• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids

    2017-11-21 12:54:46FnShiwngGuoJunhongYuJing
    CHINESE JOURNAL OF AERONAUTICS 2017年1期

    Fn Shiwng,Guo Junhong,*,Yu Jing,b

    aSchool of Science,Inner Mongolia University of Technology,Hohhot 010051,China

    bCollege of General Education,Inner Mongolia Normal University,Hohhot 010022,China

    Anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids

    Fan Shiwanga,Guo Junhonga,*,Yu Jinga,b

    aSchool of Science,Inner Mongolia University of Technology,Hohhot 010051,China

    bCollege of General Education,Inner Mongolia Normal University,Hohhot 010022,China

    Cracks;Conformal mapping;Hole;Piezoelectric material;Stroh-type formulism

    By constructing a new numerical conformal mapping and using the Stroh-type formulism,an anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids is investigated.The explicit expressions of the complex potential function,field intensity factors,energy release rates and mechanical strain energy release rate near the crack tip are obtained under the assumptions that the surfaces of the cracks and hole are electrically permeable and electrically impermeable.Numerical examples are presented to show the influences of the geometrical parameters of defects and applied mechanical/electrical loads on the energy release rate and mechanical strain energy release rate under two electrical boundary conditions.

    1.Introduction

    Due to the excellent coupling effect between mechanical and electrical fields,the piezoelectric devices have been used in aviation and aerospace industry,such as structural health monitoring,precision positioning and vibration control.The actuators and sensor in smart structures,which scale down favorably in terms of power output and efficiency,have yielded the novel compact piezoelectric hydraulic pumps in the aerospace industry.1However,the brittleness of piezoelectric materials inevitably leads to many kinds of defects(e.g.,cracks and holes)during the processing,manufacturing and in-service periods.Therefore,it is of great significance to understand the fracture behavior of the complicated defects in piezoelectric materials,especially for cracks emanating from holes.

    In past decades,many crack problems was considered by researchers.For example,Gao and Yu2addressed the generalized two-dimensional plane problems of a semi-infinite crack in a piezoelectric medium subjected to a line force and a line charge based on the Stroh formalism,and obtained the explicit expressions of the field intensity factors and the Green’s functions.By comparing the electrically impermeable and permeable boundary assumptions,Wang and Mai3pointed out that the electrically impermeable boundary was a reasonable one in engineering applications.Li and Lee4,5analyzed the electroelastic behavior of a piezoelectric ceramic strip containing an anti-plane shear crack.By utilizing the integral transform,Li and his coauthors6–8considered the anti-plane interface cracks in two bonded dissimilar piezoelectric layersunder the electrically permeable and impermeable assumptions.Guo et al.9studied the anti-plane problem of a semiinfinite crack in a piezoelectric strip by using the complex variable function method and the technique of conformal mapping.For the hole problems,Gao and Fan10investigated the two-dimensional problems of an elliptical hole in a piezoelectric material based on the complex potential approach and obtained the explicit solutions in closed form under remotely uniform mechanical and electrical loads.Dai et al.11performed the stress concentration around an elliptic hole in transversely isotropic piezoelectric solids subjected to the uniform mechanical and electrical loads at infinity.The results showed that the electromechanical coupling effect is helpful to reduce the stress concentration.For the cracks emanating from holes,Wang and Gao12analyzed the fracture problem of one and two cracks originating from a circular hole in an infinite piezoelectric solid by using the complex variable method.By constructing a new conformal mapping and using the Stroh-type formulism,Guo et al.13considered the anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material under the electrically impermeable boundary condition.Also,they analyzed the anti-plane fracture behavior of the two non-symmetrical collinear cracks emanating from an elliptical hole14and the multiple cracks emanating from a circular hole15in a piezoelectric solid under differentelectricalboundary conditions.Based on the extended Stroh formalism and the boundary element method,Liang and Sun16successfully identified the hole/crack size,location,and orientation in finite circular piezoelectric plates by using the strain/electrical field data,stress/electrical displacement data,or displacement/electrical charge data under the static loadings.

    The key for using the complex variable method to consider the problems of complicated defects such as cracks emanating from holes is to find a suitable conformal mapping.As mentioned above,the previous literature is limited to the relatively simple hole shapes,such as circular or elliptical holes.Thus,the exact solutions of these defects can be derived by the conformal mapping.However,it is very difficult to find an exact conformal mapping for more complicated defects such as cracks emanating from square or triangle holes due to the intricacy of structure and difficulty of mathematics.Considering this,we can effectively solve the complicated defects by constructing a new numerical conformal mapping.Recently,Wang et al.17studied an anti-plane problem of piezoelectric solids containing a regular triangle hole with smooth vertices which emanates an edge crack by constructing a new numerical conformal mapping.Wang et al.18considered the antiplane problems of two cracks emanating from a rhombus hole and a cracked half circular hole at the edge of a half plane in a piezoelectric solid by deriving an approximate mapping function and using the Laurent series.For the classical elasticity,Yan et al.19and Miao et al.20presented the interaction of two collinear cracks emanating from a square hole in a rectangular plate and an infinite plate by using a hybrid displacement discontinuity method and a generalized Bueckner’s principle.The results show that the geometric parameters of defects have a great influence on the failure of materials.

    Nevertheless,no investigation on four edge cracks emanating from a square hole has been reported up to now in any material including piezoelectric material.In fact,an increase of the number of cracks shows a different and interesting fracture behavior,which can provide an important reference in engineering practice.Therefore,this paper focuses on the anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids by constructing a new numerical conformal mapping,and the explicit solutions of the electroelastic fields are derived finally.

