• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    2017-11-21 12:54:36LiGuidnLiHikeLiBin
    CHINESE JOURNAL OF AERONAUTICS 2017年1期

    Li Guidn,Li Hike,Li Bin

    aSchool of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    bState Grid Tianjin Power Dongli Power Supply Branch,Tianjin 300300,China

    Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    Li Guidana,*,Li Haikeb,Li Bina

    aSchool of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    bState Grid Tianjin Power Dongli Power Supply Branch,Tianjin 300300,China

    Attitude maneuver;Backstepping control;Null motion;Parallel configuration;Singularity;Spherical actuator

    A parallel configuration using two 3-degree-of-freedom(3-DOF)spherical electromagnetic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers.First,the full dynamic equations of motion for the spacecraft system are derived by the Newton-Euler method.To facilitate computation,virtual gimbal coordinate frames are established.Second,a nonlinear control law in terms of quaternions is developed via backstepping method.The proposed control law compensates the coupling torques arising from the spacecraft rotation,and is robust against the external disturbances.Then,the singularity problem is analyzed.To avoid singularities,a modified weighed Moore-Pseudo inverse velocity steering law based on null motion is proposed.The weighted matrices are carefully designed to switch the actuators and redistribute the control torques.The null motion is used to reorient the rotor away from the tilt angle saturation state.Finally,numerical simulations of rest-to-rest maneuvers are performed to validate the effectiveness of the proposed method.

    1.Introduction

    Control moment gyros(CMGs)are widely used in spacecraft attitude control,which is attributed to the advantages of high torque capacity and no propellants.1–3Especially,the single gimbal CMG(SGCMG)features the torque amplification capability.However,complex gimbal structures,large servo parts and commonly required cluster configurations limit their applications to small spacecraft.In contrast,multi-degree-offreedom(multi-DOF)spherical electromagnetic momentum exchange actuator(SEMEA)has great advantages of reducing attitude control system(ACS)mass,volume and power requirements because of their higher structural integration.4Furthermore,its largest asset is that a single device is capable of generating three-axis control torques because the variablespeed rotor can be tilted in any direction,which shows great prospect in 3-axis spacecraft attitude control.5,6

    Over the past decades,a variety of structural forms of spherical actuators have been proposed,which commonly have a spherical rotor or a spherical stator.Downer et al.7proposeda magnetic rotor suspension system including a magnetic annulus rotor and a spherical stator.An armature is used to induce rotation of the rotor and the spin axis can be gimbaled by selectively exciting the control coils on the stator.A similar ball joint type magnetic bearing for tilting body can be found in Ref.8.Note that if the armature is moved outside the stator,it will allow a larger tilting range,increasing the amount of angular momentum exchangeable between the actuator and the spacecraft.Based on this idea for structural improvements,Che′telat et al.9put forward a reaction sphere actuator with an 8-pole permanent magnet spherical rotor and a 20-pole electromagnet stator.The rotor can be electronically accelerated in any direction,and it is by magnetic levitation that the rotor is held in position.Instead of a multipole magnet,Chabot et al.10,11proposed a design using a spherical dipole magnet as the rotor,which is inexpensive and readily available.Similarly,in Ref.12,we proposed a new type of spherical momentum exchange device based on a permanent magnet spherical motors(PMSM)13and the detailed design consideration is presented in Ref.14.Compared with multi-axis magnetic momentum wheels,15its spherical-profile and dihedral-shell PMs can maintain the uniformity of the air–gap magnetic flux density when the rotor is in motion,and can help acquire a larger tilting range.From the perspective view,a single spherical actuator can be an alternative to conventional CMG clusters.However,its rotor tilt range is limited and the singularity occurs when the rotor tilt angle is saturated.Therefore,the control law and steering logic need to be concerned with the singularity.To overcome this drawback,ann-step incremental rotation strategy16was introduced in Ref.12.In fact,the steering strategy belongs to an open-loop scheme,which is sensitive to the unexpected external disturbances,spacecraft parameters and initial attitude errors.In general,more practicable singularity avoidance schemes and robust feedback control laws are desired.

    In this paper,we focus on the attitude maneuver control using spherical actuators.In CMG systems,cluster configuration17and path planning18are effective singularity avoidance strategies.When the system falls into the singularity state,null motion can be used to reconfigure the CMGs to preferred gimbal angles.Referring to this method,a parallel configuration for SEMEAs is investigated to avoid the tilt angle saturation singularity and simultaneously to provide redundancy.The dynamic equations of motion are derived by the Newton-Euler approach.Noting that the control system has a cascaded structure,we adopt a backstepping control law.19,20When the tilt angle saturation singularity is encountered,a modified weighed pseudo inverse steering law based on null motion is applied,and the weighted matrices are carefully designed.To validate the effectiveness of the proposed method,numerical simulations of rest-to-rest maneuvers are carried out.

    2.Introduction to SEMEA

    The prototype and schematic of the SEMEA are presented in Fig.1.The SEMEA is mainly composed of an electromagnetic stator and a PM rotor.The universal mechanical shaft in the PMSM is cut off only for momentum exchange purpose.Its variable-speed rotating rotor can be tilted in any direction,thus realizing three-dimensional momentum exchange with the spacecraft platform.

    Fig.1 Illustration of SEMEA.

