• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    2017-11-21 12:54:36LiGuidnLiHikeLiBin
    CHINESE JOURNAL OF AERONAUTICS 2017年1期

    Li Guidn,Li Hike,Li Bin

    aSchool of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    bState Grid Tianjin Power Dongli Power Supply Branch,Tianjin 300300,China

    Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    Li Guidana,*,Li Haikeb,Li Bina

    aSchool of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    bState Grid Tianjin Power Dongli Power Supply Branch,Tianjin 300300,China

    Attitude maneuver;Backstepping control;Null motion;Parallel configuration;Singularity;Spherical actuator

    A parallel configuration using two 3-degree-of-freedom(3-DOF)spherical electromagnetic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers.First,the full dynamic equations of motion for the spacecraft system are derived by the Newton-Euler method.To facilitate computation,virtual gimbal coordinate frames are established.Second,a nonlinear control law in terms of quaternions is developed via backstepping method.The proposed control law compensates the coupling torques arising from the spacecraft rotation,and is robust against the external disturbances.Then,the singularity problem is analyzed.To avoid singularities,a modified weighed Moore-Pseudo inverse velocity steering law based on null motion is proposed.The weighted matrices are carefully designed to switch the actuators and redistribute the control torques.The null motion is used to reorient the rotor away from the tilt angle saturation state.Finally,numerical simulations of rest-to-rest maneuvers are performed to validate the effectiveness of the proposed method.

    1.Introduction

    Control moment gyros(CMGs)are widely used in spacecraft attitude control,which is attributed to the advantages of high torque capacity and no propellants.1–3Especially,the single gimbal CMG(SGCMG)features the torque amplification capability.However,complex gimbal structures,large servo parts and commonly required cluster configurations limit their applications to small spacecraft.In contrast,multi-degree-offreedom(multi-DOF)spherical electromagnetic momentum exchange actuator(SEMEA)has great advantages of reducing attitude control system(ACS)mass,volume and power requirements because of their higher structural integration.4Furthermore,its largest asset is that a single device is capable of generating three-axis control torques because the variablespeed rotor can be tilted in any direction,which shows great prospect in 3-axis spacecraft attitude control.5,6

    Over the past decades,a variety of structural forms of spherical actuators have been proposed,which commonly have a spherical rotor or a spherical stator.Downer et al.7proposeda magnetic rotor suspension system including a magnetic annulus rotor and a spherical stator.An armature is used to induce rotation of the rotor and the spin axis can be gimbaled by selectively exciting the control coils on the stator.A similar ball joint type magnetic bearing for tilting body can be found in Ref.8.Note that if the armature is moved outside the stator,it will allow a larger tilting range,increasing the amount of angular momentum exchangeable between the actuator and the spacecraft.Based on this idea for structural improvements,Che′telat et al.9put forward a reaction sphere actuator with an 8-pole permanent magnet spherical rotor and a 20-pole electromagnet stator.The rotor can be electronically accelerated in any direction,and it is by magnetic levitation that the rotor is held in position.Instead of a multipole magnet,Chabot et al.10,11proposed a design using a spherical dipole magnet as the rotor,which is inexpensive and readily available.Similarly,in Ref.12,we proposed a new type of spherical momentum exchange device based on a permanent magnet spherical motors(PMSM)13and the detailed design consideration is presented in Ref.14.Compared with multi-axis magnetic momentum wheels,15its spherical-profile and dihedral-shell PMs can maintain the uniformity of the air–gap magnetic flux density when the rotor is in motion,and can help acquire a larger tilting range.From the perspective view,a single spherical actuator can be an alternative to conventional CMG clusters.However,its rotor tilt range is limited and the singularity occurs when the rotor tilt angle is saturated.Therefore,the control law and steering logic need to be concerned with the singularity.To overcome this drawback,ann-step incremental rotation strategy16was introduced in Ref.12.In fact,the steering strategy belongs to an open-loop scheme,which is sensitive to the unexpected external disturbances,spacecraft parameters and initial attitude errors.In general,more practicable singularity avoidance schemes and robust feedback control laws are desired.

