• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    2017-11-21 12:54:36LiGuidnLiHikeLiBin
    CHINESE JOURNAL OF AERONAUTICS 2017年1期

    Li Guidn,Li Hike,Li Bin

    aSchool of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    bState Grid Tianjin Power Dongli Power Supply Branch,Tianjin 300300,China

    Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    Li Guidana,*,Li Haikeb,Li Bina

    aSchool of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    bState Grid Tianjin Power Dongli Power Supply Branch,Tianjin 300300,China

    Attitude maneuver;Backstepping control;Null motion;Parallel configuration;Singularity;Spherical actuator

    A parallel configuration using two 3-degree-of-freedom(3-DOF)spherical electromagnetic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers.First,the full dynamic equations of motion for the spacecraft system are derived by the Newton-Euler method.To facilitate computation,virtual gimbal coordinate frames are established.Second,a nonlinear control law in terms of quaternions is developed via backstepping method.The proposed control law compensates the coupling torques arising from the spacecraft rotation,and is robust against the external disturbances.Then,the singularity problem is analyzed.To avoid singularities,a modified weighed Moore-Pseudo inverse velocity steering law based on null motion is proposed.The weighted matrices are carefully designed to switch the actuators and redistribute the control torques.The null motion is used to reorient the rotor away from the tilt angle saturation state.Finally,numerical simulations of rest-to-rest maneuvers are performed to validate the effectiveness of the proposed method.

    1.Introduction

    Control moment gyros(CMGs)are widely used in spacecraft attitude control,which is attributed to the advantages of high torque capacity and no propellants.1–3Especially,the single gimbal CMG(SGCMG)features the torque amplification capability.However,complex gimbal structures,large servo parts and commonly required cluster configurations limit their applications to small spacecraft.In contrast,multi-degree-offreedom(multi-DOF)spherical electromagnetic momentum exchange actuator(SEMEA)has great advantages of reducing attitude control system(ACS)mass,volume and power requirements because of their higher structural integration.4Furthermore,its largest asset is that a single device is capable of generating three-axis control torques because the variablespeed rotor can be tilted in any direction,which shows great prospect in 3-axis spacecraft attitude control.5,6

    Over the past decades,a variety of structural forms of spherical actuators have been proposed,which commonly have a spherical rotor or a spherical stator.Downer et al.7proposeda magnetic rotor suspension system including a magnetic annulus rotor and a spherical stator.An armature is used to induce rotation of the rotor and the spin axis can be gimbaled by selectively exciting the control coils on the stator.A similar ball joint type magnetic bearing for tilting body can be found in Ref.8.Note that if the armature is moved outside the stator,it will allow a larger tilting range,increasing the amount of angular momentum exchangeable between the actuator and the spacecraft.Based on this idea for structural improvements,Che′telat et al.9put forward a reaction sphere actuator with an 8-pole permanent magnet spherical rotor and a 20-pole electromagnet stator.The rotor can be electronically accelerated in any direction,and it is by magnetic levitation that the rotor is held in position.Instead of a multipole magnet,Chabot et al.10,11proposed a design using a spherical dipole magnet as the rotor,which is inexpensive and readily available.Similarly,in Ref.12,we proposed a new type of spherical momentum exchange device based on a permanent magnet spherical motors(PMSM)13and the detailed design consideration is presented in Ref.14.Compared with multi-axis magnetic momentum wheels,15its spherical-profile and dihedral-shell PMs can maintain the uniformity of the air–gap magnetic flux density when the rotor is in motion,and can help acquire a larger tilting range.From the perspective view,a single spherical actuator can be an alternative to conventional CMG clusters.However,its rotor tilt range is limited and the singularity occurs when the rotor tilt angle is saturated.Therefore,the control law and steering logic need to be concerned with the singularity.To overcome this drawback,ann-step incremental rotation strategy16was introduced in Ref.12.In fact,the steering strategy belongs to an open-loop scheme,which is sensitive to the unexpected external disturbances,spacecraft parameters and initial attitude errors.In general,more practicable singularity avoidance schemes and robust feedback control laws are desired.

    In this paper,we focus on the attitude maneuver control using spherical actuators.In CMG systems,cluster configuration17and path planning18are effective singularity avoidance strategies.When the system falls into the singularity state,null motion can be used to reconfigure the CMGs to preferred gimbal angles.Referring to this method,a parallel configuration for SEMEAs is investigated to avoid the tilt angle saturation singularity and simultaneously to provide redundancy.The dynamic equations of motion are derived by the Newton-Euler approach.Noting that the control system has a cascaded structure,we adopt a backstepping control law.19,20When the tilt angle saturation singularity is encountered,a modified weighed pseudo inverse steering law based on null motion is applied,and the weighted matrices are carefully designed.To validate the effectiveness of the proposed method,numerical simulations of rest-to-rest maneuvers are carried out.

    2.Introduction to SEMEA

    The prototype and schematic of the SEMEA are presented in Fig.1.The SEMEA is mainly composed of an electromagnetic stator and a PM rotor.The universal mechanical shaft in the PMSM is cut off only for momentum exchange purpose.Its variable-speed rotating rotor can be tilted in any direction,thus realizing three-dimensional momentum exchange with the spacecraft platform.

    Fig.1 Illustration of SEMEA.