    The actuator works on the electromagnetic torque T,whose characteristics are determined by stator currents I,and the arrangements of stator windings and rotor permanent magnets(Fig.1(b)).The relationship can be expressed as T=KTI where KTis the defined static torque characteristic matrix.Thus,the rotation and tilt of the rotor can be controlled by the stator currents I.Related control laws and electrifying strategies can be found in Refs.21,22.For simplicity,ideal rotor trajectory tracking is assumed in this paper.Note that the mechanical structure and the air–gap magnetic field distribution limit the rotor tilting range(the maximum of the rotor tilt angle δm=15°).

    3.Analytical model of spacecraft with two SEMEAs

    In this section,the Newton-Euler method is employed to derive the complete dynamic equations of motion for a spacecraft with two parallel mounted SEMEAs.The attitude kinematics is described in terms of quaternions.

    3.1.Dynamics equations of motion

    To simplify the development,we first consider a rigid spacecraft with only one SEMEA.Afterwards,we extend the result to the complete system.As shown in Fig.2(a),the stator housing and the spacecraft body are treated as one platform.A reference frameBwith basis(b1,b2,b3)is fixed with the platform.The center of mass of the overall systemOis taken as the origin of coordinates.The spacecraft platform is free to translate and rotate with respect to the inertial frameN,with i1,i2and i3the unit vectors.The origin of coordinates is at the rotor’s center of massORand rRis the distance vector fromOtoOR.

    To facilitate computation,a rotor’s outer virtual gimbal frameGwith orthogonal unit vectors(g1,g2,g3)and inner virtual gimbal frameHwith orthogonal unit vectors(h1,h2,h3)are established to define the orientation of the rotor in the spacecraft platform(Fig.2(b)).The unit vectors g2,h1and h3are parallel to the outer virtual gimbal axis,inner virtual gimbal axis and spin axis,respectively.The frameBtransforms to the framesGandHby Euler angle rotations through the outer virtual gimbal angel and inner virtual gimbal angel,respectively.The spherical rotor rotates around the spin axis at speed rate Ω.When the initial gimbal angles are zero,the unit vectors(h1,g2,h3)coincide with the unit vectors(b1,b2,b3)of frameB.The unit vector g2stays fixed relative to the frameB,and any unit vector gior hican be obtained by the following direction cosine matrices:

    Fig.2 Models for derivation of equations of motion.

    where α and β are outer and inner virtual gimbal angles,respectively.In the vector expressions,the subscripts indicate the relative motion.The absolute angular momentum HRof the rotor with respect to its center of massORis given by

    where ωRstands for the absolute angular velocity of the rotor;ωrhis the relative angular velocity of the rotor with respect to frameH,ωhgthe relative angular velocity of frameHwith respect to frameG,ωgbthe relative angular velocity of frameGwith respect to frameB,and ω the absolute angular velocity of the spacecraft platform;IRis the rotor inertia matrix.LetIhbe the moment of inertia of the rotor about its spin axis.Assume that the spherical rotor is completely symmetrical,and then in any frame IRis a constant diagonal matrix

    According to the definition of the rotor virtual gimbal coordinate frames,

    Since there is no angular momentum for the virtual gimbals,the total angular momentum of the overall system with respect to its center of massOis given by

    where HBis the absolute angular momentum of the spacecraft platform,andmRthe rotor mass;E is unit matrix;rRis the modulus of rR.Let Ibbe the inertia matrix of the platform with respect toO,and then H is rewritten as

    Let Lerepresent the external disturbance torques experienced by the system.According to Euler’s equation,the initial time derivative of H is given by

    Substitute Eqs.(4)and(5)into Eq.(9),and the dynamic equation of motion of the system is obtained as follows:

    where IS=IB+IRis a constant matrix.The right of Eq.(11)represents the output torques produced by the actuator.The first term represents the torque caused by the motion of the spacecraft body,the second term represents the torque caused by the rotor accelerations,and the third term represents the torque caused by the rotor tilt rate or rotation acceleration.

    From here on,we extend the result to the case of the spacecraft with two SEMEAs.Then the dynamics equation of motion of the overall system can be obtained from Eqs.(9)and(11)in the following form:

    with the subscripts 1 and 2 indicating the two SEMEAs.

    3.2.Attitude kinematics

    In this paper,the quaternion q=[q1,q2,q3,q4]Tis used to describe the attitude of the spacecraft and the desired attitude is adopted as the inertial frame,i.e.,the command quaternion qc=[0,0,0,1]T.In this case,the kinematic differential equation in terms of error quaternion is expressed as follows23:

    where qeV=[qe1,qe2,qe3]Tandqe4are the vector and scalar parts of the error quaternion qe,respectively,ω=[ω1,ω2,ω3]T;and[q×eV]is the slew-symmetric matrix defined by

    4.Nonlinear backstepping control law design

    Note that the attitude control system described by Eqs.(12)and(14)has a cascade structure,and the effective backstepping method can be used to develop the feedback law.The control block diagram is presented in Fig.3.

    It is assumed that the current state of the system α,β,Ω,ω and q can be measured in real time.We first consider the subsystem described by Eq.(14).To bring the spacecraft to the desired final attitude,the tracking law ωf=[ωf1,ωf2,ωf3]Tcan be considered as pseudo control input.The error state variables e1and e2are defined as

    LetVabe the following Lyapunov candidate function:

    The time derivative ofVais obtained as

    To makeVa≤0,we select the linear tracking function19as follows:

    wherekiare positive constants.

