• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids

    2017-11-21 12:54:46FnShiwngGuoJunhongYuJing
    CHINESE JOURNAL OF AERONAUTICS 2017年1期

    Fn Shiwng,Guo Junhong,*,Yu Jing,b

    aSchool of Science,Inner Mongolia University of Technology,Hohhot 010051,China

    bCollege of General Education,Inner Mongolia Normal University,Hohhot 010022,China

    Anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids

    Fan Shiwanga,Guo Junhonga,*,Yu Jinga,b

    aSchool of Science,Inner Mongolia University of Technology,Hohhot 010051,China

    bCollege of General Education,Inner Mongolia Normal University,Hohhot 010022,China

    Cracks;Conformal mapping;Hole;Piezoelectric material;Stroh-type formulism

    By constructing a new numerical conformal mapping and using the Stroh-type formulism,an anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids is investigated.The explicit expressions of the complex potential function,field intensity factors,energy release rates and mechanical strain energy release rate near the crack tip are obtained under the assumptions that the surfaces of the cracks and hole are electrically permeable and electrically impermeable.Numerical examples are presented to show the influences of the geometrical parameters of defects and applied mechanical/electrical loads on the energy release rate and mechanical strain energy release rate under two electrical boundary conditions.

    1.Introduction

    Due to the excellent coupling effect between mechanical and electrical fields,the piezoelectric devices have been used in aviation and aerospace industry,such as structural health monitoring,precision positioning and vibration control.The actuators and sensor in smart structures,which scale down favorably in terms of power output and efficiency,have yielded the novel compact piezoelectric hydraulic pumps in the aerospace industry.1However,the brittleness of piezoelectric materials inevitably leads to many kinds of defects(e.g.,cracks and holes)during the processing,manufacturing and in-service periods.Therefore,it is of great significance to understand the fracture behavior of the complicated defects in piezoelectric materials,especially for cracks emanating from holes.

    In past decades,many crack problems was considered by researchers.For example,Gao and Yu2addressed the generalized two-dimensional plane problems of a semi-infinite crack in a piezoelectric medium subjected to a line force and a line charge based on the Stroh formalism,and obtained the explicit expressions of the field intensity factors and the Green’s functions.By comparing the electrically impermeable and permeable boundary assumptions,Wang and Mai3pointed out that the electrically impermeable boundary was a reasonable one in engineering applications.Li and Lee4,5analyzed the electroelastic behavior of a piezoelectric ceramic strip containing an anti-plane shear crack.By utilizing the integral transform,Li and his coauthors6–8considered the anti-plane interface cracks in two bonded dissimilar piezoelectric layersunder the electrically permeable and impermeable assumptions.Guo et al.9studied the anti-plane problem of a semiinfinite crack in a piezoelectric strip by using the complex variable function method and the technique of conformal mapping.For the hole problems,Gao and Fan10investigated the two-dimensional problems of an elliptical hole in a piezoelectric material based on the complex potential approach and obtained the explicit solutions in closed form under remotely uniform mechanical and electrical loads.Dai et al.11performed the stress concentration around an elliptic hole in transversely isotropic piezoelectric solids subjected to the uniform mechanical and electrical loads at infinity.The results showed that the electromechanical coupling effect is helpful to reduce the stress concentration.For the cracks emanating from holes,Wang and Gao12analyzed the fracture problem of one and two cracks originating from a circular hole in an infinite piezoelectric solid by using the complex variable method.By constructing a new conformal mapping and using the Stroh-type formulism,Guo et al.13considered the anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material under the electrically impermeable boundary condition.Also,they analyzed the anti-plane fracture behavior of the two non-symmetrical collinear cracks emanating from an elliptical hole14and the multiple cracks emanating from a circular hole15in a piezoelectric solid under differentelectricalboundary conditions.Based on the extended Stroh formalism and the boundary element method,Liang and Sun16successfully identified the hole/crack size,location,and orientation in finite circular piezoelectric plates by using the strain/electrical field data,stress/electrical displacement data,or displacement/electrical charge data under the static loadings.

    The key for using the complex variable method to consider the problems of complicated defects such as cracks emanating from holes is to find a suitable conformal mapping.As mentioned above,the previous literature is limited to the relatively simple hole shapes,such as circular or elliptical holes.Thus,the exact solutions of these defects can be derived by the conformal mapping.However,it is very difficult to find an exact conformal mapping for more complicated defects such as cracks emanating from square or triangle holes due to the intricacy of structure and difficulty of mathematics.Considering this,we can effectively solve the complicated defects by constructing a new numerical conformal mapping.Recently,Wang et al.17studied an anti-plane problem of piezoelectric solids containing a regular triangle hole with smooth vertices which emanates an edge crack by constructing a new numerical conformal mapping.Wang et al.18considered the antiplane problems of two cracks emanating from a rhombus hole and a cracked half circular hole at the edge of a half plane in a piezoelectric solid by deriving an approximate mapping function and using the Laurent series.For the classical elasticity,Yan et al.19and Miao et al.20presented the interaction of two collinear cracks emanating from a square hole in a rectangular plate and an infinite plate by using a hybrid displacement discontinuity method and a generalized Bueckner’s principle.The results show that the geometric parameters of defects have a great influence on the failure of materials.