    The actuator works on the electromagnetic torque T,whose characteristics are determined by stator currents I,and the arrangements of stator windings and rotor permanent magnets(Fig.1(b)).The relationship can be expressed as T=KTI where KTis the defined static torque characteristic matrix.Thus,the rotation and tilt of the rotor can be controlled by the stator currents I.Related control laws and electrifying strategies can be found in Refs.21,22.For simplicity,ideal rotor trajectory tracking is assumed in this paper.Note that the mechanical structure and the air–gap magnetic field distribution limit the rotor tilting range(the maximum of the rotor tilt angle δm=15°).

    3.Analytical model of spacecraft with two SEMEAs

    In this section,the Newton-Euler method is employed to derive the complete dynamic equations of motion for a spacecraft with two parallel mounted SEMEAs.The attitude kinematics is described in terms of quaternions.

    3.1.Dynamics equations of motion

    To simplify the development,we first consider a rigid spacecraft with only one SEMEA.Afterwards,we extend the result to the complete system.As shown in Fig.2(a),the stator housing and the spacecraft body are treated as one platform.A reference frameBwith basis(b1,b2,b3)is fixed with the platform.The center of mass of the overall systemOis taken as the origin of coordinates.The spacecraft platform is free to translate and rotate with respect to the inertial frameN,with i1,i2and i3the unit vectors.The origin of coordinates is at the rotor’s center of massORand rRis the distance vector fromOtoOR.

    To facilitate computation,a rotor’s outer virtual gimbal frameGwith orthogonal unit vectors(g1,g2,g3)and inner virtual gimbal frameHwith orthogonal unit vectors(h1,h2,h3)are established to define the orientation of the rotor in the spacecraft platform(Fig.2(b)).The unit vectors g2,h1and h3are parallel to the outer virtual gimbal axis,inner virtual gimbal axis and spin axis,respectively.The frameBtransforms to the framesGandHby Euler angle rotations through the outer virtual gimbal angel and inner virtual gimbal angel,respectively.The spherical rotor rotates around the spin axis at speed rate Ω.When the initial gimbal angles are zero,the unit vectors(h1,g2,h3)coincide with the unit vectors(b1,b2,b3)of frameB.The unit vector g2stays fixed relative to the frameB,and any unit vector gior hican be obtained by the following direction cosine matrices:

    Fig.2 Models for derivation of equations of motion.

    where α and β are outer and inner virtual gimbal angles,respectively.In the vector expressions,the subscripts indicate the relative motion.The absolute angular momentum HRof the rotor with respect to its center of massORis given by

    where ωRstands for the absolute angular velocity of the rotor;ωrhis the relative angular velocity of the rotor with respect to frameH,ωhgthe relative angular velocity of frameHwith respect to frameG,ωgbthe relative angular velocity of frameGwith respect to frameB,and ω the absolute angular velocity of the spacecraft platform;IRis the rotor inertia matrix.LetIhbe the moment of inertia of the rotor about its spin axis.Assume that the spherical rotor is completely symmetrical,and then in any frame IRis a constant diagonal matrix

    According to the definition of the rotor virtual gimbal coordinate frames,

    Since there is no angular momentum for the virtual gimbals,the total angular momentum of the overall system with respect to its center of massOis given by

    where HBis the absolute angular momentum of the spacecraft platform,andmRthe rotor mass;E is unit matrix;rRis the modulus of rR.Let Ibbe the inertia matrix of the platform with respect toO,and then H is rewritten as

    Let Lerepresent the external disturbance torques experienced by the system.According to Euler’s equation,the initial time derivative of H is given by

    Substitute Eqs.(4)and(5)into Eq.(9),and the dynamic equation of motion of the system is obtained as follows:

    where IS=IB+IRis a constant matrix.The right of Eq.(11)represents the output torques produced by the actuator.The first term represents the torque caused by the motion of the spacecraft body,the second term represents the torque caused by the rotor accelerations,and the third term represents the torque caused by the rotor tilt rate or rotation acceleration.

    From here on,we extend the result to the case of the spacecraft with two SEMEAs.Then the dynamics equation of motion of the overall system can be obtained from Eqs.(9)and(11)in the following form:

    with the subscripts 1 and 2 indicating the two SEMEAs.

    3.2.Attitude kinematics

    In this paper,the quaternion q=[q1,q2,q3,q4]Tis used to describe the attitude of the spacecraft and the desired attitude is adopted as the inertial frame,i.e.,the command quaternion qc=[0,0,0,1]T.In this case,the kinematic differential equation in terms of error quaternion is expressed as follows23:

    where qeV=[qe1,qe2,qe3]Tandqe4are the vector and scalar parts of the error quaternion qe,respectively,ω=[ω1,ω2,ω3]T;and[q×eV]is the slew-symmetric matrix defined by

    4.Nonlinear backstepping control law design

    Note that the attitude control system described by Eqs.(12)and(14)has a cascade structure,and the effective backstepping method can be used to develop the feedback law.The control block diagram is presented in Fig.3.

    It is assumed that the current state of the system α,β,Ω,ω and q can be measured in real time.We first consider the subsystem described by Eq.(14).To bring the spacecraft to the desired final attitude,the tracking law ωf=[ωf1,ωf2,ωf3]Tcan be considered as pseudo control input.The error state variables e1and e2are defined as

    LetVabe the following Lyapunov candidate function:

    The time derivative ofVais obtained as

    To makeVa≤0,we select the linear tracking function19as follows:

    wherekiare positive constants.