    In this paper,we focus on the attitude maneuver control using spherical actuators.In CMG systems,cluster configuration17and path planning18are effective singularity avoidance strategies.When the system falls into the singularity state,null motion can be used to reconfigure the CMGs to preferred gimbal angles.Referring to this method,a parallel configuration for SEMEAs is investigated to avoid the tilt angle saturation singularity and simultaneously to provide redundancy.The dynamic equations of motion are derived by the Newton-Euler approach.Noting that the control system has a cascaded structure,we adopt a backstepping control law.19,20When the tilt angle saturation singularity is encountered,a modified weighed pseudo inverse steering law based on null motion is applied,and the weighted matrices are carefully designed.To validate the effectiveness of the proposed method,numerical simulations of rest-to-rest maneuvers are carried out.

    2.Introduction to SEMEA

    The prototype and schematic of the SEMEA are presented in Fig.1.The SEMEA is mainly composed of an electromagnetic stator and a PM rotor.The universal mechanical shaft in the PMSM is cut off only for momentum exchange purpose.Its variable-speed rotating rotor can be tilted in any direction,thus realizing three-dimensional momentum exchange with the spacecraft platform.

    Fig.1 Illustration of SEMEA.

    The actuator works on the electromagnetic torque T,whose characteristics are determined by stator currents I,and the arrangements of stator windings and rotor permanent magnets(Fig.1(b)).The relationship can be expressed as T=KTI where KTis the defined static torque characteristic matrix.Thus,the rotation and tilt of the rotor can be controlled by the stator currents I.Related control laws and electrifying strategies can be found in Refs.21,22.For simplicity,ideal rotor trajectory tracking is assumed in this paper.Note that the mechanical structure and the air–gap magnetic field distribution limit the rotor tilting range(the maximum of the rotor tilt angle δm=15°).

    3.Analytical model of spacecraft with two SEMEAs

    In this section,the Newton-Euler method is employed to derive the complete dynamic equations of motion for a spacecraft with two parallel mounted SEMEAs.The attitude kinematics is described in terms of quaternions.

    3.1.Dynamics equations of motion

    To simplify the development,we first consider a rigid spacecraft with only one SEMEA.Afterwards,we extend the result to the complete system.As shown in Fig.2(a),the stator housing and the spacecraft body are treated as one platform.A reference frameBwith basis(b1,b2,b3)is fixed with the platform.The center of mass of the overall systemOis taken as the origin of coordinates.The spacecraft platform is free to translate and rotate with respect to the inertial frameN,with i1,i2and i3the unit vectors.The origin of coordinates is at the rotor’s center of massORand rRis the distance vector fromOtoOR.

    To facilitate computation,a rotor’s outer virtual gimbal frameGwith orthogonal unit vectors(g1,g2,g3)and inner virtual gimbal frameHwith orthogonal unit vectors(h1,h2,h3)are established to define the orientation of the rotor in the spacecraft platform(Fig.2(b)).The unit vectors g2,h1and h3are parallel to the outer virtual gimbal axis,inner virtual gimbal axis and spin axis,respectively.The frameBtransforms to the framesGandHby Euler angle rotations through the outer virtual gimbal angel and inner virtual gimbal angel,respectively.The spherical rotor rotates around the spin axis at speed rate Ω.When the initial gimbal angles are zero,the unit vectors(h1,g2,h3)coincide with the unit vectors(b1,b2,b3)of frameB.The unit vector g2stays fixed relative to the frameB,and any unit vector gior hican be obtained by the following direction cosine matrices:

    Fig.2 Models for derivation of equations of motion.

    where α and β are outer and inner virtual gimbal angles,respectively.In the vector expressions,the subscripts indicate the relative motion.The absolute angular momentum HRof the rotor with respect to its center of massORis given by

    where ωRstands for the absolute angular velocity of the rotor;ωrhis the relative angular velocity of the rotor with respect to frameH,ωhgthe relative angular velocity of frameHwith respect to frameG,ωgbthe relative angular velocity of frameGwith respect to frameB,and ω the absolute angular velocity of the spacecraft platform;IRis the rotor inertia matrix.LetIhbe the moment of inertia of the rotor about its spin axis.Assume that the spherical rotor is completely symmetrical,and then in any frame IRis a constant diagonal matrix