    After ωfis determined,the real command input should be determined to guarantee the pseudo-control input to be achieved.We define the following Lyapunov candidate function for the overall system:

    The time derivative ofVcan be written as follows:

    Substituting Eqs.(12),(16)and(20)into Eq.(22)gives

    where Lrand Lostand for the required torque and the output control torque,respectively;ρ andlMare positive constants.The external disturbance torques are bounded by

    Substituting Eqs.(20)and(24)into Eq.(23)gives

    Accordingly,the backstepping control law guarantees the asymptotically stability of the closed-loop system according to the Lyapunov theory.

    5.Singularity avoidance steering law design

    As shown in Eq.(13),Agdoes not contain Ω and thus is much smaller compared to Ah,and it is usually dropped.The steering law constraint given in Eq.(24)is then simplified as

    Each column vector of Ahrepresents the output control torques produced by the rotor tilt motion or spin acceleration,corresponding to CMG mode and RW mode,respectively.Note that the inner virtual gimbal angle β never equals 90°(δm=15°)and rank(Ah)≡ 3.This is to say,within the tilting range,the output torque of a single SEMEA spans the entire space.However,when the rotor tilts to the bound,there exists a direction in which an output torque cannot be generated.It is perpendicular to the spin axis and points outwards.This direction is called the ‘tilt angle saturation singularity direction”.When the required torque lies in this direction,a single SEMEA cannot avoid the singularity because there is no null space to reorient the rotor.In contrast,for a parallel configuration with two SEMEAs,a modified null motion strategy can be resorted to in order to avoid this singularity.

    For Ahis never rank deficient,naturally,the standard Moore–Penrose inverse can be used to obtain a minimum norm solution for˙η,and then the resulting simplified velocity steering law is given by

    Note that it is not applicable in practice if the solution tends to exceed the restricted range but the rotor has reached up to the bound.It is eagerly anticipated that the tilt angle will decrease automatically at the next time.However,the ideal case is infrequent and the tilt angle saturation singularity is more likely to happen.To avoid the singularity,when one of the actuators falls into the saturation state,the other one should switch to provide effective control torques,meanwhile,the saturated rotor should be reoriented to a preferred position away from tilt angle saturation.A modified weighted pseudo inverse steering logic based on null motion can be implemented

    where E6represents a 6×6 identity matrix;W1and W2are weighted matrices used to switch the actuators and redistribute the control torques.They are defined to be

    wherewiare positive scalars which control how heavily the SEMEAs are to perform in reaction wheel mode or CMG mode.24For simplicity,herewiare all set to 1.The parameters μ1and μ2are switch weights.Let δ1and δ2represent the two rotors’tilt angle respectively,then μ1and μ2are functions of δ1and δ2.They are defined to be

    where δmirepresents the maximum of the two rotors’tilt angle,and μ-ithe value of μiat the last moment.And Nd is the SEMEA null motion.Let constant vector ηfbe the desired rotor position,and the vector d is selected as

    wherekeis a positive gain to be appropriately chosen,and W3a diagonal matrix associated with rotor’s reorienting movement given by

    As shown in Eq.(31), μ1and μ2are either 0 or 1.If μ1is 1,this means that the resulting steering law will be performed with rotor 1 to be reoriented to the desired position and at the same time rotor 2 providing effective control torques onto the spacecraft.As we can see,AhNd=0,i.e.,the SEMEA null motion produces no torques onto the spacecraft.The stability of null motion has been demonstrated in Ref.25.

    6.Numerical simulations

    According to the dynamics model,nonlinear control laws and steering laws have been discussed,and numerical simulations of rest-to-rest maneuvers are performed for two main objectives:(1)to confirm the asymptotically stability of the backstepping feedback law;(2)to demonstrate the effectiveness of the proposed singularity avoidance steering logic for the parallel configuration.The external disturbance torques are selected as

    Two cases with different tilting ranges are considered in our simulations.The detailed simulation parameters are listed in Table 1.In Case 1,the maximum tilt angles are just as normal(δm1= δm2=15°).During the maneuvers,it may not encounter the tilt angle saturation.In order to demonstrate the working principle of the steering law clearly,a singularity case is needed.Therefore,in Case 2,the maximum tilt angle of rotor 1 is modified(δm1=8°,δm2=15°)to ensure that the singularity will happen.The simulation results are presented in Figs.4–6.Note that the two cases share the same responses of thespacecraft platform,but different SEMEA responses.The rotor tilt angle response illustrates the working process of the steering law clearly.

    Table 1 Simulation parameters.

    Fig.4 History responses of spacecraft.

    Fig.4 shows the history responses of the spacecraft.Fig.4(a)plots the responses of the attitude quaternion,and Fig.4(b)gives the body angular velocity responses.From the simulation results,it can be seen that the proposed nonlinear control law is asymptotically stable and performs very well.The large angle attitude maneuver is effectively achieved with the existence of the external disturbance torques.

    Fig.5 History responses of SEMEAs for Case 1(δm1= δm2=15°).

    Fig.6 History responses of SEMEAs for Case 2(δm1=8°,δm2=15°).

    As shown in Fig.5,in Case 1,it does not encounter the singularity.The maximum tilt angle of rotor 1 approximately equals 9.7°(around 2.6 s),and it is within the tilting range.During the maneuver,therefore,only SEMEA 1 works and provides control torques while SEMEA 2 holds the initial states.It is apparent that the tilt saturation may happen if the maneuver mission is changed or the tilting range is decreased,just as in Case 2.