    2.Basic equations

    For the transversely isotropic piezoelectric solids,the poling direction is along the positivex3-direction and the isotropic plane is in thex1ox2-plane.The anti-plane deformation is determined by the out-of-plane displacement and the inplane electrical potential,which are the functions ofx1andx2.The generalized Hooke’s law for a two-dimensional antiplane problem of piezoelectric solids is

    Under the assumption of small deformation,the gradient equation can be expressed as

    The elastic and electrostatic equilibrium equations in the absence of the body force are

    In Eqs.(1)–(3),iis from 1 to 2,the repeated indices denote summation,and a comma in the subscripts denotes a partial differentiation;c44,e15and ε11are the elastic constants,piezoelectric constants and dielectric permittivity,respectively;σ3i,γ3i,u3,Di,Eiand φ are the stress,strain,elastic displacement,electrical displacement,electrical field and electrical potential,respectively.

    Substituting Eqs.(1)and(2)into Eq.(3)leads to the following governing equation for the two-dimensional anti-plane problem of piezoelectric solids:

    where ?2= ?2/?x21+ ?2/?x22istwo-dimensionalLaplace operator,u=[u3,φ]Tis the generalized displacement vector,and the material matrix B0can be expressed as

    By introducing a generalized stress function vector φ,the general solution21to Eqs.(4)and(1)can be written in the Stroh formalism as

    wherez=x1+ix2,f(z)is an analytic function to be determined by the boundary conditions,B=iB0,and A=I is a 2×2 unit matrix.

    It is found that once the analytic function vector f(z)is determined,the stress,strain,displacement,elastic displacement,electrical field and electrical potential for the antiplane problem of piezoelectric solids with defects can be obtained from Eqs.(1),(2)and(6).

    3.Description of problem and conformal mapping

    3.1.Description of problem

    The mechanical/electrical boundary conditions along the surface of the cracks and hole can be expressed as

    whereSis the boundary along the surface of defect,t3andDnrepresent the anti-plane traction and electrical displacement of normaldirection along the surface ofthe boundary,respectively.

    3.2.Conformal mapping

    To solve the above boundary value problem(i.e.,Eqs.(6)and(7))efficiently,we construct a new numerical conformal mapping which transforms the boundary of complicated defect(Fig.1)in thez-plane into a unit circle in the ζ-plane.Firstly,Savin22proposed a conformal mapping:

    which maps the exterior of the square hole inz-plane onto the exterior of a circular hole in ζ-plane.Ris a constant related to the side length of square hole,i.e.,R=0.59136a.It is noted that the square hole is not an exact one,but it is a regular one with smooth vertices,and the radius of curvaturerof its corners isr=0.014a.The deviation becomes smaller if more items are taken in Eq.(8).For the current problem,the former four items have a high accuracy.

    Inspired by the conformal mapping Eq.(8),we propose a new mapping(Fig.2)which maps the exterior region of four cracks emanating from a square hole inz-plane onto the interior region of a unit circle in ζ-plane as follows:

    Fig.1 Four edge cracks emanating from a square hole in piezoelectric solids.

    in which the mapping function μ(ζ)that maps outer region of four cracks emanating from a circular hole inz1-plane onto the interior of a unit circle in ζ-plane was proposed firstly by Guo et al.23,i.e.,

    The real parametersci(i=1,2,3)in Eq.(10)can be determined by

    whereliare the lengths of cracks inz1-plane(Fig.2),which can be determined by the following relationship:

    As shown in Fig.2,Eq.(9)maps the pointsA~Hinzplane onto the corresponding pointsA1~H1inz1-plane,respectively,and then Eq.(10)maps the pointsA1~H1inz1-plane onto the corresponding pointsA′±~H′

    Fig.2 Schematic diagram of conformal mapping.

    ±in ζ-plane,respectively,in which the plus sign underneath indices of the alphabet denotes above or right plane,and the minus sign stands for below or left plane.

    4.Explicit solution to problem

    4.1.Complex potentials

    For the current problem,the complex potential vector can be taken as24

    where c∞stands for a complex constant vector to be determined by the remote loading conditions,c∞zis the complex potential vector related to the external loads without defect,f0(z)is an unknown complex vector which stands for the potential vector disturbed by defect,and f0(∞)=0.Then,we solve the unknown complex potential vector f0(z)under the boundary conditions.

    Differentiating Eq.(6)with respect tox1and defining F(z)=df(z)/dz,one has

    Inserting Eq.(13)into Eq.(14)and then takingz→∞r(nóng)esult in

    Thus,the constant vector c∞can be obtained from Eq.(15)as

    If the electrically impermeable boundary condition is adopted and the surfaces of the crack and hole are free of mechanical loads,Eq.(7)can be written as

    Substituting Eq.(13)into Eq.(17),we have

    Combined with conformal mappingz= ω(ζ),in the ζplane,Eq.(18)can be transformed into

    where f0(ζ)is an analytic function inside the unit circle and ω(ζ)is analytic inside the unit circle except for the point ζ=0.According to the Cauchy integral formula for an arbitrary point within|ζ|< 1,Eq.(21)becomes

    Using the residue theorem in complex variable function,we derive the right integral of Eq.(22)as

