• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    2017-11-21 12:54:36LiGuidnLiHikeLiBin
    CHINESE JOURNAL OF AERONAUTICS 2017年1期

    Li Guidn,Li Hike,Li Bin

    aSchool of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    bState Grid Tianjin Power Dongli Power Supply Branch,Tianjin 300300,China

    Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    Li Guidana,*,Li Haikeb,Li Bina

    aSchool of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    bState Grid Tianjin Power Dongli Power Supply Branch,Tianjin 300300,China

    Attitude maneuver;Backstepping control;Null motion;Parallel configuration;Singularity;Spherical actuator

    A parallel configuration using two 3-degree-of-freedom(3-DOF)spherical electromagnetic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers.First,the full dynamic equations of motion for the spacecraft system are derived by the Newton-Euler method.To facilitate computation,virtual gimbal coordinate frames are established.Second,a nonlinear control law in terms of quaternions is developed via backstepping method.The proposed control law compensates the coupling torques arising from the spacecraft rotation,and is robust against the external disturbances.Then,the singularity problem is analyzed.To avoid singularities,a modified weighed Moore-Pseudo inverse velocity steering law based on null motion is proposed.The weighted matrices are carefully designed to switch the actuators and redistribute the control torques.The null motion is used to reorient the rotor away from the tilt angle saturation state.Finally,numerical simulations of rest-to-rest maneuvers are performed to validate the effectiveness of the proposed method.

    1.Introduction

    Control moment gyros(CMGs)are widely used in spacecraft attitude control,which is attributed to the advantages of high torque capacity and no propellants.1–3Especially,the single gimbal CMG(SGCMG)features the torque amplification capability.However,complex gimbal structures,large servo parts and commonly required cluster configurations limit their applications to small spacecraft.In contrast,multi-degree-offreedom(multi-DOF)spherical electromagnetic momentum exchange actuator(SEMEA)has great advantages of reducing attitude control system(ACS)mass,volume and power requirements because of their higher structural integration.4Furthermore,its largest asset is that a single device is capable of generating three-axis control torques because the variablespeed rotor can be tilted in any direction,which shows great prospect in 3-axis spacecraft attitude control.5,6

    Over the past decades,a variety of structural forms of spherical actuators have been proposed,which commonly have a spherical rotor or a spherical stator.Downer et al.7proposeda magnetic rotor suspension system including a magnetic annulus rotor and a spherical stator.An armature is used to induce rotation of the rotor and the spin axis can be gimbaled by selectively exciting the control coils on the stator.A similar ball joint type magnetic bearing for tilting body can be found in Ref.8.Note that if the armature is moved outside the stator,it will allow a larger tilting range,increasing the amount of angular momentum exchangeable between the actuator and the spacecraft.Based on this idea for structural improvements,Che′telat et al.9put forward a reaction sphere actuator with an 8-pole permanent magnet spherical rotor and a 20-pole electromagnet stator.The rotor can be electronically accelerated in any direction,and it is by magnetic levitation that the rotor is held in position.Instead of a multipole magnet,Chabot et al.10,11proposed a design using a spherical dipole magnet as the rotor,which is inexpensive and readily available.Similarly,in Ref.12,we proposed a new type of spherical momentum exchange device based on a permanent magnet spherical motors(PMSM)13and the detailed design consideration is presented in Ref.14.Compared with multi-axis magnetic momentum wheels,15its spherical-profile and dihedral-shell PMs can maintain the uniformity of the air–gap magnetic flux density when the rotor is in motion,and can help acquire a larger tilting range.From the perspective view,a single spherical actuator can be an alternative to conventional CMG clusters.However,its rotor tilt range is limited and the singularity occurs when the rotor tilt angle is saturated.Therefore,the control law and steering logic need to be concerned with the singularity.To overcome this drawback,ann-step incremental rotation strategy16was introduced in Ref.12.In fact,the steering strategy belongs to an open-loop scheme,which is sensitive to the unexpected external disturbances,spacecraft parameters and initial attitude errors.In general,more practicable singularity avoidance schemes and robust feedback control laws are desired.

    In this paper,we focus on the attitude maneuver control using spherical actuators.In CMG systems,cluster configuration17and path planning18are effective singularity avoidance strategies.When the system falls into the singularity state,null motion can be used to reconfigure the CMGs to preferred gimbal angles.Referring to this method,a parallel configuration for SEMEAs is investigated to avoid the tilt angle saturation singularity and simultaneously to provide redundancy.The dynamic equations of motion are derived by the Newton-Euler approach.Noting that the control system has a cascaded structure,we adopt a backstepping control law.19,20When the tilt angle saturation singularity is encountered,a modified weighed pseudo inverse steering law based on null motion is applied,and the weighted matrices are carefully designed.To validate the effectiveness of the proposed method,numerical simulations of rest-to-rest maneuvers are carried out.

    2.Introduction to SEMEA

    The prototype and schematic of the SEMEA are presented in Fig.1.The SEMEA is mainly composed of an electromagnetic stator and a PM rotor.The universal mechanical shaft in the PMSM is cut off only for momentum exchange purpose.Its variable-speed rotating rotor can be tilted in any direction,thus realizing three-dimensional momentum exchange with the spacecraft platform.

    Fig.1 Illustration of SEMEA.