    After ωfis determined,the real command input should be determined to guarantee the pseudo-control input to be achieved.We define the following Lyapunov candidate function for the overall system:

    The time derivative ofVcan be written as follows:

    Substituting Eqs.(12),(16)and(20)into Eq.(22)gives

    where Lrand Lostand for the required torque and the output control torque,respectively;ρ andlMare positive constants.The external disturbance torques are bounded by

    Substituting Eqs.(20)and(24)into Eq.(23)gives

    Accordingly,the backstepping control law guarantees the asymptotically stability of the closed-loop system according to the Lyapunov theory.

    5.Singularity avoidance steering law design

    As shown in Eq.(13),Agdoes not contain Ω and thus is much smaller compared to Ah,and it is usually dropped.The steering law constraint given in Eq.(24)is then simplified as

    Each column vector of Ahrepresents the output control torques produced by the rotor tilt motion or spin acceleration,corresponding to CMG mode and RW mode,respectively.Note that the inner virtual gimbal angle β never equals 90°(δm=15°)and rank(Ah)≡ 3.This is to say,within the tilting range,the output torque of a single SEMEA spans the entire space.However,when the rotor tilts to the bound,there exists a direction in which an output torque cannot be generated.It is perpendicular to the spin axis and points outwards.This direction is called the ‘tilt angle saturation singularity direction”.When the required torque lies in this direction,a single SEMEA cannot avoid the singularity because there is no null space to reorient the rotor.In contrast,for a parallel configuration with two SEMEAs,a modified null motion strategy can be resorted to in order to avoid this singularity.

    For Ahis never rank deficient,naturally,the standard Moore–Penrose inverse can be used to obtain a minimum norm solution for˙η,and then the resulting simplified velocity steering law is given by

    Note that it is not applicable in practice if the solution tends to exceed the restricted range but the rotor has reached up to the bound.It is eagerly anticipated that the tilt angle will decrease automatically at the next time.However,the ideal case is infrequent and the tilt angle saturation singularity is more likely to happen.To avoid the singularity,when one of the actuators falls into the saturation state,the other one should switch to provide effective control torques,meanwhile,the saturated rotor should be reoriented to a preferred position away from tilt angle saturation.A modified weighted pseudo inverse steering logic based on null motion can be implemented

    where E6represents a 6×6 identity matrix;W1and W2are weighted matrices used to switch the actuators and redistribute the control torques.They are defined to be

    wherewiare positive scalars which control how heavily the SEMEAs are to perform in reaction wheel mode or CMG mode.24For simplicity,herewiare all set to 1.The parameters μ1and μ2are switch weights.Let δ1and δ2represent the two rotors’tilt angle respectively,then μ1and μ2are functions of δ1and δ2.They are defined to be

    where δmirepresents the maximum of the two rotors’tilt angle,and μ-ithe value of μiat the last moment.And Nd is the SEMEA null motion.Let constant vector ηfbe the desired rotor position,and the vector d is selected as

    wherekeis a positive gain to be appropriately chosen,and W3a diagonal matrix associated with rotor’s reorienting movement given by

    As shown in Eq.(31), μ1and μ2are either 0 or 1.If μ1is 1,this means that the resulting steering law will be performed with rotor 1 to be reoriented to the desired position and at the same time rotor 2 providing effective control torques onto the spacecraft.As we can see,AhNd=0,i.e.,the SEMEA null motion produces no torques onto the spacecraft.The stability of null motion has been demonstrated in Ref.25.

    6.Numerical simulations

    According to the dynamics model,nonlinear control laws and steering laws have been discussed,and numerical simulations of rest-to-rest maneuvers are performed for two main objectives:(1)to confirm the asymptotically stability of the backstepping feedback law;(2)to demonstrate the effectiveness of the proposed singularity avoidance steering logic for the parallel configuration.The external disturbance torques are selected as

    Two cases with different tilting ranges are considered in our simulations.The detailed simulation parameters are listed in Table 1.In Case 1,the maximum tilt angles are just as normal(δm1= δm2=15°).During the maneuvers,it may not encounter the tilt angle saturation.In order to demonstrate the working principle of the steering law clearly,a singularity case is needed.Therefore,in Case 2,the maximum tilt angle of rotor 1 is modified(δm1=8°,δm2=15°)to ensure that the singularity will happen.The simulation results are presented in Figs.4–6.Note that the two cases share the same responses of thespacecraft platform,but different SEMEA responses.The rotor tilt angle response illustrates the working process of the steering law clearly.

    Table 1 Simulation parameters.

    Fig.4 History responses of spacecraft.

    Fig.4 shows the history responses of the spacecraft.Fig.4(a)plots the responses of the attitude quaternion,and Fig.4(b)gives the body angular velocity responses.From the simulation results,it can be seen that the proposed nonlinear control law is asymptotically stable and performs very well.The large angle attitude maneuver is effectively achieved with the existence of the external disturbance torques.

    Fig.5 History responses of SEMEAs for Case 1(δm1= δm2=15°).

    Fig.6 History responses of SEMEAs for Case 2(δm1=8°,δm2=15°).

    As shown in Fig.5,in Case 1,it does not encounter the singularity.The maximum tilt angle of rotor 1 approximately equals 9.7°(around 2.6 s),and it is within the tilting range.During the maneuver,therefore,only SEMEA 1 works and provides control torques while SEMEA 2 holds the initial states.It is apparent that the tilt saturation may happen if the maneuver mission is changed or the tilting range is decreased,just as in Case 2.