    According to the definition of the rotor virtual gimbal coordinate frames,

    Since there is no angular momentum for the virtual gimbals,the total angular momentum of the overall system with respect to its center of massOis given by

    where HBis the absolute angular momentum of the spacecraft platform,andmRthe rotor mass;E is unit matrix;rRis the modulus of rR.Let Ibbe the inertia matrix of the platform with respect toO,and then H is rewritten as

    Let Lerepresent the external disturbance torques experienced by the system.According to Euler’s equation,the initial time derivative of H is given by

    Substitute Eqs.(4)and(5)into Eq.(9),and the dynamic equation of motion of the system is obtained as follows:

    where IS=IB+IRis a constant matrix.The right of Eq.(11)represents the output torques produced by the actuator.The first term represents the torque caused by the motion of the spacecraft body,the second term represents the torque caused by the rotor accelerations,and the third term represents the torque caused by the rotor tilt rate or rotation acceleration.

    From here on,we extend the result to the case of the spacecraft with two SEMEAs.Then the dynamics equation of motion of the overall system can be obtained from Eqs.(9)and(11)in the following form:

    with the subscripts 1 and 2 indicating the two SEMEAs.

    3.2.Attitude kinematics

    In this paper,the quaternion q=[q1,q2,q3,q4]Tis used to describe the attitude of the spacecraft and the desired attitude is adopted as the inertial frame,i.e.,the command quaternion qc=[0,0,0,1]T.In this case,the kinematic differential equation in terms of error quaternion is expressed as follows23:

    where qeV=[qe1,qe2,qe3]Tandqe4are the vector and scalar parts of the error quaternion qe,respectively,ω=[ω1,ω2,ω3]T;and[q×eV]is the slew-symmetric matrix defined by

    4.Nonlinear backstepping control law design

    Note that the attitude control system described by Eqs.(12)and(14)has a cascade structure,and the effective backstepping method can be used to develop the feedback law.The control block diagram is presented in Fig.3.

    It is assumed that the current state of the system α,β,Ω,ω and q can be measured in real time.We first consider the subsystem described by Eq.(14).To bring the spacecraft to the desired final attitude,the tracking law ωf=[ωf1,ωf2,ωf3]Tcan be considered as pseudo control input.The error state variables e1and e2are defined as

    LetVabe the following Lyapunov candidate function:

    The time derivative ofVais obtained as

    To makeVa≤0,we select the linear tracking function19as follows:

    wherekiare positive constants.

    After ωfis determined,the real command input should be determined to guarantee the pseudo-control input to be achieved.We define the following Lyapunov candidate function for the overall system:

    The time derivative ofVcan be written as follows:

    Substituting Eqs.(12),(16)and(20)into Eq.(22)gives

    where Lrand Lostand for the required torque and the output control torque,respectively;ρ andlMare positive constants.The external disturbance torques are bounded by

    Substituting Eqs.(20)and(24)into Eq.(23)gives

    Accordingly,the backstepping control law guarantees the asymptotically stability of the closed-loop system according to the Lyapunov theory.

    5.Singularity avoidance steering law design

    As shown in Eq.(13),Agdoes not contain Ω and thus is much smaller compared to Ah,and it is usually dropped.The steering law constraint given in Eq.(24)is then simplified as

    Each column vector of Ahrepresents the output control torques produced by the rotor tilt motion or spin acceleration,corresponding to CMG mode and RW mode,respectively.Note that the inner virtual gimbal angle β never equals 90°(δm=15°)and rank(Ah)≡ 3.This is to say,within the tilting range,the output torque of a single SEMEA spans the entire space.However,when the rotor tilts to the bound,there exists a direction in which an output torque cannot be generated.It is perpendicular to the spin axis and points outwards.This direction is called the ‘tilt angle saturation singularity direction”.When the required torque lies in this direction,a single SEMEA cannot avoid the singularity because there is no null space to reorient the rotor.In contrast,for a parallel configuration with two SEMEAs,a modified null motion strategy can be resorted to in order to avoid this singularity.