    The actuator works on the electromagnetic torque T,whose characteristics are determined by stator currents I,and the arrangements of stator windings and rotor permanent magnets(Fig.1(b)).The relationship can be expressed as T=KTI where KTis the defined static torque characteristic matrix.Thus,the rotation and tilt of the rotor can be controlled by the stator currents I.Related control laws and electrifying strategies can be found in Refs.21,22.For simplicity,ideal rotor trajectory tracking is assumed in this paper.Note that the mechanical structure and the air–gap magnetic field distribution limit the rotor tilting range(the maximum of the rotor tilt angle δm=15°).

    3.Analytical model of spacecraft with two SEMEAs

    In this section,the Newton-Euler method is employed to derive the complete dynamic equations of motion for a spacecraft with two parallel mounted SEMEAs.The attitude kinematics is described in terms of quaternions.

    3.1.Dynamics equations of motion

    To simplify the development,we first consider a rigid spacecraft with only one SEMEA.Afterwards,we extend the result to the complete system.As shown in Fig.2(a),the stator housing and the spacecraft body are treated as one platform.A reference frameBwith basis(b1,b2,b3)is fixed with the platform.The center of mass of the overall systemOis taken as the origin of coordinates.The spacecraft platform is free to translate and rotate with respect to the inertial frameN,with i1,i2and i3the unit vectors.The origin of coordinates is at the rotor’s center of massORand rRis the distance vector fromOtoOR.

    To facilitate computation,a rotor’s outer virtual gimbal frameGwith orthogonal unit vectors(g1,g2,g3)and inner virtual gimbal frameHwith orthogonal unit vectors(h1,h2,h3)are established to define the orientation of the rotor in the spacecraft platform(Fig.2(b)).The unit vectors g2,h1and h3are parallel to the outer virtual gimbal axis,inner virtual gimbal axis and spin axis,respectively.The frameBtransforms to the framesGandHby Euler angle rotations through the outer virtual gimbal angel and inner virtual gimbal angel,respectively.The spherical rotor rotates around the spin axis at speed rate Ω.When the initial gimbal angles are zero,the unit vectors(h1,g2,h3)coincide with the unit vectors(b1,b2,b3)of frameB.The unit vector g2stays fixed relative to the frameB,and any unit vector gior hican be obtained by the following direction cosine matrices:

    Fig.2 Models for derivation of equations of motion.

    where α and β are outer and inner virtual gimbal angles,respectively.In the vector expressions,the subscripts indicate the relative motion.The absolute angular momentum HRof the rotor with respect to its center of massORis given by

    where ωRstands for the absolute angular velocity of the rotor;ωrhis the relative angular velocity of the rotor with respect to frameH,ωhgthe relative angular velocity of frameHwith respect to frameG,ωgbthe relative angular velocity of frameGwith respect to frameB,and ω the absolute angular velocity of the spacecraft platform;IRis the rotor inertia matrix.LetIhbe the moment of inertia of the rotor about its spin axis.Assume that the spherical rotor is completely symmetrical,and then in any frame IRis a constant diagonal matrix

    According to the definition of the rotor virtual gimbal coordinate frames,

    Since there is no angular momentum for the virtual gimbals,the total angular momentum of the overall system with respect to its center of massOis given by

    where HBis the absolute angular momentum of the spacecraft platform,andmRthe rotor mass;E is unit matrix;rRis the modulus of rR.Let Ibbe the inertia matrix of the platform with respect toO,and then H is rewritten as

    Let Lerepresent the external disturbance torques experienced by the system.According to Euler’s equation,the initial time derivative of H is given by

    Substitute Eqs.(4)and(5)into Eq.(9),and the dynamic equation of motion of the system is obtained as follows:

    where IS=IB+IRis a constant matrix.The right of Eq.(11)represents the output torques produced by the actuator.The first term represents the torque caused by the motion of the spacecraft body,the second term represents the torque caused by the rotor accelerations,and the third term represents the torque caused by the rotor tilt rate or rotation acceleration.

    From here on,we extend the result to the case of the spacecraft with two SEMEAs.Then the dynamics equation of motion of the overall system can be obtained from Eqs.(9)and(11)in the following form:

    with the subscripts 1 and 2 indicating the two SEMEAs.

    3.2.Attitude kinematics

    In this paper,the quaternion q=[q1,q2,q3,q4]Tis used to describe the attitude of the spacecraft and the desired attitude is adopted as the inertial frame,i.e.,the command quaternion qc=[0,0,0,1]T.In this case,the kinematic differential equation in terms of error quaternion is expressed as follows23:

    where qeV=[qe1,qe2,qe3]Tandqe4are the vector and scalar parts of the error quaternion qe,respectively,ω=[ω1,ω2,ω3]T;and[q×eV]is the slew-symmetric matrix defined by

    4.Nonlinear backstepping control law design

    Note that the attitude control system described by Eqs.(12)and(14)has a cascade structure,and the effective backstepping method can be used to develop the feedback law.The control block diagram is presented in Fig.3.

    It is assumed that the current state of the system α,β,Ω,ω and q can be measured in real time.We first consider the subsystem described by Eq.(14).To bring the spacecraft to the desired final attitude,the tracking law ωf=[ωf1,ωf2,ωf3]Tcan be considered as pseudo control input.The error state variables e1and e2are defined as

    LetVabe the following Lyapunov candidate function:

    The time derivative ofVais obtained as

    To makeVa≤0,we select the linear tracking function19as follows:

    wherekiare positive constants.