    As shown in Fig.6,in Case 2,at the beginning of the maneuver SEMEA 1 first provides control torques,and around 1.2 s it tilts to the maximum.At this moment,SEMEA 2 switches to produce effective torques onto the spacecraft,meanwhile,null motion drives SEMEA 1 away from the saturation state.Around 5 s,it is brought to the initial position.Thus,the tilt angle saturation singularity is successfully avoided.The drawback of the weighting matrices is that the tilt angular rates of the rotor change extremely sharply at the switch point,which requires the actuator to make a very fast dynamic response in practice.

    7.Conclusions

    (1)The full equations of motion of a rigid spacecraft with two spherical actuators mounted in parallel are derived.Compared with conventional CMG system,the spherical actuator’s gimbal-less structure makes the formula more accurate and simple.

    (2)A nonlinear control law based on the backstepping control method is developed with the external disturbance overcome.To avoid singularity,a modified version of weighted velocity steering law based on null motion is proposed and the weighted matrices are carefully designed.

    (3)The simulation results validate the effectiveness of the

    proposed control law and the singularity avoidance steering law.Ideal rotor trajectory tracking for the actuator is assumed in the simulation.In practice,fast dynamic response of the SEMEA is crucially required.Device optimization and preferred configuration need

    to be studied in the future work.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China(No.51677130)and the Independent Innovation Funds of Tianjin University(No.1405).

    1.Hu Q,Zhang JR.Attitude control and vibration suppression for flexible spacecraft using control moment gyroscopes.J Aerosp Eng2015;29(1):04015027-1–04015027-12.

    2.Hu Q,Jia YH,Xu SJ.Adaptive suppression of linear structural vibration using control moment gyroscopes.J Guid Control Dyn2014;37(3):990–6.

    3.Zhang JR.Steering laws analysis of SGCMGs based on singular value decomposition theory.Appl Math Mech2008;29(8):1013–21.

    4.Fausz J,Wilson B,Hall C,Richie D,Lappas V.Survey of technology developments in flywheel attitude control and energy storage systems.J Guid Control Dyn2009;32(2):354–65.

    5.Zhang L,Chen W,Liu J,Wu X,Chen IM.Accuracy enhancement of the spherical actuator with a two-level geometric calibration method.Chin J Aeronaut2014;27(2):328–37.

    6.Gerlach B,Ehinger M,Raue HK,Seiler R.Digital controller for a gimballing magnetic bearing reaction wheel.In:Proceedings of AIAA guidance,navigation,and control conference and exhibit;2005 Aug 15–18.San Francisco.Reston:AIAA;2005.p.1–6.

    7.Downer JR,Eisenhaure DB,Hockney RL,Johnson BG.Magnetic bearing and suspension system.United States patent US 4961352;1990 Oct 9.

    8.Chassoulier D,Chillet C,Delamare J,Yonnet JP.Ball joint type magnetic bearing for tilting body.United States patent US 6351049;2002 Feb.26.

    9.Rossini L,Che′telat O,Onillon E,Perriard Y.Force and torque analytical models of a reaction sphere actuator based on spherical harmonicrotationand decomposition.IEEE/ASMETrans Mechatron2013;18(3):1006–18.

    10.Chabot J,Schaub H.Spherical magnetic dipole actuator for spacecraftattitude control.JGuidControlDyn2016;39(4):911–5.

    11.Chabot J.A spherical magnetic dipole actuator for space craft attitude control[dissertation].Colorado:University of Colorado;2015.

    12.Li B,Yu R,Li H,Li G,Wu T.Modeling and analysis of a 3-DOF spherical momentum exchange actuator for spacecraft attitude maneuver.J Aerosp Eng2015;28(6):04015008.

    13.Li GD,Cao JC,Li B,Li HF.Control of permanent magnetic spherical motor based on torque-sharing strategy.Adv Mater Res2013;694–697:1512–8.

    14.Li B,Yu R,Li H,Li G.Design considerations of a permanent magnetic spherical motor using spherical harmonics.IEEE Trans Magn2014;50(8):1–9.

    15.Gerlach B,Ehinger M,Raue HK,Seiler R.Gimballing magnetic bearing reaction wheel with digital controller.In:Proceedings of the 11th European space mechanisms and tribology symposium;2005 Sep 21–23;Lucerne,Switzerland.Noordwijk:ESA Publication Division;2005.

    16.Lappas V,Steyn W,Underwood C.Torque amplification of control moment gyros.Electron Lett2002;38(15):837–9.

    17.Kurokawa H.A geometric study of single gimbal control moment gyros.Rep Mech Eng Lab1998;175:135–8.

    18.Paradiso JA.Global steering of single gimballed control moment gyroscopes using a directed search.J Guid Control Dyn1992;15(5):1236–44.

    19.Kim KS,Kim Y.Robust backstepping control for slew maneuver using nonlinear tracking function.IEEE Trans Control Syst Technol2003;11(6):822–9.

    20.Zhang H,Fang J.Robust backstepping control for agile satellite using double-gimbal variable-speed control moment gyroscope.J Guid Control Dyn2013;36(5):1356–63.

    21.Wang W,Wang J,Jewell G,Howe D.Design and control of a novel spherical permanent magnet actuator with three degrees of freedom.IEEE/ASME Trans Mechatron2003;8(4):457–68.