    For Ahis never rank deficient,naturally,the standard Moore–Penrose inverse can be used to obtain a minimum norm solution for˙η,and then the resulting simplified velocity steering law is given by

    Note that it is not applicable in practice if the solution tends to exceed the restricted range but the rotor has reached up to the bound.It is eagerly anticipated that the tilt angle will decrease automatically at the next time.However,the ideal case is infrequent and the tilt angle saturation singularity is more likely to happen.To avoid the singularity,when one of the actuators falls into the saturation state,the other one should switch to provide effective control torques,meanwhile,the saturated rotor should be reoriented to a preferred position away from tilt angle saturation.A modified weighted pseudo inverse steering logic based on null motion can be implemented

    where E6represents a 6×6 identity matrix;W1and W2are weighted matrices used to switch the actuators and redistribute the control torques.They are defined to be

    wherewiare positive scalars which control how heavily the SEMEAs are to perform in reaction wheel mode or CMG mode.24For simplicity,herewiare all set to 1.The parameters μ1and μ2are switch weights.Let δ1and δ2represent the two rotors’tilt angle respectively,then μ1and μ2are functions of δ1and δ2.They are defined to be

    where δmirepresents the maximum of the two rotors’tilt angle,and μ-ithe value of μiat the last moment.And Nd is the SEMEA null motion.Let constant vector ηfbe the desired rotor position,and the vector d is selected as

    wherekeis a positive gain to be appropriately chosen,and W3a diagonal matrix associated with rotor’s reorienting movement given by

    As shown in Eq.(31), μ1and μ2are either 0 or 1.If μ1is 1,this means that the resulting steering law will be performed with rotor 1 to be reoriented to the desired position and at the same time rotor 2 providing effective control torques onto the spacecraft.As we can see,AhNd=0,i.e.,the SEMEA null motion produces no torques onto the spacecraft.The stability of null motion has been demonstrated in Ref.25.

    6.Numerical simulations

    According to the dynamics model,nonlinear control laws and steering laws have been discussed,and numerical simulations of rest-to-rest maneuvers are performed for two main objectives:(1)to confirm the asymptotically stability of the backstepping feedback law;(2)to demonstrate the effectiveness of the proposed singularity avoidance steering logic for the parallel configuration.The external disturbance torques are selected as

    Two cases with different tilting ranges are considered in our simulations.The detailed simulation parameters are listed in Table 1.In Case 1,the maximum tilt angles are just as normal(δm1= δm2=15°).During the maneuvers,it may not encounter the tilt angle saturation.In order to demonstrate the working principle of the steering law clearly,a singularity case is needed.Therefore,in Case 2,the maximum tilt angle of rotor 1 is modified(δm1=8°,δm2=15°)to ensure that the singularity will happen.The simulation results are presented in Figs.4–6.Note that the two cases share the same responses of thespacecraft platform,but different SEMEA responses.The rotor tilt angle response illustrates the working process of the steering law clearly.

    Table 1 Simulation parameters.

    Fig.4 History responses of spacecraft.

    Fig.4 shows the history responses of the spacecraft.Fig.4(a)plots the responses of the attitude quaternion,and Fig.4(b)gives the body angular velocity responses.From the simulation results,it can be seen that the proposed nonlinear control law is asymptotically stable and performs very well.The large angle attitude maneuver is effectively achieved with the existence of the external disturbance torques.

    Fig.5 History responses of SEMEAs for Case 1(δm1= δm2=15°).

    Fig.6 History responses of SEMEAs for Case 2(δm1=8°,δm2=15°).

    As shown in Fig.5,in Case 1,it does not encounter the singularity.The maximum tilt angle of rotor 1 approximately equals 9.7°(around 2.6 s),and it is within the tilting range.During the maneuver,therefore,only SEMEA 1 works and provides control torques while SEMEA 2 holds the initial states.It is apparent that the tilt saturation may happen if the maneuver mission is changed or the tilting range is decreased,just as in Case 2.