    Substituting Eq.(23)into Eq.(22),we have

    Differentiating Eq.(24)with respect to ζ and defining F0(ζ)=df0(ζ)/dζ,we find

    in whichR=0.59136aand ω′(ζ)can be obtained from Eq.(9)as

    Also,μ′(ζ)in Eq.(26)can be determined from Eq.(10),that is,

    For the electrically permeable case,the square hole and the cracks are free of traction on their surfaces and are filled with air of a dielectric permittivity.Therefore,the boundary condition17on the surfaces of hole and cracks can be expressed as

    whereD02is unknown constant to be determined from the condition

    Similar to the treatment of Guo et al.23,theD02can be obtained as

    Therefore,we obtain the complex potential vector f(z)with defect by inserting Eqs.(16)and(24)into Eq.(13).Furthermore,all the electroelastic quantities of the anti-plane problem for four edge cracks emanating from a square hole in piezoelectric solids can be derived.Due to their long and complex expressions,the electroelastic quantities,such as stress and electrical displacement,are no longer given here.Next,we will give the explicit solution of the field intensity factors and the energy release rate at the crack tip.

    4.2.Field intensity factors

    For the electrically impermeable boundary,the vector of field intensity factors is defined as

    From Eq.(27),we have μ′(1)=0 as ζ→ 1.Besides,we note that ω′(1)=0.By using the L’Hospital rule,Eq.(31)becomes

    Inserting Eq.(25)into Eq.(32)and noting Eq.(15),we obtain the expressions of the field intensity factors near the crack tip under the electrically impermeable boundary as follows:

    For the electrically permeable boundary,the field intensity factors can be defined similar to Eq.(36)as

    in whichkpσandkpDare the stress and electrical displacement intensity factors under the electrically permeable boundary at the crack tip,respectively.Repeating the process of Eqs.(13)–(25),we have

    Substituting Eq.(30)into Eq.(39),we can rewrite the expression as

    Eq.(40)shows that the stress intensity factor only relates to the geometrical parameters of defects and the mechanical load,but the electrical displacement intensity factor is also dependent on the material constants.The electrical load has no effect on the electrical displacement intensity factors for the electrically permeable boundary,which is different from those for the electrically impermeable one.The similar conclusion can be found in previous work.12,13

    4.3.Energy release rate and mechanical strain energy release rate

    For the electrically impermeable crack,the energy release rate is equivalent to theJ-integral,i.e.,

    whereksandkEare the strain and electrical field intensity factors at the crack tip,respectively,which have the following relationship with the stress and electrical displacement intensity factors

    Inserting Eqs.(33)and(42)into Eq.(41),and noting Eq.(34),we can obtain the energy release rate at the right crack tip as

    In order to compare the results under different fracture criterions,we also present the mechanical strain energy release rates:

    However,for the electrically permeable case,the energy release rate is equivalent to the mechanical strain energy release rate,i.e.,

    It can be found from Eq.(33)that the stress and electrical displacement intensity factors decouple each other.However,the energy release rate and mechanical strain energy release rate can show the interplay between the mechanical and electrical fields.

    5.Numerical examples

    To discuss the effects of the geometrical parameters of complicated defect considered in this paper and the combined mechanical/electrical loads on the normalized energy release rate and the mechanical strain energy release rate under two electrically boundary conditions,we take PZT-7 as a model material with the following material constantsc44=2.50×1010N/m2,e15=13.50 C/m2,ε11=171×10-10C/Vm andJcr=5.0 N/m,whereJcrstands for the critical energy release rate.25

    Fig.3 Variation of normalized energy release rate J/Jcrwith ratio of crack length to side length of square hole.

    Fig.4 Effect of applied electromechanical loads on normalized energy release rate.

    Fig.4 shows the effects of the applied electromechanical loads on the normalized energy release rates for given geometrical parameters of defect.For the electrically impermeable boundary condition,when the positive electrical load(or no electrical load)is applied on the solid,the energy release rate increases with increasing mechanical load,which indicates that the mechanical loads always promote the crack growth(Fig.4(a)).When the negative electrical load is applied on it,the energy release rate decreases slowly first and then increases quickly with increasing mechanical load.For the electrically permeable boundary condition,however,the energy release rate only depends on the magnitude of mechanical load.In other words,the energy release rate is almost independent of the electrical load,which is also clear in Fig.4(b).Fig.4(b)shows that the energy release rate decreases with the increasing absolute value of negative electrical field,and it increases first and then decreases with the positive electrical field.It indicates that the negative electrical load always retards the crack growth,but the positive electrical load may either promote or retard the crack growth for the electrically impermeable boundary condition,which is greatly dependent on the mechanical load,while the energy release rate is a constant which is independent of the electrical load under the electrically permeable boundary condition.

    Fig.5 shows the effects of the applied electromechanical loads on the normalized mechanical strain energy release rates under two electrical boundary conditions, whereGcr=5.0 N/m denotes the critical mechanical strain energy release rate.When the geometrical parameters of defect and the electrical load are fixed,the mechanical strain energy release rate increases with increasing mechanical load.Moreover,the mechanical strain energy release rate under the electrically impermeable boundary condition is greater than that under the electrically permeable one when σ∞32≤2.5 MPa.However,the mechanical strain energy release rate of the electrically permeable cracks will be wholly larger than that of the electrically impermeable ones when σ∞32≥5.5 MPa.Thus,we can control the crack growth by adjusting the applied mechanical loads.We can observe from Fig.5(b)that the mechanical strain energy release rate increases linearly with increasing electrical load for the electrically impermeable boundary condition.The result shows that the positive electrical load always promotes the crack growth and the negative electrical load retards the crack growth,which is in agreement with the experimental result.26

    Comparing Fig.4(b)with Fig.5(b),we can see that the effect of the electrical load on the crack growth is different for the electrically impermeable boundary condition by using the different fracture criterions.