    Nevertheless,no investigation on four edge cracks emanating from a square hole has been reported up to now in any material including piezoelectric material.In fact,an increase of the number of cracks shows a different and interesting fracture behavior,which can provide an important reference in engineering practice.Therefore,this paper focuses on the anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids by constructing a new numerical conformal mapping,and the explicit solutions of the electroelastic fields are derived finally.

    2.Basic equations

    For the transversely isotropic piezoelectric solids,the poling direction is along the positivex3-direction and the isotropic plane is in thex1ox2-plane.The anti-plane deformation is determined by the out-of-plane displacement and the inplane electrical potential,which are the functions ofx1andx2.The generalized Hooke’s law for a two-dimensional antiplane problem of piezoelectric solids is

    Under the assumption of small deformation,the gradient equation can be expressed as

    The elastic and electrostatic equilibrium equations in the absence of the body force are

    In Eqs.(1)–(3),iis from 1 to 2,the repeated indices denote summation,and a comma in the subscripts denotes a partial differentiation;c44,e15and ε11are the elastic constants,piezoelectric constants and dielectric permittivity,respectively;σ3i,γ3i,u3,Di,Eiand φ are the stress,strain,elastic displacement,electrical displacement,electrical field and electrical potential,respectively.

    Substituting Eqs.(1)and(2)into Eq.(3)leads to the following governing equation for the two-dimensional anti-plane problem of piezoelectric solids:

    where ?2= ?2/?x21+ ?2/?x22istwo-dimensionalLaplace operator,u=[u3,φ]Tis the generalized displacement vector,and the material matrix B0can be expressed as

    By introducing a generalized stress function vector φ,the general solution21to Eqs.(4)and(1)can be written in the Stroh formalism as

    wherez=x1+ix2,f(z)is an analytic function to be determined by the boundary conditions,B=iB0,and A=I is a 2×2 unit matrix.

    It is found that once the analytic function vector f(z)is determined,the stress,strain,displacement,elastic displacement,electrical field and electrical potential for the antiplane problem of piezoelectric solids with defects can be obtained from Eqs.(1),(2)and(6).

    3.Description of problem and conformal mapping

    3.1.Description of problem

    The mechanical/electrical boundary conditions along the surface of the cracks and hole can be expressed as

    whereSis the boundary along the surface of defect,t3andDnrepresent the anti-plane traction and electrical displacement of normaldirection along the surface ofthe boundary,respectively.

    3.2.Conformal mapping

    To solve the above boundary value problem(i.e.,Eqs.(6)and(7))efficiently,we construct a new numerical conformal mapping which transforms the boundary of complicated defect(Fig.1)in thez-plane into a unit circle in the ζ-plane.Firstly,Savin22proposed a conformal mapping:

    which maps the exterior of the square hole inz-plane onto the exterior of a circular hole in ζ-plane.Ris a constant related to the side length of square hole,i.e.,R=0.59136a.It is noted that the square hole is not an exact one,but it is a regular one with smooth vertices,and the radius of curvaturerof its corners isr=0.014a.The deviation becomes smaller if more items are taken in Eq.(8).For the current problem,the former four items have a high accuracy.

    Inspired by the conformal mapping Eq.(8),we propose a new mapping(Fig.2)which maps the exterior region of four cracks emanating from a square hole inz-plane onto the interior region of a unit circle in ζ-plane as follows:

    Fig.1 Four edge cracks emanating from a square hole in piezoelectric solids.

    in which the mapping function μ(ζ)that maps outer region of four cracks emanating from a circular hole inz1-plane onto the interior of a unit circle in ζ-plane was proposed firstly by Guo et al.23,i.e.,

    The real parametersci(i=1,2,3)in Eq.(10)can be determined by

    whereliare the lengths of cracks inz1-plane(Fig.2),which can be determined by the following relationship:

    As shown in Fig.2,Eq.(9)maps the pointsA~Hinzplane onto the corresponding pointsA1~H1inz1-plane,respectively,and then Eq.(10)maps the pointsA1~H1inz1-plane onto the corresponding pointsA′±~H′

    Fig.2 Schematic diagram of conformal mapping.

    ±in ζ-plane,respectively,in which the plus sign underneath indices of the alphabet denotes above or right plane,and the minus sign stands for below or left plane.

    4.Explicit solution to problem

    4.1.Complex potentials

    For the current problem,the complex potential vector can be taken as24

    where c∞stands for a complex constant vector to be determined by the remote loading conditions,c∞zis the complex potential vector related to the external loads without defect,f0(z)is an unknown complex vector which stands for the potential vector disturbed by defect,and f0(∞)=0.Then,we solve the unknown complex potential vector f0(z)under the boundary conditions.

    Differentiating Eq.(6)with respect tox1and defining F(z)=df(z)/dz,one has

    Inserting Eq.(13)into Eq.(14)and then takingz→∞r(nóng)esult in

    Thus,the constant vector c∞can be obtained from Eq.(15)as

    If the electrically impermeable boundary condition is adopted and the surfaces of the crack and hole are free of mechanical loads,Eq.(7)can be written as

    Substituting Eq.(13)into Eq.(17),we have

    Combined with conformal mappingz= ω(ζ),in the ζplane,Eq.(18)can be transformed into

    where f0(ζ)is an analytic function inside the unit circle and ω(ζ)is analytic inside the unit circle except for the point ζ=0.According to the Cauchy integral formula for an arbitrary point within|ζ|< 1,Eq.(21)becomes

    Using the residue theorem in complex variable function,we derive the right integral of Eq.(22)as