    22.Guo C.A spherical planning based electrifying strategy of permanent magnet spherical motor.ApplMechMater2015;741:629–45.

    23.Wie B,Weiss H,Arapostathis A.Quarternion feedback regulator for spacecraft eigenaxis rotations.J Guid Control Dyn1989;12(3):375–80.

    24.Schaub H,Vadali SR,Junkins JL.Feedback control law for variable speed control moment gyros.J Astronaut Sci1998;46(3):307–28.

    25.Vadali S,Walker S,Oh HS.Preferred gimbal angles for single gimbal control moment gyros.J Guid Control Dyn1990;13(6):1090–5.

    14 January 2016;revised 4 May 2016;accepted 31 October 2016

    Available online 21 December 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail address:lgdtju@tju.edu.cn(G.Li).

    Peer review under responsibility of Editorial Committee of CJA.

    99国产精品免费福利视频| 日韩,欧美,国产一区二区三区| 97精品久久久久久久久久精品| 夫妻性生交免费视频一级片| 99热这里只有精品一区| 久久人人爽av亚洲精品天堂| 日本wwww免费看| 国产成人精品无人区| 国产av码专区亚洲av| 最近中文字幕2019免费版| 伦理电影大哥的女人| 久久久久久久久久成人| 在线精品无人区一区二区三| 久久久久国产网址| 性高湖久久久久久久久免费观看| 亚洲在久久综合| 一个人看视频在线观看www免费| 色94色欧美一区二区| 成人毛片a级毛片在线播放| 免费播放大片免费观看视频在线观看| xxxhd国产人妻xxx| 妹子高潮喷水视频| 日韩成人伦理影院| 最新的欧美精品一区二区| 亚洲综合色惰| 精品久久久精品久久久| 亚洲图色成人| 亚洲经典国产精华液单| 亚洲av成人精品一二三区| 黄片播放在线免费| 在线免费观看不下载黄p国产| 91成人精品电影| 日韩成人伦理影院| 男女啪啪激烈高潮av片| 又粗又硬又长又爽又黄的视频| 嫩草影院入口| 99久久人妻综合| 免费看光身美女| 亚洲精品亚洲一区二区| 大片电影免费在线观看免费| 大香蕉97超碰在线| 又黄又爽又刺激的免费视频.| 国产成人精品福利久久| 亚洲美女视频黄频| av国产久精品久网站免费入址| 美女视频免费永久观看网站| 国产在线视频一区二区| 26uuu在线亚洲综合色| 亚洲av电影在线观看一区二区三区| 在线 av 中文字幕| 秋霞伦理黄片| 亚洲激情五月婷婷啪啪| 色哟哟·www| 免费观看的影片在线观看| 欧美成人午夜免费资源| 久久女婷五月综合色啪小说| 亚洲国产av影院在线观看| 最近中文字幕高清免费大全6| 99热6这里只有精品| 男女无遮挡免费网站观看| 美女脱内裤让男人舔精品视频| 99热国产这里只有精品6| 黄片播放在线免费| 91精品国产九色| kizo精华| 视频在线观看一区二区三区| 内地一区二区视频在线| 成年人免费黄色播放视频| 汤姆久久久久久久影院中文字幕| 久久影院123| 亚洲人与动物交配视频| 在线播放无遮挡| 日韩av不卡免费在线播放| 欧美日韩精品成人综合77777| 亚洲av男天堂| 久久久久人妻精品一区果冻| 亚洲精品国产色婷婷电影| 精品久久蜜臀av无| 大片电影免费在线观看免费| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽人人爽人人片va| 一级二级三级毛片免费看| 视频中文字幕在线观看| 一区二区三区免费毛片| 中文乱码字字幕精品一区二区三区| 久久久久国产精品人妻一区二区| 中文字幕制服av| 一个人免费看片子| 日韩在线高清观看一区二区三区| 女性生殖器流出的白浆| 欧美三级亚洲精品| 五月伊人婷婷丁香| 在线观看免费高清a一片| 欧美成人精品欧美一级黄| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人免费无遮挡视频| 国产69精品久久久久777片| 亚洲欧美成人精品一区二区| 男人操女人黄网站| 高清av免费在线| xxx大片免费视频| 亚洲三级黄色毛片| 