    As shown in Fig.6,in Case 2,at the beginning of the maneuver SEMEA 1 first provides control torques,and around 1.2 s it tilts to the maximum.At this moment,SEMEA 2 switches to produce effective torques onto the spacecraft,meanwhile,null motion drives SEMEA 1 away from the saturation state.Around 5 s,it is brought to the initial position.Thus,the tilt angle saturation singularity is successfully avoided.The drawback of the weighting matrices is that the tilt angular rates of the rotor change extremely sharply at the switch point,which requires the actuator to make a very fast dynamic response in practice.

    7.Conclusions

    (1)The full equations of motion of a rigid spacecraft with two spherical actuators mounted in parallel are derived.Compared with conventional CMG system,the spherical actuator’s gimbal-less structure makes the formula more accurate and simple.

    (2)A nonlinear control law based on the backstepping control method is developed with the external disturbance overcome.To avoid singularity,a modified version of weighted velocity steering law based on null motion is proposed and the weighted matrices are carefully designed.

    (3)The simulation results validate the effectiveness of the

    proposed control law and the singularity avoidance steering law.Ideal rotor trajectory tracking for the actuator is assumed in the simulation.In practice,fast dynamic response of the SEMEA is crucially required.Device optimization and preferred configuration need

    to be studied in the future work.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China(No.51677130)and the Independent Innovation Funds of Tianjin University(No.1405).

    1.Hu Q,Zhang JR.Attitude control and vibration suppression for flexible spacecraft using control moment gyroscopes.J Aerosp Eng2015;29(1):04015027-1–04015027-12.

    2.Hu Q,Jia YH,Xu SJ.Adaptive suppression of linear structural vibration using control moment gyroscopes.J Guid Control Dyn2014;37(3):990–6.

    3.Zhang JR.Steering laws analysis of SGCMGs based on singular value decomposition theory.Appl Math Mech2008;29(8):1013–21.

    4.Fausz J,Wilson B,Hall C,Richie D,Lappas V.Survey of technology developments in flywheel attitude control and energy storage systems.J Guid Control Dyn2009;32(2):354–65.

    5.Zhang L,Chen W,Liu J,Wu X,Chen IM.Accuracy enhancement of the spherical actuator with a two-level geometric calibration method.Chin J Aeronaut2014;27(2):328–37.

    6.Gerlach B,Ehinger M,Raue HK,Seiler R.Digital controller for a gimballing magnetic bearing reaction wheel.In:Proceedings of AIAA guidance,navigation,and control conference and exhibit;2005 Aug 15–18.San Francisco.Reston:AIAA;2005.p.1–6.

    7.Downer JR,Eisenhaure DB,Hockney RL,Johnson BG.Magnetic bearing and suspension system.United States patent US 4961352;1990 Oct 9.

    8.Chassoulier D,Chillet C,Delamare J,Yonnet JP.Ball joint type magnetic bearing for tilting body.United States patent US 6351049;2002 Feb.26.

    9.Rossini L,Che′telat O,Onillon E,Perriard Y.Force and torque analytical models of a reaction sphere actuator based on spherical harmonicrotationand decomposition.IEEE/ASMETrans Mechatron2013;18(3):1006–18.

    10.Chabot J,Schaub H.Spherical magnetic dipole actuator for spacecraftattitude control.JGuidControlDyn2016;39(4):911–5.

    11.Chabot J.A spherical magnetic dipole actuator for space craft attitude control[dissertation].Colorado:University of Colorado;2015.

    12.Li B,Yu R,Li H,Li G,Wu T.Modeling and analysis of a 3-DOF spherical momentum exchange actuator for spacecraft attitude maneuver.J Aerosp Eng2015;28(6):04015008.

    13.Li GD,Cao JC,Li B,Li HF.Control of permanent magnetic spherical motor based on torque-sharing strategy.Adv Mater Res2013;694–697:1512–8.

    14.Li B,Yu R,Li H,Li G.Design considerations of a permanent magnetic spherical motor using spherical harmonics.IEEE Trans Magn2014;50(8):1–9.

    15.Gerlach B,Ehinger M,Raue HK,Seiler R.Gimballing magnetic bearing reaction wheel with digital controller.In:Proceedings of the 11th European space mechanisms and tribology symposium;2005 Sep 21–23;Lucerne,Switzerland.Noordwijk:ESA Publication Division;2005.

    16.Lappas V,Steyn W,Underwood C.Torque amplification of control moment gyros.Electron Lett2002;38(15):837–9.

    17.Kurokawa H.A geometric study of single gimbal control moment gyros.Rep Mech Eng Lab1998;175:135–8.

    18.Paradiso JA.Global steering of single gimballed control moment gyroscopes using a directed search.J Guid Control Dyn1992;15(5):1236–44.

    19.Kim KS,Kim Y.Robust backstepping control for slew maneuver using nonlinear tracking function.IEEE Trans Control Syst Technol2003;11(6):822–9.

    20.Zhang H,Fang J.Robust backstepping control for agile satellite using double-gimbal variable-speed control moment gyroscope.J Guid Control Dyn2013;36(5):1356–63.

    21.Wang W,Wang J,Jewell G,Howe D.Design and control of a novel spherical permanent magnet actuator with three degrees of freedom.IEEE/ASME Trans Mechatron2003;8(4):457–68.

    22.Guo C.A spherical planning based electrifying strategy of permanent magnet spherical motor.ApplMechMater2015;741:629–45.