    Substituting Eq.(23)into Eq.(22),we have

    Differentiating Eq.(24)with respect to ζ and defining F0(ζ)=df0(ζ)/dζ,we find

    in whichR=0.59136aand ω′(ζ)can be obtained from Eq.(9)as

    Also,μ′(ζ)in Eq.(26)can be determined from Eq.(10),that is,

    For the electrically permeable case,the square hole and the cracks are free of traction on their surfaces and are filled with air of a dielectric permittivity.Therefore,the boundary condition17on the surfaces of hole and cracks can be expressed as

    whereD02is unknown constant to be determined from the condition

    Similar to the treatment of Guo et al.23,theD02can be obtained as

    Therefore,we obtain the complex potential vector f(z)with defect by inserting Eqs.(16)and(24)into Eq.(13).Furthermore,all the electroelastic quantities of the anti-plane problem for four edge cracks emanating from a square hole in piezoelectric solids can be derived.Due to their long and complex expressions,the electroelastic quantities,such as stress and electrical displacement,are no longer given here.Next,we will give the explicit solution of the field intensity factors and the energy release rate at the crack tip.

    4.2.Field intensity factors

    For the electrically impermeable boundary,the vector of field intensity factors is defined as

    From Eq.(27),we have μ′(1)=0 as ζ→ 1.Besides,we note that ω′(1)=0.By using the L’Hospital rule,Eq.(31)becomes

    Inserting Eq.(25)into Eq.(32)and noting Eq.(15),we obtain the expressions of the field intensity factors near the crack tip under the electrically impermeable boundary as follows:

    For the electrically permeable boundary,the field intensity factors can be defined similar to Eq.(36)as

    in whichkpσandkpDare the stress and electrical displacement intensity factors under the electrically permeable boundary at the crack tip,respectively.Repeating the process of Eqs.(13)–(25),we have

    Substituting Eq.(30)into Eq.(39),we can rewrite the expression as

    Eq.(40)shows that the stress intensity factor only relates to the geometrical parameters of defects and the mechanical load,but the electrical displacement intensity factor is also dependent on the material constants.The electrical load has no effect on the electrical displacement intensity factors for the electrically permeable boundary,which is different from those for the electrically impermeable one.The similar conclusion can be found in previous work.12,13

    4.3.Energy release rate and mechanical strain energy release rate

    For the electrically impermeable crack,the energy release rate is equivalent to theJ-integral,i.e.,

    whereksandkEare the strain and electrical field intensity factors at the crack tip,respectively,which have the following relationship with the stress and electrical displacement intensity factors

    Inserting Eqs.(33)and(42)into Eq.(41),and noting Eq.(34),we can obtain the energy release rate at the right crack tip as

    In order to compare the results under different fracture criterions,we also present the mechanical strain energy release rates:

    However,for the electrically permeable case,the energy release rate is equivalent to the mechanical strain energy release rate,i.e.,

    It can be found from Eq.(33)that the stress and electrical displacement intensity factors decouple each other.However,the energy release rate and mechanical strain energy release rate can show the interplay between the mechanical and electrical fields.

    5.Numerical examples

    To discuss the effects of the geometrical parameters of complicated defect considered in this paper and the combined mechanical/electrical loads on the normalized energy release rate and the mechanical strain energy release rate under two electrically boundary conditions,we take PZT-7 as a model material with the following material constantsc44=2.50×1010N/m2,e15=13.50 C/m2,ε11=171×10-10C/Vm andJcr=5.0 N/m,whereJcrstands for the critical energy release rate.25

    Fig.3 Variation of normalized energy release rate J/Jcrwith ratio of crack length to side length of square hole.

    Fig.4 Effect of applied electromechanical loads on normalized energy release rate.

    Fig.4 shows the effects of the applied electromechanical loads on the normalized energy release rates for given geometrical parameters of defect.For the electrically impermeable boundary condition,when the positive electrical load(or no electrical load)is applied on the solid,the energy release rate increases with increasing mechanical load,which indicates that the mechanical loads always promote the crack growth(Fig.4(a)).When the negative electrical load is applied on it,the energy release rate decreases slowly first and then increases quickly with increasing mechanical load.For the electrically permeable boundary condition,however,the energy release rate only depends on the magnitude of mechanical load.In other words,the energy release rate is almost independent of the electrical load,which is also clear in Fig.4(b).Fig.4(b)shows that the energy release rate decreases with the increasing absolute value of negative electrical field,and it increases first and then decreases with the positive electrical field.It indicates that the negative electrical load always retards the crack growth,but the positive electrical load may either promote or retard the crack growth for the electrically impermeable boundary condition,which is greatly dependent on the mechanical load,while the energy release rate is a constant which is independent of the electrical load under the electrically permeable boundary condition.

    Fig.5 shows the effects of the applied electromechanical loads on the normalized mechanical strain energy release rates under two electrical boundary conditions, whereGcr=5.0 N/m denotes the critical mechanical strain energy release rate.When the geometrical parameters of defect and the electrical load are fixed,the mechanical strain energy release rate increases with increasing mechanical load.Moreover,the mechanical strain energy release rate under the electrically impermeable boundary condition is greater than that under the electrically permeable one when σ∞32≤2.5 MPa.However,the mechanical strain energy release rate of the electrically permeable cracks will be wholly larger than that of the electrically impermeable ones when σ∞32≥5.5 MPa.Thus,we can control the crack growth by adjusting the applied mechanical loads.We can observe from Fig.5(b)that the mechanical strain energy release rate increases linearly with increasing electrical load for the electrically impermeable boundary condition.The result shows that the positive electrical load always promotes the crack growth and the negative electrical load retards the crack growth,which is in agreement with the experimental result.26

    Comparing Fig.4(b)with Fig.5(b),we can see that the effect of the electrical load on the crack growth is different for the electrically impermeable boundary condition by using the different fracture criterions.