    As shown in Fig.6,in Case 2,at the beginning of the maneuver SEMEA 1 first provides control torques,and around 1.2 s it tilts to the maximum.At this moment,SEMEA 2 switches to produce effective torques onto the spacecraft,meanwhile,null motion drives SEMEA 1 away from the saturation state.Around 5 s,it is brought to the initial position.Thus,the tilt angle saturation singularity is successfully avoided.The drawback of the weighting matrices is that the tilt angular rates of the rotor change extremely sharply at the switch point,which requires the actuator to make a very fast dynamic response in practice.

    7.Conclusions

    (1)The full equations of motion of a rigid spacecraft with two spherical actuators mounted in parallel are derived.Compared with conventional CMG system,the spherical actuator’s gimbal-less structure makes the formula more accurate and simple.

    (2)A nonlinear control law based on the backstepping control method is developed with the external disturbance overcome.To avoid singularity,a modified version of weighted velocity steering law based on null motion is proposed and the weighted matrices are carefully designed.

    (3)The simulation results validate the effectiveness of the

    proposed control law and the singularity avoidance steering law.Ideal rotor trajectory tracking for the actuator is assumed in the simulation.In practice,fast dynamic response of the SEMEA is crucially required.Device optimization and preferred configuration need

    to be studied in the future work.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China(No.51677130)and the Independent Innovation Funds of Tianjin University(No.1405).

    1.Hu Q,Zhang JR.Attitude control and vibration suppression for flexible spacecraft using control moment gyroscopes.J Aerosp Eng2015;29(1):04015027-1–04015027-12.

    2.Hu Q,Jia YH,Xu SJ.Adaptive suppression of linear structural vibration using control moment gyroscopes.J Guid Control Dyn2014;37(3):990–6.

    3.Zhang JR.Steering laws analysis of SGCMGs based on singular value decomposition theory.Appl Math Mech2008;29(8):1013–21.

    4.Fausz J,Wilson B,Hall C,Richie D,Lappas V.Survey of technology developments in flywheel attitude control and energy storage systems.J Guid Control Dyn2009;32(2):354–65.

    5.Zhang L,Chen W,Liu J,Wu X,Chen IM.Accuracy enhancement of the spherical actuator with a two-level geometric calibration method.Chin J Aeronaut2014;27(2):328–37.

    6.Gerlach B,Ehinger M,Raue HK,Seiler R.Digital controller for a gimballing magnetic bearing reaction wheel.In:Proceedings of AIAA guidance,navigation,and control conference and exhibit;2005 Aug 15–18.San Francisco.Reston:AIAA;2005.p.1–6.

    7.Downer JR,Eisenhaure DB,Hockney RL,Johnson BG.Magnetic bearing and suspension system.United States patent US 4961352;1990 Oct 9.

    8.Chassoulier D,Chillet C,Delamare J,Yonnet JP.Ball joint type magnetic bearing for tilting body.United States patent US 6351049;2002 Feb.26.

    9.Rossini L,Che′telat O,Onillon E,Perriard Y.Force and torque analytical models of a reaction sphere actuator based on spherical harmonicrotationand decomposition.IEEE/ASMETrans Mechatron2013;18(3):1006–18.

    10.Chabot J,Schaub H.Spherical magnetic dipole actuator for spacecraftattitude control.JGuidControlDyn2016;39(4):911–5.

    11.Chabot J.A spherical magnetic dipole actuator for space craft attitude control[dissertation].Colorado:University of Colorado;2015.

    12.Li B,Yu R,Li H,Li G,Wu T.Modeling and analysis of a 3-DOF spherical momentum exchange actuator for spacecraft attitude maneuver.J Aerosp Eng2015;28(6):04015008.

    13.Li GD,Cao JC,Li B,Li HF.Control of permanent magnetic spherical motor based on torque-sharing strategy.Adv Mater Res2013;694–697:1512–8.

    14.Li B,Yu R,Li H,Li G.Design considerations of a permanent magnetic spherical motor using spherical harmonics.IEEE Trans Magn2014;50(8):1–9.

    15.Gerlach B,Ehinger M,Raue HK,Seiler R.Gimballing magnetic bearing reaction wheel with digital controller.In:Proceedings of the 11th European space mechanisms and tribology symposium;2005 Sep 21–23;Lucerne,Switzerland.Noordwijk:ESA Publication Division;2005.

    16.Lappas V,Steyn W,Underwood C.Torque amplification of control moment gyros.Electron Lett2002;38(15):837–9.