    After ωfis determined,the real command input should be determined to guarantee the pseudo-control input to be achieved.We define the following Lyapunov candidate function for the overall system:

    The time derivative ofVcan be written as follows:

    Substituting Eqs.(12),(16)and(20)into Eq.(22)gives

    where Lrand Lostand for the required torque and the output control torque,respectively;ρ andlMare positive constants.The external disturbance torques are bounded by

    Substituting Eqs.(20)and(24)into Eq.(23)gives

    Accordingly,the backstepping control law guarantees the asymptotically stability of the closed-loop system according to the Lyapunov theory.

    5.Singularity avoidance steering law design

    As shown in Eq.(13),Agdoes not contain Ω and thus is much smaller compared to Ah,and it is usually dropped.The steering law constraint given in Eq.(24)is then simplified as

    Each column vector of Ahrepresents the output control torques produced by the rotor tilt motion or spin acceleration,corresponding to CMG mode and RW mode,respectively.Note that the inner virtual gimbal angle β never equals 90°(δm=15°)and rank(Ah)≡ 3.This is to say,within the tilting range,the output torque of a single SEMEA spans the entire space.However,when the rotor tilts to the bound,there exists a direction in which an output torque cannot be generated.It is perpendicular to the spin axis and points outwards.This direction is called the ‘tilt angle saturation singularity direction”.When the required torque lies in this direction,a single SEMEA cannot avoid the singularity because there is no null space to reorient the rotor.In contrast,for a parallel configuration with two SEMEAs,a modified null motion strategy can be resorted to in order to avoid this singularity.

    For Ahis never rank deficient,naturally,the standard Moore–Penrose inverse can be used to obtain a minimum norm solution for˙η,and then the resulting simplified velocity steering law is given by

    Note that it is not applicable in practice if the solution tends to exceed the restricted range but the rotor has reached up to the bound.It is eagerly anticipated that the tilt angle will decrease automatically at the next time.However,the ideal case is infrequent and the tilt angle saturation singularity is more likely to happen.To avoid the singularity,when one of the actuators falls into the saturation state,the other one should switch to provide effective control torques,meanwhile,the saturated rotor should be reoriented to a preferred position away from tilt angle saturation.A modified weighted pseudo inverse steering logic based on null motion can be implemented

    where E6represents a 6×6 identity matrix;W1and W2are weighted matrices used to switch the actuators and redistribute the control torques.They are defined to be

    wherewiare positive scalars which control how heavily the SEMEAs are to perform in reaction wheel mode or CMG mode.24For simplicity,herewiare all set to 1.The parameters μ1and μ2are switch weights.Let δ1and δ2represent the two rotors’tilt angle respectively,then μ1and μ2are functions of δ1and δ2.They are defined to be

    where δmirepresents the maximum of the two rotors’tilt angle,and μ-ithe value of μiat the last moment.And Nd is the SEMEA null motion.Let constant vector ηfbe the desired rotor position,and the vector d is selected as

    wherekeis a positive gain to be appropriately chosen,and W3a diagonal matrix associated with rotor’s reorienting movement given by

    As shown in Eq.(31), μ1and μ2are either 0 or 1.If μ1is 1,this means that the resulting steering law will be performed with rotor 1 to be reoriented to the desired position and at the same time rotor 2 providing effective control torques onto the spacecraft.As we can see,AhNd=0,i.e.,the SEMEA null motion produces no torques onto the spacecraft.The stability of null motion has been demonstrated in Ref.25.

    6.Numerical simulations

    According to the dynamics model,nonlinear control laws and steering laws have been discussed,and numerical simulations of rest-to-rest maneuvers are performed for two main objectives:(1)to confirm the asymptotically stability of the backstepping feedback law;(2)to demonstrate the effectiveness of the proposed singularity avoidance steering logic for the parallel configuration.The external disturbance torques are selected as

    Two cases with different tilting ranges are considered in our simulations.The detailed simulation parameters are listed in Table 1.In Case 1,the maximum tilt angles are just as normal(δm1= δm2=15°).During the maneuvers,it may not encounter the tilt angle saturation.In order to demonstrate the working principle of the steering law clearly,a singularity case is needed.Therefore,in Case 2,the maximum tilt angle of rotor 1 is modified(δm1=8°,δm2=15°)to ensure that the singularity will happen.The simulation results are presented in Figs.4–6.Note that the two cases share the same responses of thespacecraft platform,but different SEMEA responses.The rotor tilt angle response illustrates the working process of the steering law clearly.

    Table 1 Simulation parameters.

    Fig.4 History responses of spacecraft.

    Fig.4 shows the history responses of the spacecraft.Fig.4(a)plots the responses of the attitude quaternion,and Fig.4(b)gives the body angular velocity responses.From the simulation results,it can be seen that the proposed nonlinear control law is asymptotically stable and performs very well.The large angle attitude maneuver is effectively achieved with the existence of the external disturbance torques.

    Fig.5 History responses of SEMEAs for Case 1(δm1= δm2=15°).

    Fig.6 History responses of SEMEAs for Case 2(δm1=8°,δm2=15°).

    As shown in Fig.5,in Case 1,it does not encounter the singularity.The maximum tilt angle of rotor 1 approximately equals 9.7°(around 2.6 s),and it is within the tilting range.During the maneuver,therefore,only SEMEA 1 works and provides control torques while SEMEA 2 holds the initial states.It is apparent that the tilt saturation may happen if the maneuver mission is changed or the tilting range is decreased,just as in Case 2.