    23.Wie B,Weiss H,Arapostathis A.Quarternion feedback regulator for spacecraft eigenaxis rotations.J Guid Control Dyn1989;12(3):375–80.

    24.Schaub H,Vadali SR,Junkins JL.Feedback control law for variable speed control moment gyros.J Astronaut Sci1998;46(3):307–28.

    25.Vadali S,Walker S,Oh HS.Preferred gimbal angles for single gimbal control moment gyros.J Guid Control Dyn1990;13(6):1090–5.

    14 January 2016;revised 4 May 2016;accepted 31 October 2016

    Available online 21 December 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail address:lgdtju@tju.edu.cn(G.Li).

    Peer review under responsibility of Editorial Committee of CJA.

    国产国拍精品亚洲av在线观看| av在线老鸭窝| 网址你懂的国产日韩在线| 亚洲激情五月婷婷啪啪| 国产一区亚洲一区在线观看| 性色avwww在线观看| 老司机福利观看| 中文字幕av在线有码专区| 亚洲中文字幕一区二区三区有码在线看| eeuss影院久久| 少妇的逼好多水| 日本一二三区视频观看| 国产亚洲av片在线观看秒播厂 | 成人鲁丝片一二三区免费| 麻豆一二三区av精品| 人妻夜夜爽99麻豆av| 草草在线视频免费看| 黑人高潮一二区| 成年女人永久免费观看视频| av卡一久久| 给我免费播放毛片高清在线观看| 国产日韩欧美在线精品| 两个人的视频大全免费| 色哟哟·www| 午夜精品在线福利| 美女被艹到高潮喷水动态| 日本-黄色视频高清免费观看| 国产精品久久久久久精品电影| 一区二区三区四区激情视频 | 丰满的人妻完整版| 一边摸一边抽搐一进一小说| 精品久久久久久久久久久久久| 伦理电影大哥的女人| 亚洲精品日韩av片在线观看| 嫩草影院精品99| 一进一出抽搐动态| 日韩在线高清观看一区二区三区| 国产av在哪里看| 久久久精品欧美日韩精品| 熟女人妻精品中文字幕| 亚洲国产日韩欧美精品在线观看| 久久人人精品亚洲av| 国产国拍精品亚洲av在线观看| 久久午夜亚洲精品久久| 国产激情偷乱视频一区二区| 久久精品人妻少妇| 免费大片18禁| 成年av动漫网址| 岛国毛片在线播放| 免费看美女性在线毛片视频| 国产真实乱freesex| 精品国内亚洲2022精品成人| 久久久午夜欧美精品| 淫秽高清视频在线观看| 如何舔出高潮| 亚洲经典国产精华液单| 亚洲av免费在线观看| 国产精华一区二区三区| 一级毛片aaaaaa免费看小| 麻豆久久精品国产亚洲av| 国产精品人妻久久久影院| 男插女下体视频免费在线播放| 中文字幕人妻熟人妻熟丝袜美| 在线a可以看的网站| 日韩制服骚丝袜av| 在线观看午夜福利视频| 中文字幕久久专区| 久久欧美精品欧美久久欧美| 99九九线精品视频在线观看视频| 午夜精品国产一区二区电影 | 一级毛片久久久久久久久女| 国产v大片淫在线免费观看| 黄色配什么色好看| 久久中文看片网| 国内精品宾馆在线| 在线国产一区二区在线| 日韩中字成人| 久久久久九九精品影院| 日韩大尺度精品在线看网址| 午夜福利在线在线| 中国国产av一级| 在线免费十八禁| 色视频www国产| 18+在线观看网站| 黄色一级大片看看| 亚洲真实伦在线观看| 一级二级三级毛片免费看| 亚洲一区高清亚洲精品| 一个人看的www免费观看视频| 婷婷六月久久综合丁香| 亚洲欧美清纯卡通| 午夜视频国产福利| 亚洲精品成人久久久久久| 久久6这里有精品| 国产91av在线免费观看| av福利片在线观看| 一边亲一边摸免费视频| 欧美丝袜亚洲另类| 亚洲精华国产精华液的使用体验 | 直男gayav资源| 黄色一级大片看看| 99热只有精品国产| 日韩一区二区三区影片| 白带黄色成豆腐渣| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄色一级大片看看| 国产亚洲91精品色在线| 亚洲一区高清亚洲精品| 日本黄色视频三级网站网址| 亚洲熟妇中文字幕五十中出| 简卡轻食公司| 欧美激情久久久久久爽电影| 成人av在线播放网站| 免费人成在线观看视频色| 91午夜精品亚洲一区二区三区| 