    Fig.5 Effect of applied electromechanical loads on normalized mechanical strain energy release rate.

    6.Conclusion

    In this paper,by constructing a new numerical conformal mapping and using the Stroh-type formalism,the explicit expressions of the complex potential function,the field intensity factorsandenergyreleaseratesandthemechanicalstrainenergy release rate at the crack tip are derived for the anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids.Numerical examples are provided to show the effects of the geometrical parameters of complicated defect and applied mechanical/electrical loads on the energy release rate and mechanical strain energy release rate under the electricallypermeableandimpermeableboundaryconditions.Insummary,some useful conclusions are drawn as follows:

    (1)The increases of the length of horizontal cracks(left and right cracks)and size of the square hole always promote thecrack growth undertwo electricalboundary conditions.

    (2)The appearance of vertical cracks greatly affects the stress concentration of the horizontal cracks.The increase of the length of vertical cracks can promote or retard the horizontal crack propagation,which is strongly dependent on the lengths of the two horizontal cracks.

    (3)The mechanical load always promotes the crack growth.The electrical load has no effect on the crack growth under the electrically permeable boundary condition,while the effect of the electrical load on the crack growth depends on the fracture criterion under the electrically impermeable boundary condition.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(Nos.11262012,11502123,11462020 and 11262017)and the Inner Mongolia Natural Science Foundation(Nos.2015JQ01 and 2015MS0129)of China.

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j.cja.2016.08.018.

    1.Valdovinos J.Pediatric mechanical circulatory support applications for frequency-leveraged piezoelectric hydraulic pumps[dissertation].Los Angeles(LA):University of California;2014.

    2.Gao CF,Yu JH.Two-dimensional analysis of a semi-infinite crack in piezoelectric media.Mech Res Commun1998;25(6):695–700.

    3.Wang BL,Mai YW.Impermeable crack and permeable crack assumptions,which one is more realistic?J Appl Mech2004;71(4):575–8.

    4.Li XF.Electroelastic analysis of an anti-plane shear crack in a piezoelectric ceramic strip.Int J Solids Struct2002;39(5):1097–117.

    5.Li XF,Lee KY.Electroelastic behavior of a rectangular piezoelectric ceramic with an antiplane shear crack at arbitrary position.Eur J Mech A/Solids2004;23(4):645–58.

    6.Li XF,Tang GJ.Antiplane interface crack between two bonded dissimilar piezoelectric layers.Eur J Mech A/Solids2003;22(2):231–42.

    7.Li XF,Tang GJ.Electroelastic analysis of an interface antiplane shear crack in a layered piezoelectric plate.Int J Eng Sci2003;41(12):1405–22.

    8.Li XF,Wang BL.Anti-plane shear crack normal to and terminating at the interface of two bonded piezoelectric ceramics.Int J Solids Struct2007;44(11–12):3796–810.

    9.Guo JH,Liu P,Lu ZX,Qin TY.Anti-plane analysis of a semiinfinite crack in a piezoelectric strip.Appl Math Mech2011;32(1):75–82.

    10.Gao CF,Fan WX.Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack.Int J Solids Struct1999;36(17):2527–40.

    11.Dai LC,Guo WL,Wang X.Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids.Int J Solids Struct2006;43(6):1818–31.

    12.Wang YJ,Gao CF.The mode-III cracks originating from the edge of a circular hole in a piezoelectric solid.Int J Solids Struct2008;45(16):4590–9.

    13.Guo JH,Lu ZX,Han HT,Yang ZY.Exact solutions for antiplane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material.Int J Solids Struct2009;46(21):3799–809.

    14.Guo JH,Lu ZX,Han HT,Yang ZY.The behavior of two nonsymmetrical permeable cracks emanating from an elliptical hole in a piezoelectric solid.Eur J Mech A–Solid2010;29(4):654–63.

    15.Guo JH,Lu ZX,Feng X.The fracture behavior of multiple cracks emanating from a circular hole in piezoelectric materials.Acta Mech2010;215(1–4):119–34.

    16.Liang YC,Sun YP.Hole/crack identification in circular piezoelectric plates.Proc Eng2014;79:194–203.

    17.Wang WH,Guo JH,Xing YM.Anti-plane analysis of an edge crack emanating from a regular triangle hole with smooth vertices in piezoelectric materials.Acta Mater Compos Sin2015;32(2):601–7[in Chinese].

    18.Wang YJ,Gao CF,Song HP.The anti-plane solution for the edge cracks originating from an arbitrary hole in a piezoelectric material.Mech Res Commun2015;65:17–23.

    19.Yan X,Liu B,Yu J.Cracks emanating from a square hole in rectangular plate in tension.Fatigue Fract Eng Mater Struct2012;35(3):238–46.

    20.Miao CQ,Wei YT,Yan XQ.Two collinear square-hole cracks in an infinite plate in tension.Theor Appl Fract Mech2015;75:32–8.

    21.Zhang TY,Gao CF.Fracture behaviors of piezoelectric materials.Theor Appl Fract Mech2004;41(1–3):339–79.

    22.Savin GN.Stress distribution around holes.Naukova Dumka Press;1968.