亚洲国产成人一精品久久久| 免费黄频网站在线观看国产| a级片在线免费高清观看视频| 久久久国产精品麻豆| 久久热精品热| 母亲3免费完整高清在线观看 | 搡老乐熟女国产| 卡戴珊不雅视频在线播放| 国语对白做爰xxxⅹ性视频网站| 九色亚洲精品在线播放| 欧美成人午夜免费资源| 人妻 亚洲 视频| 亚洲国产日韩一区二区| 国产成人精品无人区| 亚洲欧洲国产日韩| 久久ye,这里只有精品| 亚洲精品日本国产第一区| 另类精品久久| 欧美+日韩+精品| 亚洲熟女精品中文字幕| 丰满少妇做爰视频| 99久久精品一区二区三区| 一级,二级,三级黄色视频| 97在线视频观看| 最近的中文字幕免费完整| 另类亚洲欧美激情| 亚洲精品日韩av片在线观看| 男男h啪啪无遮挡| 九九爱精品视频在线观看| .国产精品久久| 美女国产视频在线观看| 美女cb高潮喷水在线观看| 国产高清三级在线| 天天操日日干夜夜撸| 国国产精品蜜臀av免费| 天堂俺去俺来也www色官网| 中国美白少妇内射xxxbb| 蜜臀久久99精品久久宅男| 欧美性感艳星| 纯流量卡能插随身wifi吗| 久久女婷五月综合色啪小说| 十分钟在线观看高清视频www| 国内精品宾馆在线| 91精品一卡2卡3卡4卡| 久久99精品国语久久久| 嫩草影院入口| 80岁老熟妇乱子伦牲交| 美女主播在线视频| 日韩亚洲欧美综合| 久久亚洲国产成人精品v| 大香蕉久久成人网| 啦啦啦视频在线资源免费观看| 蜜桃久久精品国产亚洲av| 国产av精品麻豆| 中国三级夫妇交换| 下体分泌物呈黄色| 91精品三级在线观看| 国产精品一国产av| 亚洲四区av| av专区在线播放| 蜜臀久久99精品久久宅男| xxxhd国产人妻xxx| 一个人免费看片子| 蜜臀久久99精品久久宅男| 国产黄片视频在线免费观看| 国产色爽女视频免费观看| 三级国产精品欧美在线观看| 久久人人爽av亚洲精品天堂| 伊人久久国产一区二区| 亚洲精品乱码久久久久久按摩| 久久人人爽av亚洲精品天堂| 伊人久久国产一区二区| 亚洲精品乱码久久久久久按摩| 视频中文字幕在线观看| 亚洲欧美色中文字幕在线| 22中文网久久字幕| 久久久久久久精品精品| 久久久久久久亚洲中文字幕| av在线观看视频网站免费| 日本av手机在线免费观看| 久久久久久久国产电影| 欧美日韩综合久久久久久| 777米奇影视久久| 狂野欧美白嫩少妇大欣赏| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久国产欧美日韩av| 久久精品国产亚洲av天美| 五月开心婷婷网| 亚洲av男天堂| 久久精品夜色国产| 国产精品99久久久久久久久| 大码成人一级视频| 久久久久久久大尺度免费视频| 美女脱内裤让男人舔精品视频| 2018国产大陆天天弄谢| 内地一区二区视频在线| 亚洲av中文av极速乱| av在线播放精品| videos熟女内射| 精品人妻偷拍中文字幕| 91精品伊人久久大香线蕉| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱码久久久久久按摩| 久久青草综合色| 中文字幕人妻熟人妻熟丝袜美| 亚洲av欧美aⅴ国产| 综合色丁香网| 精品一区二区三卡| 少妇被粗大猛烈的视频| 简卡轻食公司| 女性生殖器流出的白浆| 亚洲一级一片aⅴ在线观看| 国精品久久久久久国模美| 日本91视频免费播放| 久久热精品热| 毛片一级片免费看久久久久| 少妇熟女欧美另类| 亚洲欧美日韩卡通动漫| 麻豆成人av视频| 91精品三级在线观看| 久久亚洲国产成人精品v| 十八禁网站网址无遮挡| 日本-黄色视频高清免费观看| 中文欧美无线码| 国产片内射在线| 黄色视频在线播放观看不卡| videos熟女内射| 大香蕉久久网| 国产一区二区在线观看日韩| 久久影院123| 狂野欧美白嫩少妇大欣赏| 男人添女人高潮全过程视频| 高清午夜精品一区二区三区| 国产伦精品一区二区三区视频9| 高清不卡的av网站| 久热久热在线精品观看| 99久久精品一区二区三区| 国产黄频视频在线观看| 欧美日韩国产mv在线观看视频| 久久狼人影院| 精品国产一区二区久久| 少妇熟女欧美另类| 成年美女黄网站色视频大全免费 | 国产成人精品一,二区| 久久99精品国语久久久| 夜夜骑夜夜射夜夜干| 国产精品不卡视频一区二区| 97超视频在线观看视频| 纯流量卡能插随身wifi吗| 永久免费av网站大全| 最近中文字幕高清免费大全6| 精品亚洲成国产av| 制服诱惑二区| 最近的中文字幕免费完整| 久久精品人人爽人人爽视色| 国产男女内射视频| 国产精品久久久久久精品古装| 日本欧美视频一区| 亚洲欧美日韩卡通动漫| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线播| 少妇的逼水好多| 欧美日韩综合久久久久久| 亚洲美女黄色视频免费看| 9色porny在线观看| 亚洲av综合色区一区| 高清视频免费观看一区二区| 