically impermeable and permeable boundary assumptions,Wang and Mai3pointed out that the electrically impermeable boundary was a reasonable one in engineering applications.Li and Lee4,5analyzed the electroelastic behavior of a piezoelectric ceramic strip containing an anti-plane shear crack.By utilizing the integral transform,Li and his coauthors6–8considered the anti-plane interface cracks in two bonded dissimilar piezoelectric layersunder the electrically permeable and impermeable assumptions.Guo et al.9studied the anti-plane problem of a semiinfinite crack in a piezoelectric strip by using the complex variable function method and the technique of conformal mapping.For the hole problems,Gao and Fan10investigated the two-dimensional problems of an elliptical hole in a piezoelectric material based on the complex potential approach and obtained the explicit solutions in closed form under remotely uniform mechanical and electrical loads.Dai et al.11performed the stress concentration around an elliptic hole in transversely isotropic piezoelectric solids subjected to the uniform mechanical and electrical loads at infinity.The results showed that the electromechanical coupling effect is helpful to reduce the stress concentration.For the cracks emanating from holes,Wang and Gao12analyzed the fracture problem of one and two cracks originating from a circular hole in an infinite piezoelectric solid by using the complex variable method.By constructing a new conformal mapping and using the Stroh-type formulism,Guo et al.13considered the anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material under the electrically impermeable boundary condition.Also,they analyzed the anti-plane fracture behavior of the two non-symmetrical collinear cracks emanating from an elliptical hole14and the multiple cracks emanating from a circular hole15in a piezoelectric solid under differentelectricalboundary conditions.Based on the extended Stroh formalism and the boundary element method,Liang and Sun16successfully identified the hole/crack size,location,and orientation in finite circular piezoelectric plates by using the strain/electrical field data,stress/electrical displacement data,or displacement/electrical charge data under the static loadings.

    The key for using the complex variable method to consider the problems of complicated defects such as cracks emanating from holes is to find a suitable conformal mapping.As mentioned above,the previous literature is limited to the relatively simple hole shapes,such as circular or elliptical holes.Thus,the exact solutions of these defects can be derived by the conformal mapping.However,it is very difficult to find an exact conformal mapping for more complicated defects such as cracks emanating from square or triangle holes due to the intricacy of structure and difficulty of mathematics.Considering this,we can effectively solve the complicated defects by constructing a new numerical conformal mapping.Recently,Wang et al.17studied an anti-plane problem of piezoelectric solids containing a regular triangle hole with smooth vertices which emanates an edge crack by constructing a new numerical conformal mapping.Wang et al.18considered the antiplane problems of two cracks emanating from a rhombus hole and a cracked half circular hole at the edge of a half plane in a piezoelectric solid by deriving an approximate mapping function and using the Laurent series.For the classical elasticity,Yan et al.19and Miao et al.20presented the interaction of two collinear cracks emanating from a square hole in a rectangular plate and an infinite plate by using a hybrid displacement discontinuity method and a generalized Bueckner’s principle.The results show that the geometric parameters of defects have a great influence on the failure of materials.

    Nevertheless,no investigation on four edge cracks emanating from a square hole has been reported up to now in any material including piezoelectric material.In fact,an increase of the number of cracks shows a different and interesting fracture behavior,which can provide an important reference in engineering practice.Therefore,this paper focuses on the anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids by constructing a new numerical conformal mapping,and the explicit solutions of the electroelastic fields are derived finally.

    2.Basic equations

    For the transversely isotropic piezoelectric solids,the poling direction is along the positivex3-direction and the isotropic plane is in thex1ox2-plane.The anti-plane deformation is determined by the out-of-plane displacement and the inplane electrical potential,which are the functions ofx1andx2.The generalized Hooke’s law for a two-dimensional antiplane problem of piezoelectric solids is

    Under the assumption of small deformation,the gradient equation can be expressed as

    The elastic and electrostatic equilibrium equations in the absence of the body force are

    In Eqs.(1)–(3),iis from 1 to 2,the repeated indices denote summation,and a comma in the subscripts denotes a partial differentiation;c44,e15and ε11are the elastic constants,piezoelectric constants and dielectric permittivity,respectively;σ3i,γ3i,u3,Di,Eiand φ are the stress,strain,elastic displacement,electrical displacement,electrical field and electrical potential,respectively.

    Substituting Eqs.(1)and(2)into Eq.(3)leads to the following governing equation for the two-dimensional anti-plane problem of piezoelectric solids:

    where ?2= ?2/?x21+ ?2/?x22istwo-dimensionalLaplace operator,u=[u3,φ]Tis the generalized displacement vector,and the material matrix B0can be expressed as

    By introducing a generalized stress function vector φ,the general solution21to Eqs.(4)and(1)can be written in the Stroh formalism as

    wherez=x1+ix2,f(z)is an analytic function to be determined by the boundary conditions,B=iB0,and A=I is a 2×2 unit matrix.

    It is found that once the analytic function vector f(z)is determined,the stress,strain,displacement,elastic displacement,electrical field and electrical potential for the antiplane problem of piezoelectric solids with defects can be obtained from Eqs.(1),(2)and(6).