    17.Kurokawa H.A geometric study of single gimbal control moment gyros.Rep Mech Eng Lab1998;175:135–8.

    18.Paradiso JA.Global steering of single gimballed control moment gyroscopes using a directed search.J Guid Control Dyn1992;15(5):1236–44.

    19.Kim KS,Kim Y.Robust backstepping control for slew maneuver using nonlinear tracking function.IEEE Trans Control Syst Technol2003;11(6):822–9.

    20.Zhang H,Fang J.Robust backstepping control for agile satellite using double-gimbal variable-speed control moment gyroscope.J Guid Control Dyn2013;36(5):1356–63.

    21.Wang W,Wang J,Jewell G,Howe D.Design and control of a novel spherical permanent magnet actuator with three degrees of freedom.IEEE/ASME Trans Mechatron2003;8(4):457–68.

    22.Guo C.A spherical planning based electrifying strategy of permanent magnet spherical motor.ApplMechMater2015;741:629–45.

    23.Wie B,Weiss H,Arapostathis A.Quarternion feedback regulator for spacecraft eigenaxis rotations.J Guid Control Dyn1989;12(3):375–80.

    24.Schaub H,Vadali SR,Junkins JL.Feedback control law for variable speed control moment gyros.J Astronaut Sci1998;46(3):307–28.

    25.Vadali S,Walker S,Oh HS.Preferred gimbal angles for single gimbal control moment gyros.J Guid Control Dyn1990;13(6):1090–5.

    14 January 2016;revised 4 May 2016;accepted 31 October 2016

    Available online 21 December 2016

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail address:lgdtju@tju.edu.cn(G.Li).

    Peer review under responsibility of Editorial Committee of CJA.