    Fig.5 Effect of applied electromechanical loads on normalized mechanical strain energy release rate.

    6.Conclusion

    In this paper,by constructing a new numerical conformal mapping and using the Stroh-type formalism,the explicit expressions of the complex potential function,the field intensity factorsandenergyreleaseratesandthemechanicalstrainenergy release rate at the crack tip are derived for the anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids.Numerical examples are provided to show the effects of the geometrical parameters of complicated defect and applied mechanical/electrical loads on the energy release rate and mechanical strain energy release rate under the electricallypermeableandimpermeableboundaryconditions.Insummary,some useful conclusions are drawn as follows:

    (1)The increases of the length of horizontal cracks(left and right cracks)and size of the square hole always promote thecrack growth undertwo electricalboundary conditions.

    (2)The appearance of vertical cracks greatly affects the stress concentration of the horizontal cracks.The increase of the length of vertical cracks can promote or retard the horizontal crack propagation,which is strongly dependent on the lengths of the two horizontal cracks.

    (3)The mechanical load always promotes the crack growth.The electrical load has no effect on the crack growth under the electrically permeable boundary condition,while the effect of the electrical load on the crack growth depends on the fracture criterion under the electrically impermeable boundary condition.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(Nos.11262012,11502123,11462020 and 11262017)and the Inner Mongolia Natural Science Foundation(Nos.2015JQ01 and 2015MS0129)of China.

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j.cja.2016.08.018.

    1.Valdovinos J.Pediatric mechanical circulatory support applications for frequency-leveraged piezoelectric hydraulic pumps[dissertation].Los Angeles(LA):University of California;2014.

    2.Gao CF,Yu JH.Two-dimensional analysis of a semi-infinite crack in piezoelectric media.Mech Res Commun1998;25(6):695–700.

    3.Wang BL,Mai YW.Impermeable crack and permeable crack assumptions,which one is more realistic?J Appl Mech2004;71(4):575–8.

    4.Li XF.Electroelastic analysis of an anti-plane shear crack in a piezoelectric ceramic strip.Int J Solids Struct2002;39(5):1097–117.

    5.Li XF,Lee KY.Electroelastic behavior of a rectangular piezoelectric ceramic with an antiplane shear crack at arbitrary position.Eur J Mech A/Solids2004;23(4):645–58.

    6.Li XF,Tang GJ.Antiplane interface crack between two bonded dissimilar piezoelectric layers.Eur J Mech A/Solids2003;22(2):231–42.

    7.Li XF,Tang GJ.Electroelastic analysis of an interface antiplane shear crack in a layered piezoelectric plate.Int J Eng Sci2003;41(12):1405–22.

    8.Li XF,Wang BL.Anti-plane shear crack normal to and terminating at the interface of two bonded piezoelectric ceramics.Int J Solids Struct2007;44(11–12):3796–810.

    9.Guo JH,Liu P,Lu ZX,Qin TY.Anti-plane analysis of a semiinfinite crack in a piezoelectric strip.Appl Math Mech2011;32(1):75–82.

    10.Gao CF,Fan WX.Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack.Int J Solids Struct1999;36(17):2527–40.

    11.Dai LC,Guo WL,Wang X.Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids.Int J Solids Struct2006;43(6):1818–31.

    12.Wang YJ,Gao CF.The mode-III cracks originating from the edge of a circular hole in a piezoelectric solid.Int J Solids Struct2008;45(16):4590–9.

    13.Guo JH,Lu ZX,Han HT,Yang ZY.Exact solutions for antiplane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material.Int J Solids Struct2009;46(21):3799–809.

    14.Guo JH,Lu ZX,Han HT,Yang ZY.The behavior of two nonsymmetrical permeable cracks emanating from an elliptical hole in a piezoelectric solid.Eur J Mech A–Solid2010;29(4):654–63.

    15.Guo JH,Lu ZX,Feng X.The fracture behavior of multiple cracks emanating from a circular hole in piezoelectric materials.Acta Mech2010;215(1–4):119–34.

    16.Liang YC,Sun YP.Hole/crack identification in circular piezoelectric plates.Proc Eng2014;79:194–203.

    17.Wang WH,Guo JH,Xing YM.Anti-plane analysis of an edge crack emanating from a regular triangle hole with smooth vertices in piezoelectric materials.Acta Mater Compos Sin2015;32(2):601–7[in Chinese].

    18.Wang YJ,Gao CF,Song HP.The anti-plane solution for the edge cracks originating from an arbitrary hole in a piezoelectric material.Mech Res Commun2015;65:17–23.

    19.Yan X,Liu B,Yu J.Cracks emanating from a square hole in rectangular plate in tension.Fatigue Fract Eng Mater Struct2012;35(3):238–46.

    20.Miao CQ,Wei YT,Yan XQ.Two collinear square-hole cracks in an infinite plate in tension.Theor Appl Fract Mech2015;75:32–8.

    21.Zhang TY,Gao CF.Fracture behaviors of piezoelectric materials.Theor Appl Fract Mech2004;41(1–3):339–79.