日本与韩国留学比较| 中国国产av一级| 亚洲五月色婷婷综合| 两个人免费观看高清视频| 亚洲激情五月婷婷啪啪| 久久久精品94久久精品| 九色亚洲精品在线播放| 亚洲无线观看免费| 五月伊人婷婷丁香| 春色校园在线视频观看| 亚洲三级黄色毛片| 只有这里有精品99| 国产精品久久久久久精品电影小说| 久久久久国产网址| 美女xxoo啪啪120秒动态图| 乱码一卡2卡4卡精品| 街头女战士在线观看网站| 热99国产精品久久久久久7| 不卡视频在线观看欧美| 久久午夜综合久久蜜桃| 成年女人在线观看亚洲视频| 桃花免费在线播放| 熟妇人妻不卡中文字幕| 街头女战士在线观看网站| 日韩亚洲欧美综合| 九九在线视频观看精品| 91精品伊人久久大香线蕉| 蜜桃在线观看..| av免费在线看不卡| 黑人巨大精品欧美一区二区蜜桃 | 欧美日韩精品成人综合77777| 国产精品一区www在线观看| 伦理电影大哥的女人| 精品一区在线观看国产| 男人添女人高潮全过程视频| 十分钟在线观看高清视频www| 成人二区视频| 亚洲精品久久久久久婷婷小说| 亚洲综合精品二区| 亚洲av二区三区四区| 欧美性感艳星| 蜜桃在线观看..| 大码成人一级视频| 乱码一卡2卡4卡精品| 日本午夜av视频| 下体分泌物呈黄色| 狠狠婷婷综合久久久久久88av| 日本爱情动作片www.在线观看| 午夜免费观看性视频| 一级毛片 在线播放| 国产一级毛片在线| 久久99精品国语久久久| 亚洲欧美日韩另类电影网站| 我的老师免费观看完整版| 99久久综合免费| 在线精品无人区一区二区三| 99九九线精品视频在线观看视频| 午夜免费男女啪啪视频观看| 亚洲欧洲日产国产| 日韩电影二区| xxx大片免费视频| 国产在线一区二区三区精| 国产一区二区三区av在线| 国产精品一区www在线观看| 99视频精品全部免费 在线| 午夜免费鲁丝| 国产毛片在线视频| 制服人妻中文乱码| 高清av免费在线| 日日啪夜夜爽| 国产一区二区在线观看日韩| 亚洲精品中文字幕在线视频| 在线观看免费日韩欧美大片 | 这个男人来自地球电影免费观看 | 成年美女黄网站色视频大全免费 | 永久免费av网站大全| 精品国产国语对白av| 精品人妻熟女毛片av久久网站| 伦理电影免费视频| 赤兔流量卡办理| 自拍欧美九色日韩亚洲蝌蚪91| 午夜精品国产一区二区电影| av福利片在线| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 亚洲精品视频女| 美女国产高潮福利片在线看| 在线看a的网站| 能在线免费看毛片的网站| 久久久久国产网址| 国精品久久久久久国模美| 国产成人一区二区在线| 亚洲av电影在线观看一区二区三区| 亚洲丝袜综合中文字幕| 精品久久国产蜜桃| 在线观看免费视频网站a站| 黑人高潮一二区| 亚洲美女搞黄在线观看| 亚洲av成人精品一二三区| a级毛色黄片| 波野结衣二区三区在线| 久久久久久久精品精品| 伦精品一区二区三区| 中文字幕最新亚洲高清| 日日摸夜夜添夜夜添av毛片| 在线观看国产h片| 午夜免费男女啪啪视频观看| 在线观看国产h片| 考比视频在线观看| 国产亚洲最大av| 亚洲精品久久成人aⅴ小说 | 精品人妻一区二区三区麻豆| av免费在线看不卡| 欧美精品高潮呻吟av久久| 国产极品粉嫩免费观看在线 | 国产精品一国产av| a级毛片免费高清观看在线播放| 我要看黄色一级片免费的| 国产一区有黄有色的免费视频| 交换朋友夫妻互换小说| 多毛熟女@视频| 国产深夜福利视频在线观看| 你懂的网址亚洲精品在线观看| 日韩三级伦理在线观看| 51国产日韩欧美| 女人久久www免费人成看片| 久久人人爽人人爽人人片va| 晚上一个人看的免费电影| 寂寞人妻少妇视频99o| 免费大片18禁| 亚洲欧美色中文字幕在线| 国产精品一国产av| 热99国产精品久久久久久7| 不卡视频在线观看欧美| 中文精品一卡2卡3卡4更新| 免费看av在线观看网站| av.在线天堂| 亚洲精品久久午夜乱码| 男女无遮挡免费网站观看| 日韩伦理黄色片| 黄色视频在线播放观看不卡| 国产精品.久久久| 成人18禁高潮啪啪吃奶动态图 | 亚洲av成人精品一二三区| 久久精品国产亚洲av天美| 成人国产麻豆网| 99久久人妻综合| 婷婷色麻豆天堂久久| 国产黄片视频在线免费观看| 草草在线视频免费看| av国产精品久久久久影院| 99久久精品一区二区三区| 国产免费一级a男人的天堂| 国产免费视频播放在线视频| 成人综合一区亚洲| 欧美日韩在线观看h| 亚洲欧美清纯卡通| 亚洲经典国产精华液单| 有码 亚洲区| 99久久精品国产国产毛片| 九草在线视频观看| 激情五月婷婷亚洲| 亚洲美女搞黄在线观看| 男女啪啪激烈高潮av片| av免费在线看不卡| 国产无遮挡羞羞视频在线观看| 大陆偷拍与自拍| a级毛片免费高清观看在线播放| 少妇 在线观看| 人体艺术视频欧美日本| 久久韩国三级中文字幕| 欧美+日韩+精品| 亚洲内射少妇av| 免费观看的影片在线观看| 少妇高潮的动态图| 视频中文字幕在线观看| 免费人成在线观看视频色| 看非洲黑人一级黄片| 超碰97精品在线观看| 母亲3免费完整高清在线观看 | 女的被弄到高潮叫床怎么办| 国产欧美亚洲国产| 免费久久久久久久精品成人欧美视频 | 精品一品国产午夜福利视频| 国产成人一区二区在线| 欧美精品国产亚洲| 亚洲精品一区蜜桃| 黄片无遮挡物在线观看| 国产成人aa在线观看| 国产有黄有色有爽视频| 国产高清有码在线观看视频| 蜜桃在线观看..