    亚洲精品久久成人aⅴ小说| 2018国产大陆天天弄谢| 亚洲国产欧美一区二区综合| 女性生殖器流出的白浆| 久久久精品免费免费高清| 熟妇人妻不卡中文字幕| 欧美日韩精品网址| 校园人妻丝袜中文字幕| 国产男人的电影天堂91| 精品一区二区三区四区五区乱码 | 777米奇影视久久| 男女下面插进去视频免费观看| 99国产精品免费福利视频| 精品亚洲成国产av| 午夜精品国产一区二区电影| a级毛片黄视频| 亚洲欧洲精品一区二区精品久久久 | 欧美 日韩 精品 国产| 亚洲自偷自拍图片 自拍| 我的亚洲天堂| 777米奇影视久久| e午夜精品久久久久久久| 男人操女人黄网站| 欧美精品一区二区大全| 国产一区二区三区综合在线观看| 欧美在线黄色| 999久久久国产精品视频| 最近2019中文字幕mv第一页| 久热爱精品视频在线9| 亚洲一区中文字幕在线| 超碰97精品在线观看| 另类精品久久| 国产精品久久久久久精品古装| 国产片特级美女逼逼视频| 国产精品一区二区精品视频观看| 女性被躁到高潮视频| 免费日韩欧美在线观看| 国产成人啪精品午夜网站| 国产精品人妻久久久影院| 亚洲七黄色美女视频| 免费女性裸体啪啪无遮挡网站| 色网站视频免费| 99国产综合亚洲精品| 国产免费视频播放在线视频| 国产亚洲午夜精品一区二区久久| 啦啦啦在线观看免费高清www| 最新在线观看一区二区三区 | 日韩 欧美 亚洲 中文字幕| 免费黄网站久久成人精品| 国产日韩欧美亚洲二区| 日韩 欧美 亚洲 中文字幕| 男人添女人高潮全过程视频| 欧美精品高潮呻吟av久久| 亚洲国产毛片av蜜桃av| 国产一区有黄有色的免费视频| 国产色婷婷99| 80岁老熟妇乱子伦牲交| 久久久精品免费免费高清| 一区二区日韩欧美中文字幕| 日韩视频在线欧美| 精品人妻在线不人妻| 午夜免费男女啪啪视频观看| www.av在线官网国产| 国产成人精品福利久久| 国产精品.久久久| 久久久国产精品麻豆| 成人亚洲精品一区在线观看| 人妻一区二区av| 在线精品无人区一区二区三| 久久久久精品人妻al黑| 亚洲成色77777| 国产在线免费精品| 成人亚洲精品一区在线观看| videosex国产| 国产有黄有色有爽视频| 中文欧美无线码| 亚洲欧洲国产日韩| 成人国产av品久久久| 欧美最新免费一区二区三区| 亚洲人成77777在线视频| 国产成人精品久久久久久| 肉色欧美久久久久久久蜜桃| 母亲3免费完整高清在线观看| 日本av免费视频播放| 国产欧美日韩综合在线一区二区| 亚洲美女视频黄频| 一本色道久久久久久精品综合| 久久久精品94久久精品| 久久综合国产亚洲精品| 青青草视频在线视频观看| av国产精品久久久久影院| 久久ye,这里只有精品| 国产成人啪精品午夜网站| 亚洲欧洲日产国产| 久久人人爽av亚洲精品天堂| 91精品国产国语对白视频| 天天躁日日躁夜夜躁夜夜| 亚洲精品国产av成人精品| 亚洲精品日本国产第一区| 国产精品免费视频内射| 亚洲欧美激情在线| 亚洲三区欧美一区| 国产一级毛片在线| 亚洲av成人不卡在线观看播放网 | 男女之事视频高清在线观看 | 老熟女久久久| 中文字幕亚洲精品专区| 久久精品久久久久久久性| 国产精品一二三区在线看| 一区二区三区激情视频| 国产无遮挡羞羞视频在线观看| 另类精品久久| 国产成人系列免费观看| 日韩视频在线欧美| 亚洲第一青青草原| 女人久久www免费人成看片| 天天添夜夜摸| 成人毛片60女人毛片免费| 精品国产乱码久久久久久男人| 99国产综合亚洲精品| 国产成人精品久久二区二区91 | 日本wwww免费看| 国产麻豆69| 亚洲成国产人片在线观看| 又粗又硬又长又爽又黄的视频| 国产97色在线日韩免费| 欧美少妇被猛烈插入视频| 亚洲欧洲日产国产| 国产精品一区二区在线不卡| 一级毛片电影观看| 两个人看的免费小视频| 精品少妇久久久久久888优播| 久久久久久久精品精品| 国产99久久九九免费精品| 中文字幕av电影在线播放| 丝袜美足系列| 日韩免费高清中文字幕av| 中文字幕精品免费在线观看视频| 日韩电影二区| 日本91视频免费播放| 国产又爽黄色视频| 成年人免费黄色播放视频| 国产成人精品福利久久| 国产av码专区亚洲av| 久久人妻熟女aⅴ| 国产成人精品无人区| 亚洲精品久久久久久婷婷小说| 在线观看免费日韩欧美大片| 少妇被粗大猛烈的视频| 视频区图区小说| 可以免费在线观看a视频的电影网站 | 丰满乱子伦码专区| 