    3.Description of problem and conformal mapping

    3.1.Description of problem

    The mechanical/electrical boundary conditions along the surface of the cracks and hole can be expressed as

    whereSis the boundary along the surface of defect,t3andDnrepresent the anti-plane traction and electrical displacement of normaldirection along the surface ofthe boundary,respectively.

    3.2.Conformal mapping

    To solve the above boundary value problem(i.e.,Eqs.(6)and(7))efficiently,we construct a new numerical conformal mapping which transforms the boundary of complicated defect(Fig.1)in thez-plane into a unit circle in the ζ-plane.Firstly,Savin22proposed a conformal mapping:

    which maps the exterior of the square hole inz-plane onto the exterior of a circular hole in ζ-plane.Ris a constant related to the side length of square hole,i.e.,R=0.59136a.It is noted that the square hole is not an exact one,but it is a regular one with smooth vertices,and the radius of curvaturerof its corners isr=0.014a.The deviation becomes smaller if more items are taken in Eq.(8).For the current problem,the former four items have a high accuracy.

    Inspired by the conformal mapping Eq.(8),we propose a new mapping(Fig.2)which maps the exterior region of four cracks emanating from a square hole inz-plane onto the interior region of a unit circle in ζ-plane as follows:

    Fig.1 Four edge cracks emanating from a square hole in piezoelectric solids.

    in which the mapping function μ(ζ)that maps outer region of four cracks emanating from a circular hole inz1-plane onto the interior of a unit circle in ζ-plane was proposed firstly by Guo et al.23,i.e.,

    The real parametersci(i=1,2,3)in Eq.(10)can be determined by

    whereliare the lengths of cracks inz1-plane(Fig.2),which can be determined by the following relationship:

    As shown in Fig.2,Eq.(9)maps the pointsA~Hinzplane onto the corresponding pointsA1~H1inz1-plane,respectively,and then Eq.(10)maps the pointsA1~H1inz1-plane onto the corresponding pointsA′±~H′

    Fig.2 Schematic diagram of conformal mapping.

    ±in ζ-plane,respectively,in which the plus sign underneath indices of the alphabet denotes above or right plane,and the minus sign stands for below or left plane.

    4.Explicit solution to problem

    4.1.Complex potentials

    For the current problem,the complex potential vector can be taken as24

    where c∞stands for a complex constant vector to be determined by the remote loading conditions,c∞zis the complex potential vector related to the external loads without defect,f0(z)is an unknown complex vector which stands for the potential vector disturbed by defect,and f0(∞)=0.Then,we solve the unknown complex potential vector f0(z)under the boundary conditions.

    Differentiating Eq.(6)with respect tox1and defining F(z)=df(z)/dz,one has

    Inserting Eq.(13)into Eq.(14)and then takingz→∞r(nóng)esult in

    Thus,the constant vector c∞can be obtained from Eq.(15)as

    If the electrically impermeable boundary condition is adopted and the surfaces of the crack and hole are free of mechanical loads,Eq.(7)can be written as

    Substituting Eq.(13)into Eq.(17),we have

    Combined with conformal mappingz= ω(ζ),in the ζplane,Eq.(18)can be transformed into

    where f0(ζ)is an analytic function inside the unit circle and ω(ζ)is analytic inside the unit circle except for the point ζ=0.According to the Cauchy integral formula for an arbitrary point within|ζ|< 1,Eq.(21)becomes

    Using the residue theorem in complex variable function,we derive the right integral of Eq.(22)as

    Substituting Eq.(23)into Eq.(22),we have

    Differentiating Eq.(24)with respect to ζ and defining F0(ζ)=df0(ζ)/dζ,we find

    in whichR=0.59136aand ω′(ζ)can be obtained from Eq.(9)as

    Also,μ′(ζ)in Eq.(26)can be determined from Eq.(10),that is,

    For the electrically permeable case,the square hole and the cracks are free of traction on their surfaces and are filled with air of a dielectric permittivity.Therefore,the boundary condition17on the surfaces of hole and cracks can be expressed as

    whereD02is unknown constant to be determined from the condition

    Similar to the treatment of Guo et al.23,theD02can be obtained as

    Therefore,we obtain the complex potential vector f(z)with defect by inserting Eqs.(16)and(24)into Eq.(13).Furthermore,all the electroelastic quantities of the anti-plane problem for four edge cracks emanating from a square hole in piezoelectric solids can be derived.Due to their long and complex expressions,the electroelastic quantities,such as stress and electrical displacement,are no longer given here.Next,we will give the explicit solution of the field intensity factors and the energy release rate at the crack tip.