    22.Savin GN.Stress distribution around holes.Naukova Dumka Press;1968.

    23.Guo JH,Lu ZX,Lv J.Field intensity factors of a mode-III nonsymmetrical cracks originating from circular hole in piezoelectric composite material.Acta Mater Compos Sin2014;31(1):241–7[Chinese].

    24.Sosa H.Plane problems in piezoelectric media with defects.Int J Solids Struct1991;28(4):491–505.

    25.Pak YE.Crack extension force in a piezoelectric material.J Appl Mech-T ASME1990;57(3):647–53.

    26.Park SB,Sun CT.Fracture criteria for piezoelectric ceramics.J Am Ceram Soc1995;78(6):1475–80.

    15 January 2016;revised 9 March 2016;accepted 3 May 2016

    Available online 15 October 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 471 6576143.

    E-mail addresses:fsxwang@163.com(S.Fan),jhguo@imut.edu.cn,guojunhong114015@163.com(J.Guo),yujing3622@163.com(J.Yu).Peer review under responsibility of Editorial Committee of CJA.

    国产日韩欧美视频二区| 久久久久久伊人网av| 久久精品国产自在天天线| 国产97色在线日韩免费| 国产高清国产精品国产三级| 在线观看美女被高潮喷水网站| 亚洲国产欧美网| 美女视频免费永久观看网站| 欧美变态另类bdsm刘玥| 国产av码专区亚洲av| 少妇人妻 视频| 最近中文字幕高清免费大全6| 午夜激情av网站| 久久久久久久亚洲中文字幕| 亚洲国产精品一区二区三区在线| 制服诱惑二区| 亚洲 欧美一区二区三区| 国产精品一二三区在线看| 久久精品aⅴ一区二区三区四区 | 男女边吃奶边做爰视频| 97人妻天天添夜夜摸| 亚洲第一av免费看| 亚洲一码二码三码区别大吗| 国产男女内射视频| 国产成人aa在线观看| 一级爰片在线观看| 国产成人精品久久二区二区91 | 国产片内射在线| 丝袜美足系列| 少妇熟女欧美另类| 欧美人与性动交α欧美软件| 视频在线观看一区二区三区| 欧美日韩成人在线一区二区| 欧美激情高清一区二区三区 | 男人添女人高潮全过程视频| 国产成人精品一,二区| 少妇熟女欧美另类| 亚洲欧美一区二区三区国产| 天堂俺去俺来也www色官网| www.自偷自拍.com| 久久久久久久亚洲中文字幕| 精品人妻在线不人妻| 中文字幕制服av| tube8黄色片| 黄片小视频在线播放| 久久精品熟女亚洲av麻豆精品| kizo精华| 人体艺术视频欧美日本| 日本av免费视频播放| 在线观看国产h片| 亚洲三区欧美一区| 亚洲精品美女久久av网站| 国产 一区精品| 黄色怎么调成土黄色| 另类精品久久| 色94色欧美一区二区| 26uuu在线亚洲综合色| av国产精品久久久久影院| 成人二区视频| 国产免费现黄频在线看| 一本色道久久久久久精品综合| 午夜91福利影院| 女人高潮潮喷娇喘18禁视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品 欧美亚洲| 国产成人aa在线观看| 考比视频在线观看| 国产精品无大码| 天堂8中文在线网| 亚洲av综合色区一区| 欧美人与善性xxx| 亚洲精品久久久久久婷婷小说| 一级毛片电影观看| 超碰97精品在线观看| 亚洲成av片中文字幕在线观看 | 丝袜脚勾引网站| 日韩一区二区视频免费看| 老鸭窝网址在线观看| 夫妻午夜视频| 蜜桃国产av成人99| 色网站视频免费| 国产精品亚洲av一区麻豆 | 欧美在线黄色| 久久精品亚洲av国产电影网| 男男h啪啪无遮挡| 久久精品国产亚洲av天美| 国产成人精品在线电影| 成人国产av品久久久| 高清不卡的av网站| 国产在视频线精品| 人妻少妇偷人精品九色| 水蜜桃什么品种好| 欧美精品亚洲一区二区| 男人舔女人的私密视频| 亚洲人成网站在线观看播放| 国产精品一区二区在线观看99| 亚洲精品自拍成人| 亚洲av福利一区| 天堂8中文在线网| 成年人午夜在线观看视频| 男人爽女人下面视频在线观看| 