    As shown in Fig.6,in Case 2,at the beginning of the maneuver SEMEA 1 first provides control torques,and around 1.2 s it tilts to the maximum.At this moment,SEMEA 2 switches to produce effective torques onto the spacecraft,meanwhile,null motion drives SEMEA 1 away from the saturation state.Around 5 s,it is brought to the initial position.Thus,the tilt angle saturation singularity is successfully avoided.The drawback of the weighting matrices is that the tilt angular rates of the rotor change extremely sharply at the switch point,which requires the actuator to make a very fast dynamic response in practice.

    7.Conclusions

    (1)The full equations of motion of a rigid spacecraft with two spherical actuators mounted in parallel are derived.Compared with conventional CMG system,the spherical actuator’s gimbal-less structure makes the formula more accurate and simple.

    (2)A nonlinear control law based on the backstepping control method is developed with the external disturbance overcome.To avoid singularity,a modified version of weighted velocity steering law based on null motion is proposed and the weighted matrices are carefully designed.

    (3)The simulation results validate the effectiveness of the

    proposed control law and the singularity avoidance steering law.Ideal rotor trajectory tracking for the actuator is assumed in the simulation.In practice,fast dynamic response of the SEMEA is crucially required.Device optimization and preferred configuration need

    to be studied in the future work.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China(No.51677130)and the Independent Innovation Funds of Tianjin University(No.1405).

    1.Hu Q,Zhang JR.Attitude control and vibration suppression for flexible spacecraft using control moment gyroscopes.J Aerosp Eng2015;29(1):04015027-1–04015027-12.

    2.Hu Q,Jia YH,Xu SJ.Adaptive suppression of linear structural vibration using control moment gyroscopes.J Guid Control Dyn2014;37(3):990–6.

    3.Zhang JR.Steering laws analysis of SGCMGs based on singular value decomposition theory.Appl Math Mech2008;29(8):1013–21.

    4.Fausz J,Wilson B,Hall C,Richie D,Lappas V.Survey of technology developments in flywheel attitude control and energy storage systems.J Guid Control Dyn2009;32(2):354–65.

    5.Zhang L,Chen W,Liu J,Wu X,Chen IM.Accuracy enhancement of the spherical actuator with a two-level geometric calibration method.Chin J Aeronaut2014;27(2):328–37.

    6.Gerlach B,Ehinger M,Raue HK,Seiler R.Digital controller for a gimballing magnetic bearing reaction wheel.In:Proceedings of AIAA guidance,navigation,and control conference and exhibit;2005 Aug 15–18.San Francisco.Reston:AIAA;2005.p.1–6.

    7.Downer JR,Eisenhaure DB,Hockney RL,Johnson BG.Magnetic bearing and suspension system.United States patent US 4961352;1990 Oct 9.

    8.Chassoulier D,Chillet C,Delamare J,Yonnet JP.Ball joint type magnetic bearing for tilting body.United States patent US 6351049;2002 Feb.26.

    9.Rossini L,Che′telat O,Onillon E,Perriard Y.Force and torque analytical models of a reaction sphere actuator based on spherical harmonicrotationand decomposition.IEEE/ASMETrans Mechatron2013;18(3):1006–18.

    10.Chabot J,Schaub H.Spherical magnetic dipole actuator for spacecraftattitude control.JGuidControlDyn2016;39(4):911–5.

    11.Chabot J.A spherical magnetic dipole actuator for space craft attitude control[dissertation].Colorado:University of Colorado;2015.

    12.Li B,Yu R,Li H,Li G,Wu T.Modeling and analysis of a 3-DOF spherical momentum exchange actuator for spacecraft attitude maneuver.J Aerosp Eng2015;28(6):04015008.

    13.Li GD,Cao JC,Li B,Li HF.Control of permanent magnetic spherical motor based on torque-sharing strategy.Adv Mater Res2013;694–697:1512–8.

    14.Li B,Yu R,Li H,Li G.Design considerations of a permanent magnetic spherical motor using spherical harmonics.IEEE Trans Magn2014;50(8):1–9.

    15.Gerlach B,Ehinger M,Raue HK,Seiler R.Gimballing magnetic bearing reaction wheel with digital controller.In:Proceedings of the 11th European space mechanisms and tribology symposium;2005 Sep 21–23;Lucerne,Switzerland.Noordwijk:ESA Publication Division;2005.

    16.Lappas V,Steyn W,Underwood C.Torque amplification of control moment gyros.Electron Lett2002;38(15):837–9.

    17.Kurokawa H.A geometric study of single gimbal control moment gyros.Rep Mech Eng Lab1998;175:135–8.

    18.Paradiso JA.Global steering of single gimballed control moment gyroscopes using a directed search.J Guid Control Dyn1992;15(5):1236–44.

    19.Kim KS,Kim Y.Robust backstepping control for slew maneuver using nonlinear tracking function.IEEE Trans Control Syst Technol2003;11(6):822–9.

    20.Zhang H,Fang J.Robust backstepping control for agile satellite using double-gimbal variable-speed control moment gyroscope.J Guid Control Dyn2013;36(5):1356–63.

    21.Wang W,Wang J,Jewell G,Howe D.Design and control of a novel spherical permanent magnet actuator with three degrees of freedom.IEEE/ASME Trans Mechatron2003;8(4):457–68.

    22.Guo C.A spherical planning based electrifying strategy of permanent magnet spherical motor.ApplMechMater2015;741:629–45.