    4.2.Field intensity factors

    For the electrically impermeable boundary,the vector of field intensity factors is defined as

    From Eq.(27),we have μ′(1)=0 as ζ→ 1.Besides,we note that ω′(1)=0.By using the L’Hospital rule,Eq.(31)becomes

    Inserting Eq.(25)into Eq.(32)and noting Eq.(15),we obtain the expressions of the field intensity factors near the crack tip under the electrically impermeable boundary as follows:

    For the electrically permeable boundary,the field intensity factors can be defined similar to Eq.(36)as

    in whichkpσandkpDare the stress and electrical displacement intensity factors under the electrically permeable boundary at the crack tip,respectively.Repeating the process of Eqs.(13)–(25),we have

    Substituting Eq.(30)into Eq.(39),we can rewrite the expression as

    Eq.(40)shows that the stress intensity factor only relates to the geometrical parameters of defects and the mechanical load,but the electrical displacement intensity factor is also dependent on the material constants.The electrical load has no effect on the electrical displacement intensity factors for the electrically permeable boundary,which is different from those for the electrically impermeable one.The similar conclusion can be found in previous work.12,13

    4.3.Energy release rate and mechanical strain energy release rate

    For the electrically impermeable crack,the energy release rate is equivalent to theJ-integral,i.e.,

    whereksandkEare the strain and electrical field intensity factors at the crack tip,respectively,which have the following relationship with the stress and electrical displacement intensity factors

    Inserting Eqs.(33)and(42)into Eq.(41),and noting Eq.(34),we can obtain the energy release rate at the right crack tip as

    In order to compare the results under different fracture criterions,we also present the mechanical strain energy release rates:

    However,for the electrically permeable case,the energy release rate is equivalent to the mechanical strain energy release rate,i.e.,

    It can be found from Eq.(33)that the stress and electrical displacement intensity factors decouple each other.However,the energy release rate and mechanical strain energy release rate can show the interplay between the mechanical and electrical fields.

    5.Numerical examples

    To discuss the effects of the geometrical parameters of complicated defect considered in this paper and the combined mechanical/electrical loads on the normalized energy release rate and the mechanical strain energy release rate under two electrically boundary conditions,we take PZT-7 as a model material with the following material constantsc44=2.50×1010N/m2,e15=13.50 C/m2,ε11=171×10-10C/Vm andJcr=5.0 N/m,whereJcrstands for the critical energy release rate.25

    Fig.3 Variation of normalized energy release rate J/Jcrwith ratio of crack length to side length of square hole.

    Fig.4 Effect of applied electromechanical loads on normalized energy release rate.

    Fig.4 shows the effects of the applied electromechanical loads on the normalized energy release rates for given geometrical parameters of defect.For the electrically impermeable boundary condition,when the positive electrical load(or no electrical load)is applied on the solid,the energy release rate increases with increasing mechanical load,which indicates that the mechanical loads always promote the crack growth(Fig.4(a)).When the negative electrical load is applied on it,the energy release rate decreases slowly first and then increases quickly with increasing mechanical load.For the electrically permeable boundary condition,however,the energy release rate only depends on the magnitude of mechanical load.In other words,the energy release rate is almost independent of the electrical load,which is also clear in Fig.4(b).Fig.4(b)shows that the energy release rate decreases with the increasing absolute value of negative electrical field,and it increases first and then decreases with the positive electrical field.It indicates that the negative electrical load always retards the crack growth,but the positive electrical load may either promote or retard the crack growth for the electrically impermeable boundary condition,which is greatly dependent on the mechanical load,while the energy release rate is a constant which is independent of the electrical load under the electrically permeable boundary condition.

    Fig.5 shows the effects of the applied electromechanical loads on the normalized mechanical strain energy release rates under two electrical boundary conditions, whereGcr=5.0 N/m denotes the critical mechanical strain energy release rate.When the geometrical parameters of defect and the electrical load are fixed,the mechanical strain energy release rate increases with increasing mechanical load.Moreover,the mechanical strain energy release rate under the electrically impermeable boundary condition is greater than that under the electrically permeable one when σ∞32≤2.5 MPa.However,the mechanical strain energy release rate of the electrically permeable cracks will be wholly larger than that of the electrically impermeable ones when σ∞32≥5.5 MPa.Thus,we can control the crack growth by adjusting the applied mechanical loads.We can observe from Fig.5(b)that the mechanical strain energy release rate increases linearly with increasing electrical load for the electrically impermeable boundary condition.The result shows that the positive electrical load always promotes the crack growth and the negative electrical load retards the crack growth,which is in agreement with the experimental result.26

    Comparing Fig.4(b)with Fig.5(b),we can see that the effect of the electrical load on the crack growth is different for the electrically impermeable boundary condition by using the different fracture criterions.

    Fig.5 Effect of applied electromechanical loads on normalized mechanical strain energy release rate.

    6.Conclusion

    In this paper,by constructing a new numerical conformal mapping and using the Stroh-type formalism,the explicit expressions of the complex potential function,the field intensity factorsandenergyreleaseratesandthemechanicalstrainenergy release rate at the crack tip are derived for the anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids.Numerical examples are provided to show the effects of the geometrical parameters of complicated defect and applied mechanical/electrical loads on the energy release rate and mechanical strain energy release rate under the electricallypermeableandimpermeableboundaryconditions.Insummary,some useful conclusions are drawn as follows:

    (1)The increases of the length of horizontal cracks(left and right cracks)and size of the square hole always promote thecrack growth undertwo electricalboundary conditions.

    (2)The appearance of vertical cracks greatly affects the stress concentration of the horizontal cracks.The increase of the length of vertical cracks can promote or retard the horizontal crack propagation,which is strongly dependent on the lengths of the two horizontal cracks.