青春草亚洲视频在线观看| 干丝袜人妻中文字幕| 国内精品一区二区在线观看| 亚洲国产欧洲综合997久久,| 色视频www国产| 亚洲最大成人中文| 国产成年人精品一区二区| 国产淫片久久久久久久久| 亚洲人成网站在线观看播放| 深夜a级毛片| 亚洲av熟女| 亚洲国产精品国产精品| 亚洲一区二区三区色噜噜| 国产精品日韩av在线免费观看| 久久久久性生活片| av天堂中文字幕网| 国产精品日韩av在线免费观看| 色视频www国产| 成年版毛片免费区| 丰满人妻一区二区三区视频av| 麻豆国产av国片精品| 亚洲国产日韩欧美精品在线观看| 婷婷色综合大香蕉| 日本欧美国产在线视频| 熟妇人妻久久中文字幕3abv| 亚洲精品色激情综合| 国产黄色视频一区二区在线观看 | 亚洲国产精品sss在线观看| 日韩av在线大香蕉| 国产av麻豆久久久久久久| 免费看a级黄色片| 一区二区三区四区激情视频 | 色哟哟·www| 成人鲁丝片一二三区免费| 国产精品1区2区在线观看.| 国产男人的电影天堂91| 色视频www国产| 婷婷精品国产亚洲av| 亚洲18禁久久av| 最近2019中文字幕mv第一页| 国产探花极品一区二区| 变态另类丝袜制服| 亚洲人成网站在线播| 亚洲第一区二区三区不卡| 精品久久国产蜜桃| 久久久久久久久久久丰满| 我的老师免费观看完整版| 激情 狠狠 欧美| 女的被弄到高潮叫床怎么办| 一进一出抽搐gif免费好疼| 一级毛片久久久久久久久女| 久久久精品大字幕| 看非洲黑人一级黄片| 久久国内精品自在自线图片| 日韩国内少妇激情av| 日韩欧美一区二区三区在线观看| 久久久久性生活片| 国产午夜福利久久久久久| 听说在线观看完整版免费高清| 中文字幕免费在线视频6| 不卡一级毛片| 亚洲aⅴ乱码一区二区在线播放| 久久人妻av系列| 亚洲精品亚洲一区二区| 精品久久久久久久末码| 国产午夜精品论理片| 男女做爰动态图高潮gif福利片| 午夜精品在线福利| 国语自产精品视频在线第100页| 亚洲熟妇中文字幕五十中出| 女的被弄到高潮叫床怎么办| 亚洲av中文av极速乱| 丝袜美腿在线中文| 国产成人午夜福利电影在线观看| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 国产精品乱码一区二三区的特点| 成年女人永久免费观看视频| 成年av动漫网址| 国产精品综合久久久久久久免费| 18禁在线无遮挡免费观看视频| 国产精品电影一区二区三区| 亚洲av男天堂| 亚洲欧美中文字幕日韩二区| 一级黄色大片毛片| 我要搜黄色片| 国产av麻豆久久久久久久| 男人舔女人下体高潮全视频| 一进一出抽搐动态| 日本-黄色视频高清免费观看| 欧美一区二区亚洲| 免费观看精品视频网站| 美女国产视频在线观看| 国产一级毛片在线| 日本免费一区二区三区高清不卡| 日本一二三区视频观看| 看十八女毛片水多多多| 色哟哟·www| 欧美高清性xxxxhd video| 国产高潮美女av| 亚洲国产精品成人综合色| 黄色欧美视频在线观看| 国产精品久久久久久精品电影| 中文字幕精品亚洲无线码一区| 看十八女毛片水多多多| 少妇裸体淫交视频免费看高清| 国产精品麻豆人妻色哟哟久久 | 久久热精品热| 高清毛片免费观看视频网站| 色综合色国产| 欧美日韩乱码在线| 久久久欧美国产精品| 99久久精品热视频| 特大巨黑吊av在线直播| 神马国产精品三级电影在线观看| 亚洲av免费高清在线观看| 亚洲在久久综合| 久久精品影院6| 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区高清视频在线| 99riav亚洲国产免费| 国产伦在线观看视频一区| 亚洲av免费在线观看| 嘟嘟电影网在线观看| 国产高潮美女av| av卡一久久| 亚洲欧美成人精品一区二区| 哪里可以看免费的av片| 国产色爽女视频免费观看| 97人妻精品一区二区三区麻豆| 好男人在线观看高清免费视频| 黄色一级大片看看| or卡值多少钱| 成人一区二区视频在线观看| 国产蜜桃级精品一区二区三区| 日韩一区二区三区影片| 天天躁夜夜躁狠狠久久av| 性插视频无遮挡在线免费观看| 亚洲欧美成人精品一区二区| 深夜精品福利| 国产大屁股一区二区在线视频| 国产真实伦视频高清在线观看| 亚洲欧美日韩高清专用| 熟女电影av网| 亚洲av熟女| 日韩在线高清观看一区二区三区| 国产一区二区亚洲精品在线观看| 久久久久久久亚洲中文字幕| 国产私拍福利视频在线观看| 国产精品永久免费网站| 久久精品国产自在天天线| a级一级毛片免费在线观看| 哪个播放器可以免费观看大片| 国产真实乱freesex| 一本久久中文字幕| 亚洲经典国产精华液单| 国产精品女同一区二区软件| 亚洲精华国产精华液的使用体验 | av在线亚洲专区| 长腿黑丝高跟| 日本一本二区三区精品| av免费在线看不卡| 欧美高清性xxxxhd