    23.Wie B,Weiss H,Arapostathis A.Quarternion feedback regulator for spacecraft eigenaxis rotations.J Guid Control Dyn1989;12(3):375–80.

    24.Schaub H,Vadali SR,Junkins JL.Feedback control law for variable speed control moment gyros.J Astronaut Sci1998;46(3):307–28.

    25.Vadali S,Walker S,Oh HS.Preferred gimbal angles for single gimbal control moment gyros.J Guid Control Dyn1990;13(6):1090–5.

    14 January 2016;revised 4 May 2016;accepted 31 October 2016

    Available online 21 December 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail address:lgdtju@tju.edu.cn(G.Li).

    Peer review under responsibility of Editorial Committee of CJA.

    五月玫瑰六月丁香| 日日夜夜操网爽| 亚洲精华国产精华精| 国产精品精品国产色婷婷| 亚洲国产精品sss在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲精品综合一区在线观看| 色av中文字幕| 99精品久久久久人妻精品| 男女床上黄色一级片免费看| 村上凉子中文字幕在线| 成人高潮视频无遮挡免费网站| 国产单亲对白刺激| 最近最新免费中文字幕在线| 99在线人妻在线中文字幕| 村上凉子中文字幕在线| 99视频精品全部免费 在线| 尤物成人国产欧美一区二区三区| 欧美黄色片欧美黄色片| 久久人妻av系列| 欧美一区二区国产精品久久精品| 国产在线男女| 桃红色精品国产亚洲av| 午夜福利欧美成人| 国产精品永久免费网站| 高清日韩中文字幕在线| 色综合婷婷激情| 久久久久久久精品吃奶| 网址你懂的国产日韩在线| 日韩有码中文字幕| 亚洲美女黄片视频| 日本在线视频免费播放| 99久久无色码亚洲精品果冻| 99热只有精品国产| 亚洲av成人不卡在线观看播放网| 国产探花极品一区二区| 波多野结衣巨乳人妻| 搡老岳熟女国产| 日韩欧美 国产精品| 欧美最新免费一区二区三区 | 亚洲在线观看片| 精品国内亚洲2022精品成人| 精品久久久久久久人妻蜜臀av| 国产亚洲精品综合一区在线观看| 日本熟妇午夜| 国产亚洲精品久久久久久毛片| 国产高清视频在线播放一区| 亚洲av成人不卡在线观看播放网| 精品国产三级普通话版| АⅤ资源中文在线天堂| 久久久久久久午夜电影| 久久久久久久精品吃奶| 日韩亚洲欧美综合| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产一区二区三区视频了| 午夜福利欧美成人| 最后的刺客免费高清国语| 久久精品国产99精品国产亚洲性色| 内地一区二区视频在线| 国产高清视频在线播放一区| 日韩免费av在线播放| 亚洲真实伦在线观看| av欧美777| 欧美黄色片欧美黄色片| 中文字幕熟女人妻在线| 国产av不卡久久| 免费高清视频大片| 神马国产精品三级电影在线观看| 精品99又大又爽又粗少妇毛片 | 国产成人影院久久av| 一本久久中文字幕| 亚洲一区高清亚洲精品| 窝窝影院91人妻| 婷婷亚洲欧美| 2021天堂中文幕一二区在线观| 国产真实伦视频高清在线观看 | 宅男免费午夜| 亚州av有码| 国产伦精品一区二区三区视频9| 我的女老师完整版在线观看| 变态另类丝袜制服| 综合色av麻豆| 久久亚洲真实| 1024手机看黄色片| 国内精品久久久久久久电影| 91麻豆av在线| 国内久久婷婷六月综合欲色啪| 国产激情偷乱视频一区二区| 内射极品少妇av片p| 成人特级黄色片久久久久久久| 午夜福利在线在线| 久久精品久久久久久噜噜老黄 | 男女床上黄色一级片免费看| 露出奶头的视频| 岛国在线免费视频观看| 国产精品三级大全| www.999成人在线观看| 国产一区二区亚洲精品在线观看| 亚洲国产精品成人综合色| 老司机午夜十八禁免费视频| 欧美潮喷喷水| 国产精品亚洲一级av第二区| 欧美最新免费一区二区三区 | 婷婷色综合大香蕉| 国产高清激情床上av| 精品一区二区免费观看| 日韩欧美三级三区| 偷拍熟女少妇极品色| 给我免费播放毛片高清在线观看| 免费在线观看亚洲国产| 精品99又大又爽又粗少妇毛片 | 少妇的逼水好多| 99视频精品全部免费 在线| 亚洲国产精品999在线| 日韩欧美三级三区| 偷拍熟女少妇极品色| 久久久久国内视频| 午夜激情欧美在线| 欧美国产日韩亚洲一区| 赤兔流量卡办理| 搞女人的毛片| 欧美日韩黄片免| 久久国产乱子伦精品免费另类| www.