    (3)The mechanical load always promotes the crack growth.The electrical load has no effect on the crack growth under the electrically permeable boundary condition,while the effect of the electrical load on the crack growth depends on the fracture criterion under the electrically impermeable boundary condition.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(Nos.11262012,11502123,11462020 and 11262017)and the Inner Mongolia Natural Science Foundation(Nos.2015JQ01 and 2015MS0129)of China.

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j.cja.2016.08.018.

    1.Valdovinos J.Pediatric mechanical circulatory support applications for frequency-leveraged piezoelectric hydraulic pumps[dissertation].Los Angeles(LA):University of California;2014.

    2.Gao CF,Yu JH.Two-dimensional analysis of a semi-infinite crack in piezoelectric media.Mech Res Commun1998;25(6):695–700.

    3.Wang BL,Mai YW.Impermeable crack and permeable crack assumptions,which one is more realistic?J Appl Mech2004;71(4):575–8.

    4.Li XF.Electroelastic analysis of an anti-plane shear crack in a piezoelectric ceramic strip.Int J Solids Struct2002;39(5):1097–117.

    5.Li XF,Lee KY.Electroelastic behavior of a rectangular piezoelectric ceramic with an antiplane shear crack at arbitrary position.Eur J Mech A/Solids2004;23(4):645–58.

    6.Li XF,Tang GJ.Antiplane interface crack between two bonded dissimilar piezoelectric layers.Eur J Mech A/Solids2003;22(2):231–42.

    7.Li XF,Tang GJ.Electroelastic analysis of an interface antiplane shear crack in a layered piezoelectric plate.Int J Eng Sci2003;41(12):1405–22.

    8.Li XF,Wang BL.Anti-plane shear crack normal to and terminating at the interface of two bonded piezoelectric ceramics.Int J Solids Struct2007;44(11–12):3796–810.

    9.Guo JH,Liu P,Lu ZX,Qin TY.Anti-plane analysis of a semiinfinite crack in a piezoelectric strip.Appl Math Mech2011;32(1):75–82.

    10.Gao CF,Fan WX.Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack.Int J Solids Struct1999;36(17):2527–40.

    11.Dai LC,Guo WL,Wang X.Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids.Int J Solids Struct2006;43(6):1818–31.

    12.Wang YJ,Gao CF.The mode-III cracks originating from the edge of a circular hole in a piezoelectric solid.Int J Solids Struct2008;45(16):4590–9.

    13.Guo JH,Lu ZX,Han HT,Yang ZY.Exact solutions for antiplane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material.Int J Solids Struct2009;46(21):3799–809.

    14.Guo JH,Lu ZX,Han HT,Yang ZY.The behavior of two nonsymmetrical permeable cracks emanating from an elliptical hole in a piezoelectric solid.Eur J Mech A–Solid2010;29(4):654–63.

    15.Guo JH,Lu ZX,Feng X.The fracture behavior of multiple cracks emanating from a circular hole in piezoelectric materials.Acta Mech2010;215(1–4):119–34.

    16.Liang YC,Sun YP.Hole/crack identification in circular piezoelectric plates.Proc Eng2014;79:194–203.

    17.Wang WH,Guo JH,Xing YM.Anti-plane analysis of an edge crack emanating from a regular triangle hole with smooth vertices in piezoelectric materials.Acta Mater Compos Sin2015;32(2):601–7[in Chinese].

    18.Wang YJ,Gao CF,Song HP.The anti-plane solution for the edge cracks originating from an arbitrary hole in a piezoelectric material.Mech Res Commun2015;65:17–23.

    19.Yan X,Liu B,Yu J.Cracks emanating from a square hole in rectangular plate in tension.Fatigue Fract Eng Mater Struct2012;35(3):238–46.

    20.Miao CQ,Wei YT,Yan XQ.Two collinear square-hole cracks in an infinite plate in tension.Theor Appl Fract Mech2015;75:32–8.

    21.Zhang TY,Gao CF.Fracture behaviors of piezoelectric materials.Theor Appl Fract Mech2004;41(1–3):339–79.

    22.Savin GN.Stress distribution around holes.Naukova Dumka Press;1968.

    23.Guo JH,Lu ZX,Lv J.Field intensity factors of a mode-III nonsymmetrical cracks originating from circular hole in piezoelectric composite material.Acta Mater Compos Sin2014;31(1):241–7[Chinese].

    24.Sosa H.Plane problems in piezoelectric media with defects.Int J Solids Struct1991;28(4):491–505.

    25.Pak YE.Crack extension force in a piezoelectric material.J Appl Mech-T ASME1990;57(3):647–53.

    26.Park SB,Sun CT.Fracture criteria for piezoelectric ceramics.J Am Ceram Soc1995;78(6):1475–80.

    15 January 2016;revised 9 March 2016;accepted 3 May 2016

    Available online 15 October 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 471 6576143.

    E-mail addresses:fsxwang@163.com(S.Fan),jhguo@imut.edu.cn,guojunhong114015@163.com(J.Guo),yujing3622@163.com(J.Yu).Peer review under responsibility of Editorial Committee of CJA.