| 久久久国产一区二区| 日本91视频免费播放| 国产成人91sexporn| 亚洲不卡免费看| 久久久午夜欧美精品| 夜夜骑夜夜射夜夜干| 夫妻性生交免费视频一级片| 视频中文字幕在线观看| 中国美白少妇内射xxxbb| 少妇的逼好多水| 亚洲国产毛片av蜜桃av| 九九久久精品国产亚洲av麻豆| 18禁动态无遮挡网站| 国产熟女午夜一区二区三区 | 亚洲av欧美aⅴ国产| av网站免费在线观看视频| 好男人视频免费观看在线| 看十八女毛片水多多多| 9色porny在线观看| 80岁老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 人妻制服诱惑在线中文字幕| 亚洲综合精品二区| 天天躁夜夜躁狠狠久久av| 免费看av在线观看网站| 少妇人妻 视频| 丝袜喷水一区| 男女国产视频网站| 成年人免费黄色播放视频| 精品国产国语对白av| 在线看a的网站| 日韩一区二区三区影片| 少妇人妻 视频| 日本欧美视频一区| 18禁在线播放成人免费| .国产精品久久| 中文乱码字字幕精品一区二区三区| 亚洲精品久久久久久婷婷小说| 女的被弄到高潮叫床怎么办| 亚州av有码| 国产又色又爽无遮挡免| 国产高清有码在线观看视频| av.在线天堂| 亚洲五月色婷婷综合| 久久精品国产自在天天线| 久久精品国产a三级三级三级| 爱豆传媒免费全集在线观看| 日韩在线高清观看一区二区三区| 91精品伊人久久大香线蕉| 大话2 男鬼变身卡| 啦啦啦啦在线视频资源| 九九久久精品国产亚洲av麻豆| 日韩电影二区| 免费观看性生交大片5| 全区人妻精品视频| 韩国av在线不卡| 最新中文字幕久久久久| 成人综合一区亚洲| 校园人妻丝袜中文字幕| 在线天堂最新版资源| 少妇人妻精品综合一区二区| 国产一区二区在线观看日韩| 国产免费又黄又爽又色| 在线观看美女被高潮喷水网站| 99精国产麻豆久久婷婷| 下体分泌物呈黄色| 3wmmmm亚洲av在线观看| 欧美97在线视频| 丰满迷人的少妇在线观看| 黄色一级大片看看| 女性被躁到高潮视频| 黄片无遮挡物在线观看| 午夜福利视频在线观看免费| 青春草亚洲视频在线观看| 免费高清在线观看日韩| 97精品久久久久久久久久精品| 少妇丰满av| 大又大粗又爽又黄少妇毛片口| 色视频在线一区二区三区| 在线天堂最新版资源| 日韩一区二区三区影片| 日日撸夜夜添| 亚洲精华国产精华液的使用体验| 王馨瑶露胸无遮挡在线观看| 亚洲激情五月婷婷啪啪| 久久精品国产亚洲av天美| 男女边吃奶边做爰视频| 国产白丝娇喘喷水9色精品| 久久久久精品性色| 精品久久久久久久久亚洲| 日本欧美视频一区| xxxhd国产人妻xxx| 日本-黄色视频高清免费观看| 国产日韩欧美视频二区| 桃花免费在线播放| 日日摸夜夜添夜夜添av毛片| 国产在视频线精品| 91国产中文字幕| 午夜福利视频在线观看免费| 国产精品女同一区二区软件| 肉色欧美久久久久久久蜜桃| 另类精品久久| 爱豆传媒免费全集在线观看| 国产精品99久久久久久久久| 亚洲四区av| 男人操女人黄网站| 中文字幕久久专区| 免费观看无遮挡的男女| 成人毛片a级毛片在线播放| 18禁观看日本| 丰满乱子伦码专区| .国产精品久久| 一边摸一边做爽爽视频免费| 99热网站在线观看| 久久av网站| av不卡在线播放| 69精品国产乱码久久久| 美女中出高潮动态图| 久久 成人 亚洲| 久久热精品热| 亚洲精品一区蜜桃| 一级二级三级毛片免费看| 中文字幕人妻丝袜制服| 国产一级毛片在线| 午夜久久久在线观看| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性bbbbbb| 国产成人91sexporn| 亚洲国产精品999| 大香蕉97超碰在线| 最黄视频免费看| 成年女人在线观看亚洲视频| 午夜福利视频精品| freevideosex欧美| 亚洲国产毛片av蜜桃av| 久久青草综合色| 22中文网久久字幕| 高清在线视频一区二区三区| 美女xxoo啪啪120秒动态图| 亚洲欧美精品自产自拍| 三上悠亚av全集在线观看| 午夜久久久在线观看| 免费高清在线观看日韩| 日本黄色片子视频| 国产成人精品婷婷| 亚洲经典国产精华液单| 青春草国产在线视频| av又黄又爽大尺度在线免费看| 欧美激情极品国产一区二区三区 | 久久久久久久亚洲中文字幕| 免费观看性生交大片5| 久久免费观看电影| 91成人精品电影|