狠狠婷婷综合久久久久久88av| 国产精品偷伦视频观看了| 桃花免费在线播放| 大片免费播放器 马上看| 丝袜在线中文字幕| 一级爰片在线观看| 宅男免费午夜| 国产不卡av网站在线观看| 美女福利国产在线| 日日爽夜夜爽网站| 日日摸夜夜添夜夜爱| 观看美女的网站| 精品国产国语对白av| 九色亚洲精品在线播放| 亚洲精品国产av蜜桃| 久久毛片免费看一区二区三区| 国产伦理片在线播放av一区| 最近中文字幕2019免费版| 在线观看免费日韩欧美大片| 日韩大片免费观看网站| 久久ye,这里只有精品| 我要看黄色一级片免费的| 国产精品久久久av美女十八| 1024视频免费在线观看| 久久午夜福利片| 天天躁狠狠躁夜夜躁狠狠躁| 日韩一本色道免费dvd| 国产日韩一区二区三区精品不卡| 国产精品久久久久久精品古装| 九草在线视频观看| 国产男人的电影天堂91| 欧美 日韩 精品 国产| 免费高清在线观看日韩| 多毛熟女@视频| 精品国产超薄肉色丝袜足j| 久久久久国产网址| 亚洲av福利一区| 狂野欧美激情性bbbbbb| 精品酒店卫生间| 各种免费的搞黄视频| 欧美日韩精品网址| 美女高潮到喷水免费观看| 另类精品久久| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 精品少妇一区二区三区视频日本电影 | 精品少妇久久久久久888优播| 国产精品久久久久久精品电影小说| 热re99久久精品国产66热6| 国产成人91sexporn| 777米奇影视久久| 国产一区二区 视频在线| 嫩草影院入口| 乱人伦中国视频| 99精国产麻豆久久婷婷| 国产熟女午夜一区二区三区| 久久久久国产一级毛片高清牌| 欧美日韩国产mv在线观看视频| 美女视频免费永久观看网站| 伊人久久大香线蕉亚洲五| 国产一区二区 视频在线| 国产成人a∨麻豆精品| 伦理电影免费视频| 97精品久久久久久久久久精品| 成人午夜精彩视频在线观看| 国产免费福利视频在线观看| 中国三级夫妇交换| 欧美日韩国产mv在线观看视频| av在线app专区| 中文字幕人妻丝袜制服| 日韩三级伦理在线观看| 午夜激情av网站| 免费在线观看完整版高清| 亚洲精品自拍成人| 国产 一区精品| 国产精品三级大全| 黄色视频在线播放观看不卡| 日韩精品免费视频一区二区三区| 人体艺术视频欧美日本| 国产精品无大码| 国产人伦9x9x在线观看 | 在线天堂中文资源库| 99热国产这里只有精品6| 啦啦啦中文免费视频观看日本| 天堂俺去俺来也www色官网| 亚洲精品美女久久久久99蜜臀 | 久久久久久久大尺度免费视频| 欧美在线黄色| 成人亚洲欧美一区二区av| 亚洲美女黄色视频免费看| 亚洲综合色网址| 99久久精品国产国产毛片| 一个人免费看片子| 黑丝袜美女国产一区| 日本wwww免费看| 精品少妇内射三级| 999久久久国产精品视频| 岛国毛片在线播放| 婷婷色综合大香蕉| 日日摸夜夜添夜夜爱| 亚洲美女搞黄在线观看| 亚洲成色77777| 各种免费的搞黄视频| 97精品久久久久久久久久精品| 成年动漫av网址| 一区二区三区精品91| 天天躁日日躁夜夜躁夜夜| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看| 一级黄片播放器| 国产成人精品在线电影| 成人影院久久| 国产精品香港三级国产av潘金莲 | 国产精品 国内视频| 国产1区2区3区精品| 久久精品熟女亚洲av麻豆精品| 99香蕉大伊视频| 男人爽女人下面视频在线观看| 成年人免费黄色播放视频| 久久久国产一区二区| 久久久久久久国产电影| 亚洲精品,欧美精品| 99久久精品国产国产毛片| 久久久久精品人妻al黑| 免费av中文字幕在线| 久久精品国产亚洲av天美| freevideosex欧美| 美女国产高潮福利片在线看| 久久久久久久久久久免费av| 久久人人爽av亚洲精品天堂| 午夜福利乱码中文字幕| 久久久久国产一级毛片高清牌| 如何舔出高潮| 国产精品 国内视频| 亚洲婷婷狠狠爱综合网| 99国产精品免费福利视频| 一级片'在线观看视频| 免费黄网站久久成人精品| 午夜日本视频在线| 亚洲欧美中文字幕日韩二区| 中文字幕另类日韩欧美亚洲嫩草| 美女福利国产在线| 日韩,欧美,国产一区二区三区| 午夜激情久久久久久久| 99久久人妻综合| 日产精品乱码卡一卡2卡三| 精品久久久精品久久久| 久久久国产精品麻豆| 国产视频首页在线观看| 久久这里有精品视频免费| 色婷婷av一区二区三区视频| 亚洲精品中文字幕在线视频| 亚洲人成电影观看| 一二三四在线观看免费中文在| 99精国产麻豆久久婷婷| xxxhd国产人妻xxx| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| 午夜影院在线不卡| 久久久久久伊人网av| 999精品在线视频| 人成视频在线观看免费观看| 亚洲四区av| 岛国毛片在线播放| 看免费av毛片| 欧美老熟妇乱子伦牲交| 91久久精品国产一区二区三区| 精品亚洲成a人片在线观看| 日本午夜av视频| 