    村上凉子中文字幕在线| 亚洲精品美女久久久久99蜜臀| 亚洲中文av在线| 精品免费久久久久久久清纯| 欧美成人性av电影在线观看| 在线观看午夜福利视频| 亚洲欧美日韩高清专用| 欧美乱妇无乱码| 在线观看日韩欧美| 日本黄色片子视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人精品一区久久| 在线国产一区二区在线| 亚洲精品一卡2卡三卡4卡5卡| 三级国产精品欧美在线观看 | 亚洲狠狠婷婷综合久久图片| 国产黄色小视频在线观看| 亚洲精品久久国产高清桃花| 亚洲色图 男人天堂 中文字幕| aaaaa片日本免费| 亚洲国产中文字幕在线视频| 久久午夜综合久久蜜桃| 成人一区二区视频在线观看| 国产亚洲精品综合一区在线观看| 窝窝影院91人妻| 91九色精品人成在线观看| 变态另类成人亚洲欧美熟女| 久久精品人妻少妇| 在线观看一区二区三区| 九色成人免费人妻av| 欧美zozozo另类| 丝袜人妻中文字幕| 亚洲人成伊人成综合网2020| 日本在线视频免费播放| 淫妇啪啪啪对白视频| 亚洲国产日韩欧美精品在线观看 | 1000部很黄的大片| 国产精品久久久av美女十八| 精品乱码久久久久久99久播| 俄罗斯特黄特色一大片| www.www免费av| 99久久精品国产亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 少妇的逼水好多| h日本视频在线播放| av在线蜜桃| 国产又色又爽无遮挡免费看| 国产午夜精品久久久久久| 欧美激情在线99| 欧美精品啪啪一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚洲专区中文字幕在线| 久久精品国产亚洲av香蕉五月| 久久精品综合一区二区三区| 久久天躁狠狠躁夜夜2o2o| 很黄的视频免费| 黑人欧美特级aaaaaa片| 91九色精品人成在线观看| 亚洲国产高清在线一区二区三| 男人舔奶头视频| 国产精品香港三级国产av潘金莲| 1024香蕉在线观看| 淫秽高清视频在线观看| 欧美成人一区二区免费高清观看 | 999久久久国产精品视频| 午夜a级毛片| 午夜福利免费观看在线| 这个男人来自地球电影免费观看| 欧美中文日本在线观看视频| 啦啦啦观看免费观看视频高清| 99国产精品一区二区三区| 悠悠久久av| 精品国产三级普通话版| 欧美性猛交黑人性爽| 亚洲精品久久国产高清桃花| 女人被狂操c到高潮| 99精品在免费线老司机午夜| 欧美日韩精品网址| 婷婷精品国产亚洲av在线| 黄色女人牲交| 免费看美女性在线毛片视频| 真人一进一出gif抽搐免费| 99久久综合精品五月天人人| 欧美最黄视频在线播放免费| 老熟妇乱子伦视频在线观看| 国产av在哪里看| 美女高潮喷水抽搐中文字幕| 亚洲av第一区精品v没综合| av女优亚洲男人天堂 | 男人舔女人下体高潮全视频| 九九热线精品视视频播放| 久久久久国内视频| 少妇的丰满在线观看| 中文字幕久久专区| 精品福利观看| 婷婷精品国产亚洲av在线| 88av欧美| 午夜福利在线观看吧| 首页视频小说图片口味搜索| 欧美一级a爱片免费观看看| 网址你懂的国产日韩在线| 男女午夜视频在线观看| 男女床上黄色一级片免费看| 色播亚洲综合网| 久久久久性生活片| 99热这里只有是精品50| 亚洲色图av天堂| 精品人妻1区二区| 亚洲av免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 在线免费观看不下载黄p国产 | www.自偷自拍.com| 色吧在线观看| 一个人观看的视频www高清免费观看 | 久久亚洲真实| 最新在线观看一区二区三区| 高潮久久久久久久久久久不卡| 国产精品一区二区精品视频观看| av中文乱码字幕在线| АⅤ资源中文在线天堂| 成人无遮挡网站| 中出人妻视频一区二区| 亚洲国产日韩欧美精品在线观看 | 一区福利在线观看| 日本免费a在线| 亚洲人成伊人成综合网2020| 欧美最黄视频在线播放免费| 午夜两性在线视频| 精品国产三级普通话版| 制服丝袜大香蕉在线| 一进一出抽搐动态| 高清在线国产一区| 网址你懂的国产日韩在线| 婷婷精品国产亚洲av在线| 国产一区二区激情短视频| 久久亚洲真实| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产日韩欧美精品在线观看 | 男人舔女人的私密视频| 99精品欧美一区二区三区四区| 91久久精品国产一区二区成人 | 一级作爱视频免费观看| 在线播放国产精品三级| 少妇熟女aⅴ在线视频| 国产av在哪里看| 淫秽高清视频在线观看| 久9热在线精品视频| 丰满人妻熟妇乱又伦精品不卡| 757午夜福利合集在线观看| 亚洲美女黄片视频| 久久久久久久午夜电影| 亚洲色图 男人天堂 中文字幕| 高清在线国产一区| 又黄又爽又免费观看的视频| 久久久国产欧美日韩av| 国产av不卡久久| 国产精华一区二区三区| www.