    23.Guo JH,Lu ZX,Lv J.Field intensity factors of a mode-III nonsymmetrical cracks originating from circular hole in piezoelectric composite material.Acta Mater Compos Sin2014;31(1):241–7[Chinese].

    24.Sosa H.Plane problems in piezoelectric media with defects.Int J Solids Struct1991;28(4):491–505.

    25.Pak YE.Crack extension force in a piezoelectric material.J Appl Mech-T ASME1990;57(3):647–53.

    26.Park SB,Sun CT.Fracture criteria for piezoelectric ceramics.J Am Ceram Soc1995;78(6):1475–80.

    15 January 2016;revised 9 March 2016;accepted 3 May 2016

    Available online 15 October 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 471 6576143.

    E-mail addresses:fsxwang@163.com(S.Fan),jhguo@imut.edu.cn,guojunhong114015@163.com(J.Guo),yujing3622@163.com(J.Yu).Peer review under responsibility of Editorial Committee of CJA.

    一级a爱片免费观看的视频| 男女下面插进去视频免费观看| 两个人视频免费观看高清| 给我免费播放毛片高清在线观看| www.精华液| 91九色精品人成在线观看| 亚洲人成网站在线播放欧美日韩| 久久国产精品男人的天堂亚洲| 国产午夜精品久久久久久| 18美女黄网站色大片免费观看| 亚洲成国产人片在线观看| 久久影院123| www日本在线高清视频| 少妇粗大呻吟视频| 变态另类丝袜制服| 波多野结衣一区麻豆| 国产成人啪精品午夜网站| 黑人操中国人逼视频| 欧美乱色亚洲激情| 91麻豆av在线| 美女高潮喷水抽搐中文字幕| 欧美黑人精品巨大| 美女免费视频网站| 黄色女人牲交| 好男人电影高清在线观看| av在线播放免费不卡| 叶爱在线成人免费视频播放| 夜夜夜夜夜久久久久| 成人欧美大片| 欧美一区二区精品小视频在线| 国产蜜桃级精品一区二区三区| 国产伦人伦偷精品视频| 色av中文字幕| 亚洲专区国产一区二区| 午夜福利,免费看| 亚洲五月天丁香| 成人三级做爰电影| 久久精品亚洲精品国产色婷小说| 亚洲精品在线观看二区| 欧美激情高清一区二区三区| 久久久久国产一级毛片高清牌| 9191精品国产免费久久| 欧美日本亚洲视频在线播放| 欧美日韩亚洲综合一区二区三区_| 久久香蕉激情| 91精品国产国语对白视频| 久久精品91蜜桃| 久热这里只有精品99| 日本a在线网址| 久久久久久亚洲精品国产蜜桃av| 精品卡一卡二卡四卡免费| 99久久久亚洲精品蜜臀av| 免费在线观看完整版高清| 1024视频免费在线观看| 午夜久久久久精精品| 777久久人妻少妇嫩草av网站| 美女免费视频网站| 午夜福利在线观看吧| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产日韩欧美精品在线观看 | 亚洲精品在线美女| 国产欧美日韩一区二区三| 亚洲黑人精品在线| 中文字幕精品免费在线观看视频| 无遮挡黄片免费观看| 黑丝袜美女国产一区| 国产精品美女特级片免费视频播放器 | 欧美久久黑人一区二区| 欧美精品亚洲一区二区| 午夜免费观看网址| 中文字幕人妻熟女乱码| 91在线观看av| 日本五十路高清| 国产成人精品在线电影| 国产亚洲欧美98| 国产亚洲精品综合一区在线观看 | 香蕉久久夜色| 精品少妇一区二区三区视频日本电影| 99久久综合精品五月天人人| 欧美日本亚洲视频在线播放| 欧美在线黄色| 日本 av在线| 一区二区日韩欧美中文字幕| 亚洲激情在线av| 97碰自拍视频| avwww免费| 他把我摸到了高潮在线观看| 在线免费观看的www视频| 免费高清在线观看日韩| 亚洲国产欧美一区二区综合| 两人在一起打扑克的视频| 黄色毛片三级朝国网站| 午夜免费成人在线视频| 亚洲av电影在线进入| 久久天躁狠狠躁夜夜2o2o| 满18在线观看网站| 涩涩av久久男人的天堂| 午夜免费观看网址| 深夜精品福利| 国产一区二区激情短视频| 亚洲精品国产精品久久久不卡| 久久精品影院6| 亚洲精品国产精品久久久不卡| 中文字幕人妻丝袜一区二区| 久久精品影院6| 免费女性裸体啪啪无遮挡网站| a在线观看视频网站| 国产麻豆69| 热re99久久国产66热| 久久人人97超碰香蕉20202| 免费高清在线观看日韩| 精品久久久久久成人av| 亚洲人成网站在线播放欧美日韩| 亚洲中文av在线| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品av在线| www.