国产精品99久久99久久久不卡 | 18禁裸乳无遮挡动漫免费视频| 如何舔出高潮| 亚洲熟女精品中文字幕| 麻豆精品久久久久久蜜桃| 久久人妻熟女aⅴ| 男男h啪啪无遮挡| 欧美+日韩+精品| √禁漫天堂资源中文www| 国产在线一区二区三区精| 国产黄频视频在线观看| 精品少妇一区二区三区视频日本电影 | 人人妻人人澡人人爽人人夜夜| 亚洲第一区二区三区不卡| 亚洲av.av天堂| 精品少妇内射三级| 欧美精品高潮呻吟av久久| 国产精品 国内视频| 欧美日韩视频高清一区二区三区二| 中文字幕亚洲精品专区| 久久久国产精品麻豆| 可以免费在线观看a视频的电影网站 | 欧美中文综合在线视频| 人妻系列 视频| 性高湖久久久久久久久免费观看| 大码成人一级视频| 亚洲欧美日韩另类电影网站| 欧美日本中文国产一区发布| 国产精品亚洲av一区麻豆 | 熟妇人妻不卡中文字幕| 永久网站在线| 久久国内精品自在自线图片| av.在线天堂| 91精品伊人久久大香线蕉| 91精品三级在线观看| 搡老乐熟女国产| 久久婷婷青草| 欧美日韩亚洲国产一区二区在线观看 | 男女高潮啪啪啪动态图| 考比视频在线观看| 男女高潮啪啪啪动态图| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 十八禁高潮呻吟视频| 69精品国产乱码久久久| 丝袜在线中文字幕| 大香蕉久久成人网| 天堂俺去俺来也www色官网| 一级,二级,三级黄色视频| 五月天丁香电影| 你懂的网址亚洲精品在线观看| 大片免费播放器 马上看| 国产在线免费精品| 啦啦啦视频在线资源免费观看| 深夜精品福利| 午夜免费鲁丝| 不卡视频在线观看欧美| 精品少妇久久久久久888优播| a级片在线免费高清观看视频| 国产精品三级大全| 欧美变态另类bdsm刘玥| 多毛熟女@视频| 久久狼人影院| 免费久久久久久久精品成人欧美视频| 国产淫语在线视频| 免费av中文字幕在线| h视频一区二区三区| xxx大片免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产男人的电影天堂91| h视频一区二区三区| 大片电影免费在线观看免费| 亚洲欧美色中文字幕在线| 最近最新中文字幕免费大全7| 亚洲av在线观看美女高潮| 成人国产麻豆网| 国产爽快片一区二区三区| 一区在线观看完整版| 激情视频va一区二区三区| 2022亚洲国产成人精品| 啦啦啦啦在线视频资源| 一区在线观看完整版| 国产成人欧美| 男人操女人黄网站| 国产爽快片一区二区三区| 免费在线观看黄色视频的| 黄色 视频免费看| 如日韩欧美国产精品一区二区三区| 久久精品久久久久久久性| 电影成人av| 国产精品99久久99久久久不卡 | www.熟女人妻精品国产| 一区福利在线观看| 欧美国产精品一级二级三级| 日韩在线高清观看一区二区三区| 精品一区在线观看国产| 亚洲欧美成人精品一区二区| 天美传媒精品一区二区| av有码第一页| 精品少妇内射三级| 波野结衣二区三区在线| 国产日韩一区二区三区精品不卡| 欧美av亚洲av综合av国产av | 又黄又粗又硬又大视频| 亚洲三级黄色毛片| 国产精品偷伦视频观看了| 午夜老司机福利剧场| 亚洲精华国产精华液的使用体验| 国产精品一国产av| 高清不卡的av网站| 欧美激情 高清一区二区三区| 国产精品三级大全| 巨乳人妻的诱惑在线观看| 日韩不卡一区二区三区视频在线| 亚洲欧美精品综合一区二区三区 | 国产国语露脸激情在线看| 亚洲婷婷狠狠爱综合网| 久久这里有精品视频免费| 国产成人免费观看mmmm| 97精品久久久久久久久久精品| 久久久国产精品麻豆| 国产精品免费大片| 最近的中文字幕免费完整| 国产在线免费精品| 国产精品欧美亚洲77777| 日本欧美视频一区| 亚洲国产av影院在线观看| 如何舔出高潮| 最近中文字幕2019免费版| 丝袜美足系列| 女人久久www免费人成看片| 人人妻人人添人人爽欧美一区卜| 18禁国产床啪视频网站| 熟女少妇亚洲综合色aaa.| 亚洲少妇的诱惑av| 久久久久精品久久久久真实原创| 久久精品久久久久久久性| 交换朋友夫妻互换小说| 国产在视频线精品| 欧美激情极品国产一区二区三区| 大片电影免费在线观看免费| 97在线人人人人妻| 欧美日韩精品成人综合77777| 老司机亚洲免费影院| 亚洲视频免费观看视频| 亚洲国产av影院在线观看| 丰满饥渴人妻一区二区三| 你懂的网址亚洲精品在线观看| 日韩成人av中文字幕在线观看| 精品国产一区二区三区四区第35| 免费人妻精品一区二区三区视频| 热re99久久国产66热| 1024香蕉在线观看| 国产97色在线日韩免费| 美女视频免费永久观看网站| 交换朋友夫妻互换小说| 大片免费播放器 马上看| 国产又色又爽无遮挡免| 各种免费的搞黄视频| 精品99又大又爽又粗少妇毛片| 日韩人妻精品一区2区三区| 日韩成人av中文字幕在线观看| 国产乱人偷精品视频| 亚洲熟女精品中文字幕| 成人二区视频| 性少妇av在线| 国产精品香港三级国产av潘金莲 | 少妇被粗大猛烈的视频| 侵犯人妻中文字幕一二三四区| 午夜福利网站1000一区二区三区| 国产精品.