熟女人妻精品国产| 亚洲欧美日韩东京热| 国产爱豆传媒在线观看| 国产欧美日韩精品亚洲av| 午夜亚洲福利在线播放| 国产美女午夜福利| 国内精品久久久久精免费| 国内精品美女久久久久久| 他把我摸到了高潮在线观看| 免费搜索国产男女视频| 国产v大片淫在线免费观看| 欧美高清成人免费视频www| 12—13女人毛片做爰片一| 亚洲av免费在线观看| 一本久久中文字幕| 久久久久精品国产欧美久久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品sss在线观看| 国产精品女同一区二区软件 | 成年版毛片免费区| 国产一区二区在线观看日韩 | 色综合站精品国产| 麻豆成人午夜福利视频| 午夜精品一区二区三区免费看| 国产午夜福利久久久久久| 宅男免费午夜| 成年人黄色毛片网站| 国产在线精品亚洲第一网站| 亚洲人成网站在线播放欧美日韩| 九九久久精品国产亚洲av麻豆 | 国产在线精品亚洲第一网站| 小说图片视频综合网站| 国产伦精品一区二区三区视频9 | 免费大片18禁| 99久久精品国产亚洲精品| 亚洲av片天天在线观看| 国产乱人视频| 欧美性猛交黑人性爽| 三级毛片av免费| 看黄色毛片网站| 午夜福利在线在线| 最近视频中文字幕2019在线8| 精品一区二区三区四区五区乱码| 真人做人爱边吃奶动态| 成人国产一区最新在线观看| 床上黄色一级片| 18禁黄网站禁片午夜丰满| 日日摸夜夜添夜夜添小说| 日韩欧美 国产精品| 女生性感内裤真人,穿戴方法视频| 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 日韩欧美 国产精品| 久久久久久久午夜电影| 无人区码免费观看不卡| 一级毛片高清免费大全| 国内少妇人妻偷人精品xxx网站 | 免费一级毛片在线播放高清视频| 1000部很黄的大片| 国产欧美日韩精品亚洲av| 成人性生交大片免费视频hd| 亚洲在线观看片| 老汉色∧v一级毛片| 日本精品一区二区三区蜜桃| 成年人黄色毛片网站| 久久久精品大字幕| 国产一级毛片七仙女欲春2| 欧美黑人欧美精品刺激| 精品欧美国产一区二区三| 午夜精品一区二区三区免费看| 我的老师免费观看完整版| 免费高清视频大片| 99在线视频只有这里精品首页| 国产 一区 欧美 日韩| 久久精品91蜜桃| 五月玫瑰六月丁香| 1024手机看黄色片| 国产精品野战在线观看| 午夜福利高清视频| 90打野战视频偷拍视频| 日本黄色片子视频| 成人高潮视频无遮挡免费网站| 男人舔女人下体高潮全视频| 亚洲精华国产精华精| 伦理电影免费视频| 成年女人看的毛片在线观看| 亚洲精品美女久久av网站| 国产麻豆成人av免费视频| 9191精品国产免费久久| 人人妻人人澡欧美一区二区| 国内毛片毛片毛片毛片毛片| 99久国产av精品| 国产精品一区二区精品视频观看| 18禁国产床啪视频网站| 禁无遮挡网站| 欧美最黄视频在线播放免费| 午夜视频精品福利| 中文字幕熟女人妻在线| 中出人妻视频一区二区| 变态另类成人亚洲欧美熟女| 美女高潮喷水抽搐中文字幕| 成人性生交大片免费视频hd| 午夜日韩欧美国产| 午夜福利18| 一个人观看的视频www高清免费观看 | xxx96com| 人妻夜夜爽99麻豆av| 亚洲无线在线观看| 国产单亲对白刺激| 婷婷精品国产亚洲av| 18禁国产床啪视频网站| 成人性生交大片免费视频hd| 亚洲午夜理论影院| 99re在线观看精品视频| 毛片女人毛片| 国产成人精品久久二区二区免费| 日韩欧美精品v在线| 中国美女看黄片| 精品国内亚洲2022精品成人| 婷婷精品国产亚洲av在线| 亚洲aⅴ乱码一区二区在线播放| 午夜久久久久精精品| 日韩免费av在线播放| 99国产综合亚洲精品| 成熟少妇高潮喷水视频| 亚洲欧美精品综合一区二区三区| 亚洲熟妇中文字幕五十中出| 久久久久性生活片| 亚洲色图av天堂| 亚洲精品美女久久久久99蜜臀| 亚洲人成电影免费在线| 欧美日韩国产亚洲二区| 不卡一级毛片| 99riav亚洲国产免费| 99热精品在线国产| 亚洲自拍偷在线| 亚洲五月天丁香| 亚洲在线自拍视频| 男人舔女人的私密视频| 国产高清有码在线观看视频| 久久久精品大字幕| 日本五十路高清| 色播亚洲综合网| 看免费av毛片| 久久人人精品亚洲av| 