自偷自拍.com| 欧美在线一区亚洲| 国产精品一区二区免费欧美| 日本五十路高清| 国产伦人伦偷精品视频| 国产aⅴ精品一区二区三区波| 亚洲中文字幕日韩| 91成年电影在线观看| 性少妇av在线| 成人国产综合亚洲| 人人妻人人爽人人添夜夜欢视频| 可以在线观看的亚洲视频| 亚洲av片天天在线观看| 一区福利在线观看| 波多野结衣一区麻豆| 91精品国产国语对白视频| 亚洲精品一区av在线观看| 亚洲精品粉嫩美女一区| 国产精品久久视频播放| 日韩av在线大香蕉| 亚洲国产精品sss在线观看| 久久精品aⅴ一区二区三区四区| 国产精品久久视频播放| 久久国产亚洲av麻豆专区| 亚洲 国产 在线| videosex国产| 老司机午夜福利在线观看视频| 成年版毛片免费区| 中文字幕人妻丝袜一区二区| 女人被狂操c到高潮| 又黄又爽又免费观看的视频| 亚洲熟妇熟女久久| 国内精品久久久久久久电影| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| 夜夜夜夜夜久久久久| 成人国产综合亚洲| 人人妻人人爽人人添夜夜欢视频| 欧美丝袜亚洲另类 | 亚洲精品美女久久av网站| 99香蕉大伊视频| 国产亚洲精品综合一区在线观看 | 嫩草影视91久久| 国产成人精品在线电影| 在线播放国产精品三级| 乱人伦中国视频| 欧美 亚洲 国产 日韩一| 一边摸一边做爽爽视频免费| 90打野战视频偷拍视频| 国产aⅴ精品一区二区三区波| 天天躁夜夜躁狠狠躁躁| 99国产精品一区二区蜜桃av| 日日爽夜夜爽网站| 精品人妻在线不人妻| 制服诱惑二区| 99久久99久久久精品蜜桃| 国产又爽黄色视频| 香蕉国产在线看| 国产亚洲精品综合一区在线观看 | 国产野战对白在线观看| 亚洲成av人片免费观看| 中亚洲国语对白在线视频| 久久伊人香网站| 国产成人欧美| 中文字幕另类日韩欧美亚洲嫩草| 脱女人内裤的视频| av中文乱码字幕在线| 一个人免费在线观看的高清视频| 69精品国产乱码久久久| 国产成人免费无遮挡视频| 久久久久亚洲av毛片大全| 午夜福利免费观看在线| 国产区一区二久久| 欧美日韩精品网址| 欧美激情 高清一区二区三区| 露出奶头的视频| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 亚洲一区二区三区不卡视频| 曰老女人黄片| 国产又爽黄色视频| 19禁男女啪啪无遮挡网站| 成年人黄色毛片网站| 极品人妻少妇av视频| 国产精品野战在线观看| 人人妻人人澡欧美一区二区 | 久久 成人 亚洲| 成人av一区二区三区在线看| 美女高潮喷水抽搐中文字幕| 国产欧美日韩综合在线一区二区| 中文字幕av电影在线播放| 又紧又爽又黄一区二区| 午夜a级毛片| 大香蕉久久成人网| 看片在线看免费视频| 国产精品综合久久久久久久免费 | 中出人妻视频一区二区| 国产精品免费视频内射| 亚洲久久久国产精品| 一进一出抽搐动态| 午夜日韩欧美国产| 日韩欧美国产一区二区入口| 成人亚洲精品一区在线观看| 亚洲成国产人片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久视频播放| 久久久久久亚洲精品国产蜜桃av| 国产成人精品久久二区二区免费| 亚洲国产精品sss在线观看| 国产精品 国内视频| 国产在线精品亚洲第一网站| 欧美日韩瑟瑟在线播放| 97人妻精品一区二区三区麻豆 | 成人手机av| 精品日产1卡2卡| 天天添夜夜摸| 国产精品亚洲av一区麻豆| 男男h啪啪无遮挡| 亚洲精品在线观看二区| 国产三级黄色录像| 麻豆国产av国片精品| 国产激情久久老熟女| 美女国产高潮福利片在线看| 久久久久久免费高清国产稀缺| 日本免费一区二区三区高清不卡 | 岛国视频午夜一区免费看| 黄片小视频在线播放| 一本久久中文字幕| 国产单亲对白刺激| 黄色毛片三级朝国网站| 好男人电影高清在线观看| 十八禁网站免费在线| 日本免费a在线| 香蕉国产在线看| 久99久视频精品免费| 亚洲欧美精品综合久久99| 日韩精品中文字幕看吧| 97人妻天天添夜夜摸| 国产午夜福利久久久久久| 免费少妇av软件| 88av欧美| 一个人免费在线观看的高清视频| 嫁个100分男人电影在线观看| 中出人妻视频一区二区| 黄色毛片三级朝国网站| 日韩免费av在线播放| 精品人妻1区二区| 少妇被粗大的猛进出69影院| 黄频高清免费视频| 桃红色精品国产亚洲av| 多毛熟女@视频| 麻豆av在线久日| 桃色一区二区三区在线观看| 九色国产91popny在线| 色尼玛亚洲综合影院| 亚洲va日本ⅴa欧美va伊人久久| 91成人精品电影| 久久天躁狠狠躁夜夜2o2o| 