久久久| 精品久久久久久电影网| 少妇熟女欧美另类| 男女免费视频国产| 一二三四中文在线观看免费高清| 久热这里只有精品99| 五月伊人婷婷丁香| 男人爽女人下面视频在线观看| 日韩,欧美,国产一区二区三区| 国产片内射在线| 精品亚洲成a人片在线观看| 免费人妻精品一区二区三区视频| 女性被躁到高潮视频| 久久久久久久久久人人人人人人| 在线观看国产h片| 久久婷婷青草| 七月丁香在线播放| 欧美亚洲日本最大视频资源| 1024视频免费在线观看| 中文字幕人妻丝袜制服| 国产亚洲欧美精品永久| 中文字幕最新亚洲高清| 波多野结衣av一区二区av| 国产麻豆69| 18禁动态无遮挡网站| 亚洲人成电影观看| 老司机亚洲免费影院| 肉色欧美久久久久久久蜜桃| 亚洲成人手机| 免费大片黄手机在线观看| 欧美另类一区| 国产色婷婷99| 精品午夜福利在线看| 新久久久久国产一级毛片| 日韩一卡2卡3卡4卡2021年| 老熟女久久久| 看非洲黑人一级黄片| 欧美亚洲日本最大视频资源| 欧美日韩视频精品一区| 久久久久久免费高清国产稀缺| 一区二区三区精品91| 免费av中文字幕在线| 女人被躁到高潮嗷嗷叫费观| 亚洲熟女精品中文字幕| 超碰97精品在线观看| 久久99精品国语久久久| 91精品国产国语对白视频| 在线天堂中文资源库| 综合色丁香网| 18+在线观看网站| 久久久国产一区二区| 久久久a久久爽久久v久久| 日韩伦理黄色片| 精品国产超薄肉色丝袜足j| 一级,二级,三级黄色视频| 久久久久网色| 叶爱在线成人免费视频播放| 精品卡一卡二卡四卡免费| 色94色欧美一区二区| av国产久精品久网站免费入址| 久久久国产精品麻豆| 卡戴珊不雅视频在线播放| 五月开心婷婷网| 久久国产亚洲av麻豆专区| 看免费成人av毛片| www.熟女人妻精品国产| 欧美变态另类bdsm刘玥| 亚洲欧洲精品一区二区精品久久久 | 女人精品久久久久毛片| videos熟女内射| 最近最新中文字幕免费大全7| 97在线人人人人妻| 18禁裸乳无遮挡动漫免费视频| 一区福利在线观看| 搡老乐熟女国产| 久久久久精品人妻al黑| 久久99热这里只频精品6学生| 伦理电影大哥的女人| 免费观看无遮挡的男女| 熟妇人妻不卡中文字幕| 久久久欧美国产精品| 一级毛片 在线播放| 一级a爱视频在线免费观看| 国产精品av久久久久免费| 久久国产亚洲av麻豆专区| 岛国毛片在线播放| 卡戴珊不雅视频在线播放| 久久久久久久久久久免费av| 亚洲国产欧美网| 在线天堂最新版资源| 热99国产精品久久久久久7| 亚洲精品aⅴ在线观看| 国产成人aa在线观看| 视频在线观看一区二区三区| 麻豆乱淫一区二区| 国产一区二区三区av在线| 国产一级毛片在线| 少妇被粗大猛烈的视频| 久久精品国产a三级三级三级| 亚洲av.av天堂| 巨乳人妻的诱惑在线观看| 男女边吃奶边做爰视频| 欧美老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 黄色配什么色好看| 卡戴珊不雅视频在线播放| 国产av精品麻豆| av电影中文网址| 免费观看在线日韩| 久久久久网色| 亚洲激情五月婷婷啪啪| 晚上一个人看的免费电影| 一本—道久久a久久精品蜜桃钙片| 青春草视频在线免费观看| 国产亚洲最大av| 国产探花极品一区二区| 99久久精品国产国产毛片| 免费观看a级毛片全部| 美女中出高潮动态图| 91精品国产国语对白视频| 1024视频免费在线观看| 男女午夜视频在线观看| 我的亚洲天堂| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产亚洲av天美| 欧美精品av麻豆av| 欧美最新免费一区二区三区| 韩国高清视频一区二区三区| 亚洲国产欧美在线一区| 国产成人精品福利久久| 侵犯人妻中文字幕一二三四区| 国产97色在线日韩免费| 捣出白浆h1v1| 最近2019中文字幕mv第一页| 亚洲伊人久久精品综合| 伦精品一区二区三区| 老司机影院成人| 少妇人妻 视频| 国产精品不卡视频一区二区| 我要看黄色一级片免费的| 99香蕉大伊视频| 另类亚洲欧美激情| 美国免费a级毛片| 国产熟女午夜一区二区三区| 精品人妻在线不人妻| 人妻人人澡人人爽人人| 香蕉国产在线看| 欧美在线黄色| 亚洲婷婷狠狠爱综合网| 亚洲美女黄色视频免费看| 久久精品熟女亚洲av麻豆精品| 午夜日韩欧美国产| 超色免费av| 欧美97在线视频| av卡一久久| 亚洲美女黄色视频免费看| 精品一品国产午夜福利视频| 午夜日韩欧美国产| 香蕉国产在线看| 久久久精品免费免费高清| 美国免费a级毛片| 最黄视频免费看| 国产成人午夜福利电影在线观看| 超碰成人久久| 久久久精品国产亚洲av高清涩受| 深夜精品福利| 国产成人aa在线观看| 亚洲成国产人片在线观看| av有码第一页| 久久精品久久久久久久性| 国产激情久久老熟女| 国产有黄有色有爽视频| 亚洲精品国产av蜜桃|