色视频.com| 丰满乱子伦码专区| 性色avwww在线观看| 欧美成人免费av一区二区三区| 亚洲一区二区三区不卡视频| 波多野结衣高清无吗| 男女床上黄色一级片免费看| 日本免费a在线| 99精品久久久久人妻精品| 久久久久久久亚洲中文字幕 | 观看美女的网站| 熟女人妻精品中文字幕| 精品久久久久久成人av| 国产综合懂色| 人妻制服诱惑在线中文字幕| 国产高潮美女av| 国产精品av视频在线免费观看| 国产一区二区亚洲精品在线观看| 免费观看人在逋| 久久天躁狠狠躁夜夜2o2o| 亚洲最大成人手机在线| 狂野欧美白嫩少妇大欣赏| 国产精品伦人一区二区| 国产在视频线在精品| 久久国产精品人妻蜜桃| 亚洲成av人片在线播放无| 国产精品98久久久久久宅男小说| 国产精品一区二区免费欧美| 午夜激情欧美在线| 午夜福利视频1000在线观看| 丝袜美腿在线中文| 我要搜黄色片| 国产精品一区二区三区四区久久| 亚洲成人中文字幕在线播放| 日韩欧美精品v在线| 人妻夜夜爽99麻豆av| 少妇高潮的动态图| 99热精品在线国产| 日韩大尺度精品在线看网址| 亚洲欧美激情综合另类| 国产高清有码在线观看视频| 久久人人爽人人爽人人片va | 哪里可以看免费的av片| 日本免费a在线| 成人av在线播放网站| 成年免费大片在线观看| 亚洲欧美精品综合久久99| 亚洲在线观看片| 免费一级毛片在线播放高清视频| netflix在线观看网站| 国产白丝娇喘喷水9色精品| 国产精品亚洲一级av第二区| 波多野结衣高清无吗| 五月玫瑰六月丁香| 亚洲精品影视一区二区三区av| 美女高潮的动态| 国产伦精品一区二区三区四那| 欧美精品啪啪一区二区三区| 国产男靠女视频免费网站| 99久久精品热视频| 最近中文字幕高清免费大全6 | 听说在线观看完整版免费高清| 亚洲欧美清纯卡通| 亚洲男人的天堂狠狠| 美女被艹到高潮喷水动态| 亚洲精品一卡2卡三卡4卡5卡| 美女大奶头视频| 亚洲最大成人av| 亚洲五月天丁香| 色av中文字幕| 亚洲欧美日韩东京热| 午夜福利在线在线| 长腿黑丝高跟| 日韩亚洲欧美综合| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩欧美 国产精品| 天堂动漫精品| 国产精品久久视频播放| 99久国产av精品| 精品久久久久久久久久免费视频| 黄色配什么色好看| 亚洲精品日韩av片在线观看| 亚洲av日韩精品久久久久久密| 成年人黄色毛片网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲一区二区三区色噜噜| www.色视频.com| 男女视频在线观看网站免费| 两人在一起打扑克的视频| 91狼人影院| 亚洲精品在线观看二区| 日本 av在线| 免费高清视频大片| 97热精品久久久久久| 极品教师在线视频| 亚洲人成网站高清观看| 中文资源天堂在线| 此物有八面人人有两片| 国产一区二区在线av高清观看| 一级毛片久久久久久久久女| 99精品久久久久人妻精品| 观看免费一级毛片| 欧美区成人在线视频| 香蕉av资源在线| 老鸭窝网址在线观看| 老女人水多毛片| 变态另类成人亚洲欧美熟女| 久久这里只有精品中国| 中国美女看黄片| av女优亚洲男人天堂| av黄色大香蕉| 日韩精品中文字幕看吧| 五月伊人婷婷丁香| 欧美xxxx黑人xx丫x性爽| 成人亚洲精品av一区二区| 在线十欧美十亚洲十日本专区| 午夜福利18| 精品免费久久久久久久清纯| 成人亚洲精品av一区二区| 中文字幕av在线有码专区| 欧美一区二区精品小视频在线| 欧美精品国产亚洲| 久久国产乱子免费精品| 有码 亚洲区| 无人区码免费观看不卡| 久久草成人影院| 亚洲,欧美,日韩| 91av网一区二区| 少妇的逼好多水| 久久性视频一级片| 一卡2卡三卡四卡精品乱码亚洲| 色精品久久人妻99蜜桃| 18禁在线播放成人免费| 国产亚洲欧美98| 欧美激情国产日韩精品一区| 午夜福利18| 天天躁日日操中文字幕| 欧美高清性xxxxhd video| 欧美激情国产日韩精品一区| 中文资源天堂在线| 校园春色视频在线观看| 欧美日韩国产亚洲二区| 日本五十路高清| 俄罗斯特黄特色一大片| 首页视频小说图片口味搜索| 中文字幕av在线有码专区| 亚洲一区二区三区色噜噜| 我的女老师完整版在线观看| 观看美女的网站| 麻豆成人午夜福利视频| 啦啦啦韩国在线观看视频| 国产一级毛片七仙女欲春2| 成人三级黄色视频| 最近视频中文字幕2019在线8| 男人和女人高潮做爰伦理| 欧洲精品卡2卡3卡4卡5卡区| 日韩国内少妇激情av| 中文字幕人成人乱码亚洲影| 嫩草影院精品99| 99热这里只有是精品在线观看 | 18禁黄网站禁片免费观看直播| 欧美日韩乱码在线| 国产单亲对白刺激| 淫妇啪啪啪对白视频| 精品一区二区三区视频在线观看免费| 丰满的人妻完整版| 狠狠狠狠99中文字幕| 亚洲五月婷婷丁香| 精品久久久久久成人av| 国产午夜精品论理片| 久久精品人妻少妇| 天堂动漫精品| 给我免费播放毛片高清在线观看| 十八禁国产超污无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 国产欧美日韩一区二区三| 亚洲国产精品成人综合色| 亚洲精品456在线播放app | www.