欧美中文综合在线视频| 在线观看www视频免费| 亚洲av成人av| 最新在线观看一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲美女久久久| 国产精品,欧美在线| 午夜免费激情av| 精品卡一卡二卡四卡免费| 日韩免费av在线播放| 日本a在线网址| 国产麻豆69| 好看av亚洲va欧美ⅴa在| 一边摸一边抽搐一进一出视频| 一区二区日韩欧美中文字幕| 1024视频免费在线观看| 精品欧美一区二区三区在线| 久久香蕉精品热| 亚洲国产看品久久| 真人一进一出gif抽搐免费| 国产人伦9x9x在线观看| netflix在线观看网站| 亚洲美女黄片视频| 久久精品影院6| 女人精品久久久久毛片| 国产精品亚洲美女久久久| 久久久国产成人精品二区| 天天一区二区日本电影三级 | 夜夜看夜夜爽夜夜摸| 天堂√8在线中文| 久久精品国产99精品国产亚洲性色 | 一级毛片精品| 国产欧美日韩一区二区三| 在线观看免费午夜福利视频| 一级黄色大片毛片| 露出奶头的视频| 99精品在免费线老司机午夜| 日韩精品免费视频一区二区三区| 首页视频小说图片口味搜索| 亚洲中文字幕日韩| 亚洲五月婷婷丁香| 一本综合久久免费| 露出奶头的视频| 久久草成人影院| 乱人伦中国视频| 欧美黄色片欧美黄色片| 可以免费在线观看a视频的电影网站| 搞女人的毛片| 色综合亚洲欧美另类图片| 91国产中文字幕| 一二三四在线观看免费中文在| 亚洲九九香蕉| 亚洲国产日韩欧美精品在线观看 | 一进一出好大好爽视频| 国产精品久久久久久人妻精品电影| 日韩大码丰满熟妇| 国产91精品成人一区二区三区| 欧美激情极品国产一区二区三区| 欧美成狂野欧美在线观看| 日韩大尺度精品在线看网址 | 成人三级黄色视频| 亚洲成av人片免费观看| 免费无遮挡裸体视频| 午夜亚洲福利在线播放| 一级毛片精品| 90打野战视频偷拍视频| 婷婷丁香在线五月| 欧美av亚洲av综合av国产av| 电影成人av| 国产成人精品久久二区二区免费| 久久久久久久午夜电影| 欧美一级a爱片免费观看看 | 黑人巨大精品欧美一区二区mp4| av中文乱码字幕在线| 久久精品成人免费网站| 久久亚洲真实| 色播亚洲综合网| 91精品国产国语对白视频| 97碰自拍视频| 亚洲一码二码三码区别大吗| 亚洲一区高清亚洲精品| 老熟妇乱子伦视频在线观看| 久久精品人人爽人人爽视色| 久久九九热精品免费| 亚洲avbb在线观看| 咕卡用的链子| 国产xxxxx性猛交| 免费观看人在逋| 国产成人欧美在线观看| 欧美精品亚洲一区二区| 国产一级毛片七仙女欲春2 | 久久人人97超碰香蕉20202| 午夜精品久久久久久毛片777| 欧美激情久久久久久爽电影 | 国产亚洲欧美精品永久| 黄色成人免费大全| 欧美在线一区亚洲| 国产精品久久电影中文字幕| 在线观看免费视频网站a站| 色播亚洲综合网| 亚洲最大成人中文| 色综合站精品国产| 黄色毛片三级朝国网站| 亚洲av电影在线进入| 最新在线观看一区二区三区| 激情视频va一区二区三区| 一本大道久久a久久精品| 一区二区三区国产精品乱码| 亚洲自偷自拍图片 自拍| 身体一侧抽搐| 国产91精品成人一区二区三区| 一本久久中文字幕| 亚洲国产精品久久男人天堂| 久久人人精品亚洲av| 两性夫妻黄色片| 老司机靠b影院| 99riav亚洲国产免费| 黄网站色视频无遮挡免费观看| or卡值多少钱| 无限看片的www在线观看| 国产一区二区激情短视频| 在线国产一区二区在线| 亚洲成av片中文字幕在线观看| 中文字幕久久专区| 国产野战对白在线观看| 日本vs欧美在线观看视频| av中文乱码字幕在线| 欧美人与性动交α欧美精品济南到| 午夜福利高清视频| 久久久久国内视频| 一区二区三区高清视频在线| 国产精品美女特级片免费视频播放器 | 亚洲中文字幕一区二区三区有码在线看 | 国产成人影院久久av| 中文字幕av电影在线播放| 久久久久久大精品| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲| 欧美国产精品va在线观看不卡| 天堂√8在线中文| 成人精品一区二区免费| 精品国产美女av久久久久小说| 多毛熟女@视频| 精品国产美女av久久久久小说| 国产激情久久老熟女| 91麻豆精品激情在线观看国产| 亚洲在线自拍视频| 一个人免费在线观看的高清视频| 少妇熟女aⅴ在线视频| 99国产精品一区二区蜜桃av| 亚洲中文字幕日韩| 久久久国产成人免费| 欧美精品啪啪一区二区三区| 免费人成视频x8x8入口观看| 激情视频va一区二区三区| 欧美国产日韩亚洲一区| 黄色成人免费大全| 激情视频va一区二区三区| 国产又色又爽无遮挡免费看| 成在线人永久免费视频| 热99re8久久精品国产| 亚洲第一电影网av| 嫩草影视91久久| or卡值多少钱| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩黄片免| cao死你这个sao货| 成年女人毛片免费观看观看9| 纯流量卡能插随身wifi吗| 