欧美在线一区亚洲| 久久国产精品人妻蜜桃| 国产三级中文精品| 免费搜索国产男女视频| 看免费av毛片| 色在线成人网| 国产亚洲av嫩草精品影院| 中文字幕久久专区| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜人妻中文字幕| 人人妻人人看人人澡| 最新中文字幕久久久久 | 91在线观看av| 久久这里只有精品中国| 久9热在线精品视频| 两性午夜刺激爽爽歪歪视频在线观看| 精品乱码久久久久久99久播| 久久这里只有精品19| 网址你懂的国产日韩在线| 日韩三级视频一区二区三区| 亚洲精品456在线播放app | 国产精品精品国产色婷婷| 国产精品永久免费网站| 国产乱人视频| 一个人观看的视频www高清免费观看 | 欧美日本视频| 久久精品aⅴ一区二区三区四区| 精品一区二区三区视频在线 | 18禁观看日本| 老鸭窝网址在线观看| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| 桃红色精品国产亚洲av| 欧美日本视频| 国产私拍福利视频在线观看| 美女 人体艺术 gogo| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 成人三级做爰电影| 每晚都被弄得嗷嗷叫到高潮| 一夜夜www| 中文字幕久久专区| 亚洲国产看品久久| 欧美色视频一区免费| 两性午夜刺激爽爽歪歪视频在线观看| 美女高潮喷水抽搐中文字幕| 国产成人欧美在线观看| 欧美三级亚洲精品| 香蕉丝袜av| 99热精品在线国产| av欧美777| 黄色片一级片一级黄色片| 国产精品98久久久久久宅男小说| 欧美日韩中文字幕国产精品一区二区三区| 国产久久久一区二区三区| 男人舔奶头视频| 欧美成人一区二区免费高清观看 | 听说在线观看完整版免费高清| 久久午夜综合久久蜜桃| 午夜福利18| 亚洲欧美日韩高清专用| 757午夜福利合集在线观看| 国产黄a三级三级三级人| 亚洲国产精品久久男人天堂| 神马国产精品三级电影在线观看| 嫩草影院入口| 91九色精品人成在线观看| 精品乱码久久久久久99久播| 女人被狂操c到高潮| 老汉色∧v一级毛片| 99久久无色码亚洲精品果冻| 看片在线看免费视频| 国产欧美日韩一区二区三| 国产97色在线日韩免费| 亚洲 欧美 日韩 在线 免费| 免费大片18禁| 亚洲 欧美一区二区三区| 男女做爰动态图高潮gif福利片| 99热6这里只有精品| 在线观看免费视频日本深夜| 香蕉丝袜av| 可以在线观看毛片的网站| 黄色女人牲交| 性欧美人与动物交配| 999精品在线视频| 99久久无色码亚洲精品果冻| 国产精品亚洲美女久久久| 亚洲精品美女久久久久99蜜臀| 国产精品久久电影中文字幕| 午夜福利在线在线| 给我免费播放毛片高清在线观看| www日本在线高清视频| 女生性感内裤真人,穿戴方法视频| 国产av一区在线观看免费| 村上凉子中文字幕在线| 无人区码免费观看不卡| 夜夜看夜夜爽夜夜摸| 成人午夜高清在线视频| 中文资源天堂在线| 黄片小视频在线播放| 欧美极品一区二区三区四区| 欧美又色又爽又黄视频| 午夜福利视频1000在线观看| 国产毛片a区久久久久| 久久中文字幕一级| 成人一区二区视频在线观看| 亚洲激情在线av| 精品久久蜜臀av无| 日韩精品青青久久久久久| 一本一本综合久久| 亚洲欧美精品综合一区二区三区| 制服丝袜大香蕉在线| 日日摸夜夜添夜夜添小说| 国产精品,欧美在线| 欧美极品一区二区三区四区| 亚洲精品一区av在线观看| 久9热在线精品视频| 麻豆成人av在线观看| 亚洲av熟女| 韩国av一区二区三区四区| 波多野结衣高清作品| www.熟女人妻精品国产| 欧美av亚洲av综合av国产av| 熟女人妻精品中文字幕| 变态另类成人亚洲欧美熟女| 18禁美女被吸乳视频| 国产成人精品久久二区二区免费| 99精品欧美一区二区三区四区| 久久伊人香网站| 国产精品久久久av美女十八| 两人在一起打扑克的视频| av在线蜜桃| 嫁个100分男人电影在线观看| 国内精品一区二区在线观看| 在线观看美女被高潮喷水网站 | 亚洲中文av在线| 淫妇啪啪啪对白视频| 在线国产一区二区在线| 999久久久国产精品视频| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av| 黄色视频,在线免费观看| 可以在线观看毛片的网站| 深夜精品福利| 日韩欧美国产在线观看| 男女下面进入的视频免费午夜| 成年免费大片在线观看| 男人舔女人的私密视频| 亚洲欧美日韩高清专用| 99视频精品全部免费 在线 | 欧美日韩精品网址| 