熟女人妻精品国产| 国产熟女xx| av天堂在线播放| 国产精品自产拍在线观看55亚洲| 久久久久性生活片| 精品一区二区三区av网在线观看| 人妻夜夜爽99麻豆av| 美女高潮喷水抽搐中文字幕| 午夜福利在线观看吧| 日本三级黄在线观看| netflix在线观看网站| av在线观看视频网站免费| 国产精品三级大全| a在线观看视频网站| 成人美女网站在线观看视频| 女同久久另类99精品国产91| 99久久精品热视频| 国产精品久久久久久人妻精品电影| 亚洲成人久久爱视频| 级片在线观看| 亚洲成人免费电影在线观看| 97超视频在线观看视频| 69av精品久久久久久| 蜜桃亚洲精品一区二区三区| 色5月婷婷丁香| 日本黄大片高清| 久久中文看片网| 亚洲精品影视一区二区三区av| 成熟少妇高潮喷水视频| 在线a可以看的网站| 国产主播在线观看一区二区| 欧美zozozo另类| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| 久久精品影院6| 18禁裸乳无遮挡免费网站照片| 成熟少妇高潮喷水视频| 黄色配什么色好看| 亚洲美女视频黄频| 欧美乱妇无乱码| 国产亚洲精品综合一区在线观看| 3wmmmm亚洲av在线观看| 18禁在线播放成人免费| 亚洲成a人片在线一区二区| 中文字幕高清在线视频| 自拍偷自拍亚洲精品老妇| 欧美激情在线99| 国产aⅴ精品一区二区三区波| 成人国产一区最新在线观看| 国产欧美日韩精品亚洲av| 久久久久国内视频| 亚洲在线自拍视频| 网址你懂的国产日韩在线| 男女下面进入的视频免费午夜| 中国美女看黄片| 国产在视频线在精品| 日本黄大片高清| 露出奶头的视频| 一级av片app| 亚洲av二区三区四区| 亚洲精品色激情综合| 最近在线观看免费完整版| 国产精品电影一区二区三区| 自拍偷自拍亚洲精品老妇| 天美传媒精品一区二区| 欧美另类亚洲清纯唯美| 亚洲经典国产精华液单 | 日本a在线网址| 中文在线观看免费www的网站| 国语自产精品视频在线第100页| 久久久久久久亚洲中文字幕 | 欧美一区二区国产精品久久精品| 久久精品国产99精品国产亚洲性色| 又紧又爽又黄一区二区| 中文字幕熟女人妻在线| 国产成人啪精品午夜网站| 激情在线观看视频在线高清| 日韩欧美一区二区三区在线观看| 国产欧美日韩一区二区精品| 9191精品国产免费久久| 午夜福利欧美成人| 免费在线观看成人毛片| 免费在线观看影片大全网站| 在线观看午夜福利视频| 国产成+人综合+亚洲专区| 床上黄色一级片| 国产大屁股一区二区在线视频| av国产免费在线观看| 很黄的视频免费| 99久久久亚洲精品蜜臀av| 亚洲欧美清纯卡通| 国产精品99久久久久久久久| 亚洲精品粉嫩美女一区| 亚洲不卡免费看| 亚洲真实伦在线观看| 亚洲欧美日韩高清专用| 欧美不卡视频在线免费观看| 99在线人妻在线中文字幕| 又爽又黄无遮挡网站| 日本黄色视频三级网站网址| 色综合站精品国产| 精品日产1卡2卡| 亚洲国产高清在线一区二区三| 超碰av人人做人人爽久久| 亚洲人成网站高清观看| 国产真实伦视频高清在线观看 | 午夜精品在线福利| 特级一级黄色大片| 香蕉av资源在线| 国产亚洲精品久久久com| 日本熟妇午夜| 亚洲av成人av| 成人亚洲精品av一区二区| 国产乱人视频| 午夜福利在线观看吧| 国产精品人妻久久久久久| 国产蜜桃级精品一区二区三区| 日韩亚洲欧美综合| 色5月婷婷丁香| 91麻豆精品激情在线观看国产| 欧美色欧美亚洲另类二区| 国产探花极品一区二区| 色噜噜av男人的天堂激情| 好男人在线观看高清免费视频| 欧美最黄视频在线播放免费| 婷婷色综合大香蕉| 午夜精品在线福利| 波多野结衣巨乳人妻| 国产精品久久久久久亚洲av鲁大| av视频在线观看入口| 乱码一卡2卡4卡精品| 全区人妻精品视频| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 精品国产露脸久久av麻豆| 久久久国产一区二区| 性色av一级| 三级国产精品欧美在线观看| 久久精品久久精品一区二区三区| 别揉我奶头 嗯啊视频| 日本-黄色视频高清免费观看| 国产亚洲最大av| 成人综合一区亚洲| 欧美亚洲 丝袜 人妻 在线| 综合色av麻豆| 又爽又黄a免费视频| 纵有疾风起免费观看全集完整版| 超碰av人人做人人爽久久| 精品久久久噜噜| 91aial.com中文字幕在线观看| 亚洲av日韩在线播放| 伊人久久国产一区二区| 只有这里有精品99| 在线免费十八禁| 国产高清不卡午夜福利| 国产精品女同一区二区软件| 精品久久久噜噜| www.