video| 自拍偷自拍亚洲精品老妇| 精品一区二区三区视频在线| 国产极品精品免费视频能看的| 一区二区三区四区激情视频 | 精品久久久久久久末码| 白带黄色成豆腐渣| 99国产精品一区二区蜜桃av| 午夜免费男女啪啪视频观看| 色哟哟·www| 久久人妻av系列| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产| 亚洲第一区二区三区不卡| 一个人观看的视频www高清免费观看| 免费av观看视频| 欧美精品国产亚洲| 欧美一级a爱片免费观看看| 成人国产麻豆网| 免费看av在线观看网站| 免费看a级黄色片| 能在线免费观看的黄片| 边亲边吃奶的免费视频| 久久午夜亚洲精品久久| 九九在线视频观看精品| 99riav亚洲国产免费| 色综合色国产| 色播亚洲综合网| 国产成人一区二区在线| 免费大片18禁| 欧美高清成人免费视频www| 欧美精品国产亚洲| 日韩大尺度精品在线看网址| 波多野结衣高清作品| 直男gayav资源| 3wmmmm亚洲av在线观看| 校园春色视频在线观看| 日韩精品有码人妻一区| 成人亚洲精品av一区二区| 日本与韩国留学比较| 国产人妻一区二区三区在| av福利片在线观看| 欧美成人一区二区免费高清观看| 久久久久久久久久久免费av| 少妇猛男粗大的猛烈进出视频 | 日本欧美国产在线视频| 国产极品精品免费视频能看的| 在线观看午夜福利视频| 女同久久另类99精品国产91| 午夜老司机福利剧场| 国产精品国产高清国产av| 我要搜黄色片| 国产精品乱码一区二三区的特点| 欧美日韩乱码在线| 免费看光身美女| 一级二级三级毛片免费看| 在线国产一区二区在线| 乱人视频在线观看| kizo精华| 国产一区二区三区在线臀色熟女| 日韩欧美在线乱码| 最近视频中文字幕2019在线8| 久久这里有精品视频免费| 99热只有精品国产| 午夜精品一区二区三区免费看| 免费av毛片视频| 亚洲图色成人| 日韩欧美一区二区三区在线观看| 国产在视频线在精品| 日韩精品有码人妻一区| 直男gayav资源| 亚洲欧美成人综合另类久久久 | 老熟妇乱子伦视频在线观看| 男女视频在线观看网站免费| 久久久久久久久久久免费av| 欧美xxxx黑人xx丫x性爽| 一个人看的www免费观看视频| 色播亚洲综合网| 99久久九九国产精品国产免费| 亚洲av熟女| 亚洲国产精品合色在线| 卡戴珊不雅视频在线播放| 国产精品乱码一区二三区的特点| 丝袜美腿在线中文| av天堂中文字幕网| 久久久久九九精品影院| 日本黄大片高清| 日本欧美国产在线视频| 男的添女的下面高潮视频| 久久久国产成人免费| 成人毛片60女人毛片免费| 久久九九热精品免费| 国产熟女欧美一区二区| 国产亚洲精品久久久com| 插逼视频在线观看| 禁无遮挡网站| 日本黄色视频三级网站网址| 国产老妇伦熟女老妇高清| 日本黄大片高清| 99在线视频只有这里精品首页| 夜夜看夜夜爽夜夜摸| 午夜免费激情av| 99视频精品全部免费 在线| 中国美女看黄片| 欧美激情久久久久久爽电影| 一区二区三区免费毛片| 成人特级黄色片久久久久久久| 最近手机中文字幕大全| 国产一级毛片七仙女欲春2| 一本一本综合久久| 边亲边吃奶的免费视频| 一级黄片播放器| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| 国产av在哪里看| 亚洲一区高清亚洲精品| 一区福利在线观看| 国产 一区 欧美 日韩| 国产精品免费一区二区三区在线| 联通29元200g的流量卡| 国产精品爽爽va在线观看网站| 人人妻人人看人人澡| 我要看日韩黄色一级片| 亚洲欧美日韩东京热| 日韩av在线大香蕉| 亚洲人成网站在线播放欧美日韩| 国内精品宾馆在线| 亚洲精品乱码久久久久久按摩| 99热6这里只有精品| 午夜福利在线在线| 晚上一个人看的免费电影| 男女下面进入的视频免费午夜| 九九爱精品视频在线观看| 丰满的人妻完整版| 国产探花在线观看一区二区| 九九热线精品视视频播放| 日日摸夜夜添夜夜添av毛片| 99国产精品一区二区蜜桃av| 中文亚洲av片在线观看爽| 男人和女人高潮做爰伦理| 国产爱豆传媒在线观看| 国产精品一二三区在线看| 免费观看a级毛片全部| 免费黄网站久久成人精品| 99热网站在线观看| 亚洲三级黄色毛片| 综合色av麻豆| 国内精品一区二区在线观看| 日韩高清综合在线| 99久久久亚洲精品蜜臀av| 熟女人妻精品中文字幕| 国产精品无大码| 99热这里只有精品一区| 99热只有精品国产| 小蜜桃在线观看免费完整版高清| 搡老妇女老女人老熟妇| 国产精品1区2区在线观看.