亚洲无线在线观看| 99久久精品国产亚洲精品| 丁香六月欧美| 亚洲 欧美一区二区三区| 日韩精品中文字幕看吧| 国产午夜精品久久久久久| √禁漫天堂资源中文www| 欧美亚洲日本最大视频资源| 国产精品美女特级片免费视频播放器 | 国产精品98久久久久久宅男小说| 人成视频在线观看免费观看| 国产一区二区三区视频了| 午夜福利在线观看吧| 国产一级毛片七仙女欲春2 | 青草久久国产| 九色亚洲精品在线播放| 中文字幕人妻熟女乱码| 动漫黄色视频在线观看| 日韩一卡2卡3卡4卡2021年| 在线视频色国产色| 亚洲欧美激情综合另类| 日韩欧美一区视频在线观看| 淫妇啪啪啪对白视频| 亚洲久久久国产精品| 一区二区三区国产精品乱码| 亚洲aⅴ乱码一区二区在线播放 | 精品一区二区三区四区五区乱码| 成人三级黄色视频| 亚洲一区高清亚洲精品| 久久精品国产清高在天天线| 伦理电影免费视频| 岛国视频午夜一区免费看| 看黄色毛片网站| videosex国产| 97人妻天天添夜夜摸| 欧美激情高清一区二区三区| av免费在线观看网站| tocl精华| 大型黄色视频在线免费观看| 女人精品久久久久毛片| 黑人巨大精品欧美一区二区蜜桃| 国产激情久久老熟女| 精品一品国产午夜福利视频| 精品国产乱子伦一区二区三区| 女生性感内裤真人,穿戴方法视频| 看黄色毛片网站| 日韩av在线大香蕉| 亚洲自偷自拍图片 自拍| 十八禁人妻一区二区| 纯流量卡能插随身wifi吗| 精品熟女少妇八av免费久了| 一级a爱片免费观看的视频| 免费在线观看黄色视频的| 亚洲成人精品中文字幕电影| 久久午夜亚洲精品久久| 亚洲中文字幕一区二区三区有码在线看 | 桃红色精品国产亚洲av| 91字幕亚洲| 波多野结衣一区麻豆| 亚洲精品一区av在线观看| 三级毛片av免费| 一区福利在线观看| 国产人伦9x9x在线观看| 无遮挡黄片免费观看| 给我免费播放毛片高清在线观看| 丝袜人妻中文字幕| 黄色a级毛片大全视频| 啦啦啦免费观看视频1| 亚洲欧美激情综合另类| 精品国产亚洲在线| 亚洲精华国产精华精| 国产激情欧美一区二区| 国产av一区二区精品久久| 国产麻豆成人av免费视频| 欧美性长视频在线观看| 69av精品久久久久久| 国产伦一二天堂av在线观看| 一本久久中文字幕| av免费在线观看网站| 久9热在线精品视频| 亚洲第一av免费看| 可以免费在线观看a视频的电影网站| 亚洲,欧美精品.| 欧美另类亚洲清纯唯美| 美女高潮喷水抽搐中文字幕| 搞女人的毛片| 日韩av在线大香蕉| 好男人电影高清在线观看| 欧美中文综合在线视频| 欧美老熟妇乱子伦牲交| 久久精品国产综合久久久| 90打野战视频偷拍视频| 国产亚洲av高清不卡| 三级毛片av免费| 国产亚洲精品综合一区在线观看 | 午夜免费成人在线视频| www国产在线视频色| 91精品三级在线观看| 中文字幕精品免费在线观看视频| 精品国产乱码久久久久久男人| 亚洲成人免费电影在线观看| 波多野结衣一区麻豆| 午夜福利欧美成人| 免费一级毛片在线播放高清视频 | 中文字幕高清在线视频| 亚洲中文av在线| 国产精品98久久久久久宅男小说| 久久这里只有精品19| 久久国产精品男人的天堂亚洲| 精品国内亚洲2022精品成人| 免费搜索国产男女视频| 亚洲三区欧美一区| 精品久久蜜臀av无| 老汉色av国产亚洲站长工具| 久久久久久久久中文| 色精品久久人妻99蜜桃| 神马国产精品三级电影在线观看 | 欧美在线一区亚洲| 日本免费一区二区三区高清不卡 | 999久久久国产精品视频| 成年人黄色毛片网站| 美女午夜性视频免费| 首页视频小说图片口味搜索| 亚洲男人天堂网一区| 老司机深夜福利视频在线观看| 久久亚洲真实| 亚洲精品一区av在线观看| 黄色a级毛片大全视频| 亚洲av成人av| 九色亚洲精品在线播放| 电影成人av| 波多野结衣高清无吗| 亚洲欧洲精品一区二区精品久久久| 欧美黄色片欧美黄色片| 无人区码免费观看不卡| av视频免费观看在线观看| 欧美最黄视频在线播放免费| 亚洲aⅴ乱码一区二区在线播放 | 成年版毛片免费区| 亚洲最大成人中文| 亚洲男人天堂网一区| 午夜福利视频1000在线观看 | 精品久久久久久成人av| 国产一区二区三区视频了| 精品国产一区二区久久| 纯流量卡能插随身wifi吗| 99久久精品国产亚洲精品| 好男人电影高清在线观看| √禁漫天堂资源中文www| 18禁国产床啪视频网站| 国产精品亚洲美女久久久| 午夜福利视频1000在线观看 | 如日韩欧美国产精品一区二区三区| 久热爱精品视频在线9| 性少妇av在线| 国产av在哪里看| 国产精品一区二区在线不卡| 国产成人精品在线电影| 岛国在线观看网站| 女警被强在线播放| 久久国产乱子伦精品免费另类| 人人澡人人妻人| 欧美日韩乱码在线| 成人国产综合亚洲| 精品一区二区三区四区五区乱码| av中文乱码字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利一区二区在线看| 国产亚洲精品一区二区www| 久久午夜亚洲精品久久| 久久久久久人人人人人|