色视频.com| 干丝袜人妻中文字幕| 国内少妇人妻偷人精品xxx网站| 国产免费视频播放在线视频| 国产精品不卡视频一区二区| 国产一区亚洲一区在线观看| 亚洲国产精品国产精品| 日韩中字成人| 欧美3d第一页| 2021天堂中文幕一二区在线观| 国产精品99久久99久久久不卡 | 亚洲精品日韩在线中文字幕| 久久99热这里只频精品6学生| 最近2019中文字幕mv第一页| 国产精品麻豆人妻色哟哟久久| 亚洲精品视频女| 亚洲欧美中文字幕日韩二区| 交换朋友夫妻互换小说| 欧美成人a在线观看| 九草在线视频观看| 观看美女的网站| 国产成人一区二区在线| 九色成人免费人妻av| 成年女人在线观看亚洲视频 | 在线免费观看不下载黄p国产| 成年女人看的毛片在线观看| 天美传媒精品一区二区| 国产精品精品国产色婷婷| 高清毛片免费看| 免费看a级黄色片| 久久久久国产精品人妻一区二区| 大话2 男鬼变身卡| 中文乱码字字幕精品一区二区三区| 人体艺术视频欧美日本| 色哟哟·www| 男人爽女人下面视频在线观看| 免费观看av网站的网址| 久久国内精品自在自线图片| 国产精品久久久久久久电影| 91精品伊人久久大香线蕉| av福利片在线观看| 毛片一级片免费看久久久久| 久久久久国产网址| 国产精品嫩草影院av在线观看| 夫妻性生交免费视频一级片| 在线观看免费高清a一片| 大陆偷拍与自拍| 黄色怎么调成土黄色| 免费看不卡的av| 麻豆国产97在线/欧美| 亚洲人成网站高清观看| 亚洲成人精品中文字幕电影| 禁无遮挡网站| 亚洲国产日韩一区二区| 精品一区在线观看国产| 亚洲精品456在线播放app| 男人舔奶头视频| 97精品久久久久久久久久精品| 国产午夜福利久久久久久| 热99国产精品久久久久久7| 又黄又爽又刺激的免费视频.| 亚洲欧洲国产日韩| 成人鲁丝片一二三区免费| 久久99蜜桃精品久久| 免费看av在线观看网站| av在线观看视频网站免费| 在线免费十八禁| 中文天堂在线官网| 国语对白做爰xxxⅹ性视频网站| 人人妻人人澡人人爽人人夜夜| 欧美成人一区二区免费高清观看| 国产精品一区二区在线观看99| 性插视频无遮挡在线免费观看| 久久久久国产网址| 偷拍熟女少妇极品色| av在线亚洲专区| 嫩草影院新地址| 少妇高潮的动态图| 69av精品久久久久久| 日韩,欧美,国产一区二区三区| 亚洲欧洲日产国产| 日日啪夜夜爽| 菩萨蛮人人尽说江南好唐韦庄| 男插女下体视频免费在线播放| 少妇的逼水好多| 欧美性感艳星| 国产成人午夜福利电影在线观看| 国产高清国产精品国产三级 | 狠狠精品人妻久久久久久综合| 久久99精品国语久久久| 99热全是精品| 深夜a级毛片| 亚洲美女搞黄在线观看| 视频区图区小说| 99热这里只有精品一区| 一区二区av电影网| 狠狠精品人妻久久久久久综合| 国内揄拍国产精品人妻在线| 久久久久久久大尺度免费视频| 在线观看一区二区三区| 成年av动漫网址| 色吧在线观看| a级一级毛片免费在线观看| 亚洲国产精品专区欧美| 精品人妻一区二区三区麻豆| www.色视频.com| 精品99又大又爽又粗少妇毛片| 久久国产乱子免费精品| 精品99又大又爽又粗少妇毛片| 精品国产三级普通话版| 黄色视频在线播放观看不卡| 精品熟女少妇av免费看| 六月丁香七月| 国产老妇女一区| 亚洲国产最新在线播放| 色综合色国产| 国产黄片视频在线免费观看| 看免费成人av毛片| av在线播放精品| 五月开心婷婷网| 国产免费视频播放在线视频| 三级男女做爰猛烈吃奶摸视频| 一个人观看的视频www高清免费观看| 欧美最新免费一区二区三区| 最后的刺客免费高清国语| 天堂中文最新版在线下载 | 中文在线观看免费www的网站| 丰满人妻一区二区三区视频av| 日本三级黄在线观看| 精品久久久久久电影网| 欧美极品一区二区三区四区| 国产午夜精品久久久久久一区二区三区| 美女视频免费永久观看网站| 久久国产乱子免费精品| 欧美成人午夜免费资源| 日韩大片免费观看网站| 久热这里只有精品99| 少妇猛男粗大的猛烈进出视频 | 一区二区三区免费毛片| 成人亚洲欧美一区二区av| 少妇猛男粗大的猛烈进出视频 | 色播亚洲综合网| 老司机影院毛片| 在线 av 中文字幕| 精品人妻偷拍中文字幕| 少妇熟女欧美另类| 久久99蜜桃精品久久| 亚洲av不卡在线观看| 少妇人妻 视频| 涩涩av久久男人的天堂| 日韩av免费高清视频| 亚洲无线观看免费| 国产高清有码在线观看视频| 欧美最新免费一区二区三区| 亚洲国产色片| 亚洲真实伦在线观看| 特大巨黑吊av在线直播|