| 日本一二三区视频观看| 亚洲激情五月婷婷啪啪| 国产精品久久久久久久久免| 99久久精品热视频| 免费观看精品视频网站| 99九九线精品视频在线观看视频| 国产白丝娇喘喷水9色精品| 日韩欧美精品免费久久| 成人毛片60女人毛片免费| 99热6这里只有精品| 国产 一区精品| 成年av动漫网址| 在线免费观看的www视频| 免费人成在线观看视频色| 我要看日韩黄色一级片| 白带黄色成豆腐渣| 一本一本综合久久| 日韩一区二区三区影片| 亚洲精品久久久久久婷婷小说 | 成人美女网站在线观看视频| 亚洲精品国产成人久久av| 久久精品国产亚洲av涩爱 | 两个人的视频大全免费| 春色校园在线视频观看| 成人毛片60女人毛片免费| 日本撒尿小便嘘嘘汇集6| 久久精品国产自在天天线| 一本精品99久久精品77| 精品久久久久久久久av| 特级一级黄色大片| 好男人视频免费观看在线| av在线蜜桃| 精品无人区乱码1区二区| 97人妻精品一区二区三区麻豆| 久久久久久久久久久丰满| 国产av不卡久久| 色5月婷婷丁香| 99久久无色码亚洲精品果冻| 国内精品美女久久久久久| 少妇人妻精品综合一区二区 | 美女 人体艺术 gogo| 亚洲欧美日韩无卡精品| 中文在线观看免费www的网站| 有码 亚洲区| 亚洲在久久综合| 日韩高清综合在线| 此物有八面人人有两片| 国产v大片淫在线免费观看| 久久精品国产清高在天天线| 亚洲av中文字字幕乱码综合| 亚洲aⅴ乱码一区二区在线播放| 免费观看在线日韩| 少妇熟女欧美另类| 亚洲欧美成人综合另类久久久 | 久久热精品热| 中文字幕制服av| 深夜精品福利| 亚洲,欧美,日韩| 一级毛片我不卡| 亚洲激情五月婷婷啪啪| 内地一区二区视频在线| 国产成人精品婷婷| 伦精品一区二区三区| 成人无遮挡网站| ponron亚洲| 特大巨黑吊av在线直播| 亚洲熟妇中文字幕五十中出| 熟妇人妻久久中文字幕3abv| 99久久精品国产国产毛片| 亚洲精品自拍成人| 国产久久久一区二区三区| 亚洲国产欧洲综合997久久,| 精品少妇黑人巨大在线播放 | 日韩视频在线欧美| 一夜夜www| 国产精品人妻久久久影院| 一级毛片aaaaaa免费看小| 嫩草影院新地址| 美女脱内裤让男人舔精品视频 | 国产成人精品久久久久久| 麻豆精品久久久久久蜜桃| 国产伦精品一区二区三区视频9| 青春草视频在线免费观看| 午夜亚洲福利在线播放| 国产极品精品免费视频能看的| 美女高潮的动态| 国产精品久久久久久精品电影| 欧美变态另类bdsm刘玥| 国产精品久久久久久av不卡| 日韩人妻高清精品专区| 高清毛片免费看| 国国产精品蜜臀av免费| 色综合色国产| 日韩 亚洲 欧美在线| 少妇丰满av| 联通29元200g的流量卡| 99国产精品一区二区蜜桃av| ponron亚洲| 精品久久久久久成人av| 国产一区二区亚洲精品在线观看| 国产黄片美女视频| 狂野欧美白嫩少妇大欣赏| 热99在线观看视频| 久久久欧美国产精品| 一区二区三区免费毛片| 国产极品天堂在线| 精品久久久久久久久久久久久| 狂野欧美激情性xxxx在线观看| 久久久久久久久久久免费av| 少妇人妻精品综合一区二区 | 蜜桃亚洲精品一区二区三区| 黑人高潮一二区| 日韩国内少妇激情av| 亚洲欧美日韩高清专用| 色噜噜av男人的天堂激情| 国产精品野战在线观看| 少妇猛男粗大的猛烈进出视频 | 九九爱精品视频在线观看| 精品久久国产蜜桃| 亚洲av二区三区四区| 狂野欧美白嫩少妇大欣赏| 久久久成人免费电影| 91精品一卡2卡3卡4卡| 一边摸一边抽搐一进一小说| 久久99蜜桃精品久久| 国产 一区 欧美 日韩| 免费观看人在逋| av在线蜜桃| 精品99又大又爽又粗少妇毛片| 色哟哟·www| 波野结衣二区三区在线| 中文字幕精品亚洲无线码一区| 免费av毛片视频| 麻豆成人av视频| 在现免费观看毛片| av国产免费在线观看| 免费观看精品视频网站| 一个人观看的视频www高清免费观看| 亚洲激情五月婷婷啪啪| 一本精品99久久精品77| 校园人妻丝袜中文字幕| 国产精品综合久久久久久久免费| 国产精品永久免费网站| 欧美一区二区亚洲| 人妻夜夜爽99麻豆av| 免费黄网站久久成人精品| 狂野欧美激情性xxxx在线观看| 国产亚洲精品久久久久久毛片| 成人二区视频| 精品久久国产蜜桃| 在线a可以看的网站| 女人被狂操c到高潮| 亚洲内射少妇av| 在线a可以看的网站| 干丝袜人妻中文字幕| 亚洲内射少妇av| 三级男女做爰猛烈吃奶摸视频| 欧美色欧美亚洲另类二区| 国产高清视频在线观看网站| 免费无遮挡裸体视频| 日本撒尿小便嘘嘘汇集6| 精品午夜福利在线看| 亚洲国产精品合色在线| 一级黄片播放器| av又黄又爽大尺度在线免费看 | 国产精品乱码一区二三区的特点| 99riav亚洲国产免费| 日本与韩国留学比较| 99热精品在线国产| 卡戴珊不雅视频在线播放| 身体一侧抽搐| 国产视频内射| 美女黄网站色视频| 久久久久久久久久成人| 国产片特级美女逼逼视频| 久久久成人免费电影| 久久精品国产亚洲av涩爱 | 最新中文字幕久久久久| 午夜免费男女啪啪视频观看| 国内精品宾馆在线| 婷婷六月久久综合丁香|