日本a在线网址| 国产亚洲精品一区二区www| 国产三级黄色录像| 久久国产精品人妻蜜桃| 黄色女人牲交| 美女扒开内裤让男人捅视频| 久久久国产欧美日韩av| 国产成人一区二区三区免费视频网站| 精品国产超薄肉色丝袜足j| 久久亚洲真实| 日本熟妇午夜| 天天添夜夜摸| 美女被艹到高潮喷水动态| 深夜精品福利| 久久国产精品人妻蜜桃| 99久久精品热视频| 99热这里只有精品一区 | 国模一区二区三区四区视频 | 18美女黄网站色大片免费观看| 一个人看视频在线观看www免费 | 高清毛片免费观看视频网站| 白带黄色成豆腐渣| 日本a在线网址| 亚洲一区二区三区不卡视频| 精品久久久久久久毛片微露脸| 99国产精品99久久久久| 一二三四社区在线视频社区8| av黄色大香蕉| 国产高清激情床上av| 亚洲男人的天堂狠狠| 丁香欧美五月| 成年免费大片在线观看| 男女午夜视频在线观看| aaaaa片日本免费| 日韩精品青青久久久久久| 熟女人妻精品中文字幕| 国产高潮美女av| 真人一进一出gif抽搐免费| 午夜两性在线视频| 中国美女看黄片| 小说图片视频综合网站| 色精品久久人妻99蜜桃| 亚洲午夜精品一区,二区,三区| 两个人视频免费观看高清| 在线十欧美十亚洲十日本专区| 免费观看人在逋| 一本综合久久免费| 日韩欧美免费精品| 一本综合久久免费| 观看美女的网站| 国产午夜精品论理片| 久久中文字幕一级| 亚洲午夜理论影院| 精品久久久久久久毛片微露脸| 亚洲av片天天在线观看| or卡值多少钱| 国产伦在线观看视频一区| 精品国产乱码久久久久久男人| 国产午夜精品论理片| 欧美日韩乱码在线| 少妇熟女aⅴ在线视频| 岛国在线免费视频观看| 亚洲午夜精品一区,二区,三区| 99国产精品一区二区蜜桃av| 亚洲国产精品合色在线| 日日干狠狠操夜夜爽| 激情在线观看视频在线高清| 老鸭窝网址在线观看| 亚洲色图av天堂| 亚洲国产欧美一区二区综合| 三级男女做爰猛烈吃奶摸视频| 色精品久久人妻99蜜桃| 在线观看66精品国产| 一边摸一边抽搐一进一小说| 久久香蕉精品热| 久久久色成人| 老熟妇仑乱视频hdxx| 中文字幕精品亚洲无线码一区| 国产av在哪里看| 欧美中文日本在线观看视频| 亚洲国产精品sss在线观看| 精品久久蜜臀av无| 男人舔女人下体高潮全视频| 黄色丝袜av网址大全| 99久久精品热视频| 99久久成人亚洲精品观看| 国产私拍福利视频在线观看| 国内精品久久久久精免费| 久久香蕉国产精品| 欧美高清成人免费视频www| 免费大片18禁| 手机成人av网站| 亚洲国产欧美一区二区综合| 亚洲专区国产一区二区| 黄片大片在线免费观看| 1000部很黄的大片| 免费在线观看成人毛片| 巨乳人妻的诱惑在线观看| 国产精品永久免费网站| 亚洲,欧美精品.| 欧美最黄视频在线播放免费| 噜噜噜噜噜久久久久久91| 亚洲专区字幕在线| 一个人观看的视频www高清免费观看 | 熟女电影av网| av女优亚洲男人天堂 | 成人鲁丝片一二三区免费| 日韩成人在线观看一区二区三区| 精品久久久久久成人av| 深夜精品福利| 一级毛片精品| 免费看美女性在线毛片视频| 亚洲国产精品合色在线| 18禁裸乳无遮挡免费网站照片| 老汉色∧v一级毛片| 中文字幕精品亚洲无线码一区| 搡老岳熟女国产| 国产精品 欧美亚洲| 亚洲美女视频黄频| 亚洲在线观看片| 最近视频中文字幕2019在线8| 日韩精品中文字幕看吧| 欧美成人一区二区免费高清观看 | 狂野欧美白嫩少妇大欣赏| 午夜福利18| 高清在线国产一区| 19禁男女啪啪无遮挡网站| 久久精品亚洲精品国产色婷小说| 亚洲国产欧美一区二区综合| 不卡一级毛片| 日本撒尿小便嘘嘘汇集6| 一区福利在线观看| 高潮久久久久久久久久久不卡| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 这个男人来自地球电影免费观看| 国产高清视频在线播放一区| 精品久久蜜臀av无| 国产精品,欧美在线| 真人做人爱边吃奶动态| 一个人免费在线观看电影 | 国模一区二区三区四区视频 | 国产成人av教育| 亚洲乱码一区二区免费版| 午夜成年电影在线免费观看| 美女高潮喷水抽搐中文字幕| 久久精品国产综合久久久| 亚洲国产精品成人综合色| 欧美日韩黄片免| 国产真实乱freesex| 日韩成人在线观看一区二区三区| 一本精品99久久精品77| 久久久久久大精品| 又黄又爽又免费观看的视频| 毛片女人毛片| 精品久久久久久,| 国产 一区 欧美 日韩| 久久久精品欧美日韩精品| 亚洲av五月六月丁香网| 亚洲精华国产精华精| 男人舔女人的私密视频| 精品久久蜜臀av无|