国产1区2区3区精品| 成年人午夜在线观看视频| 国产精品国产三级国产专区5o| 悠悠久久av| 精品人妻一区二区三区麻豆| 80岁老熟妇乱子伦牲交| 久久久久精品人妻al黑| 精品国产露脸久久av麻豆| 一级,二级,三级黄色视频| 少妇人妻 视频| 久久久久精品国产欧美久久久 | 不卡av一区二区三区| 最近2019中文字幕mv第一页| 国产无遮挡羞羞视频在线观看| 自线自在国产av| 日韩视频在线欧美| 亚洲久久久国产精品| 成人亚洲欧美一区二区av| 国产有黄有色有爽视频| 一级片免费观看大全| 亚洲色图 男人天堂 中文字幕| 久久精品久久久久久噜噜老黄| 操美女的视频在线观看| av网站在线播放免费| 亚洲精品国产色婷婷电影| 亚洲精品av麻豆狂野| 欧美精品亚洲一区二区| 另类精品久久| 久久狼人影院| 美女脱内裤让男人舔精品视频| 国产精品无大码| 久久99热这里只频精品6学生| 亚洲欧美一区二区三区国产| 黄色 视频免费看| 国产亚洲精品第一综合不卡| 国产高清不卡午夜福利| 1024视频免费在线观看| 免费不卡黄色视频| 久久99热这里只频精品6学生| 色婷婷久久久亚洲欧美| 自线自在国产av| 一本一本久久a久久精品综合妖精| 免费观看人在逋| 99精品久久久久人妻精品| 男女边吃奶边做爰视频| 日韩免费高清中文字幕av| 久久久久久久国产电影| 国产亚洲精品第一综合不卡| 巨乳人妻的诱惑在线观看| 亚洲成av片中文字幕在线观看| 黑丝袜美女国产一区| 午夜日本视频在线| 日韩不卡一区二区三区视频在线| 久久久久国产一级毛片高清牌| 久久久久人妻精品一区果冻| 丁香六月欧美| 中文乱码字字幕精品一区二区三区| 午夜激情av网站| 蜜桃国产av成人99| 亚洲图色成人| 99久久人妻综合| 日韩视频在线欧美| 亚洲国产日韩一区二区| 最近最新中文字幕大全免费视频 | 黄色一级大片看看| 亚洲欧美一区二区三区黑人| 超色免费av| av又黄又爽大尺度在线免费看| xxxhd国产人妻xxx| 亚洲欧美精品综合一区二区三区| 久久久久久久国产电影| 亚洲精品一二三| 欧美日韩一区二区视频在线观看视频在线| 操出白浆在线播放| 久久久久久久久免费视频了| 中文乱码字字幕精品一区二区三区| 国产在线一区二区三区精| 国产又色又爽无遮挡免| 亚洲欧美一区二区三区黑人| 国产极品粉嫩免费观看在线| 亚洲 欧美一区二区三区| 一本大道久久a久久精品| 亚洲av综合色区一区| 两个人免费观看高清视频| 中文字幕人妻丝袜制服| 国产精品成人在线| 亚洲欧洲日产国产| av卡一久久| 妹子高潮喷水视频| 国产淫语在线视频| 最近中文字幕2019免费版| 99热国产这里只有精品6| 久久久久久久久免费视频了| 五月天丁香电影| 在线观看人妻少妇| 黑人巨大精品欧美一区二区蜜桃| 在线观看人妻少妇| 深夜精品福利| 一级,二级,三级黄色视频| 久久久久视频综合| av不卡在线播放| 亚洲av在线观看美女高潮| 人人妻人人澡人人爽人人夜夜| 日本vs欧美在线观看视频| 99久久综合免费| 男女午夜视频在线观看| 女人久久www免费人成看片| 国产精品一国产av| 中国国产av一级| 热re99久久精品国产66热6| 亚洲人成网站在线观看播放| 精品免费久久久久久久清纯 | 色婷婷久久久亚洲欧美| 久久精品国产a三级三级三级| 国产精品一区二区在线观看99| 国产97色在线日韩免费| 亚洲精品久久午夜乱码| 性色av一级| 日本欧美视频一区| 国产精品一区二区在线观看99| 制服诱惑二区| 精品一区二区三区av网在线观看 | 亚洲精品国产一区二区精华液| 国精品久久久久久国模美| 国产精品久久久久久精品古装| 久久婷婷青草| 中文字幕另类日韩欧美亚洲嫩草| 视频区图区小说| 啦啦啦中文免费视频观看日本| 国产亚洲av高清不卡| 久久毛片免费看一区二区三区| 男女之事视频高清在线观看 | 亚洲久久久国产精品| av网站免费在线观看视频| 观看av在线不卡| 在线观看国产h片| 一二三四在线观看免费中文在| 在线观看人妻少妇| 女性生殖器流出的白浆| 大香蕉久久成人网| 午夜久久久在线观看| 咕卡用的链子| 飞空精品影院首页| 伦理电影大哥的女人| 日韩中文字幕视频在线看片| 亚洲四区av| 无遮挡黄片免费观看| 亚洲成人av在线免费| 国产麻豆69| 一二三四中文在线观看免费高清| 久久精品久久久久久久性| 熟女av电影| 一区二区三区精品91| 成人18禁高潮啪啪吃奶动态图| 久久久精品区二区三区| 久久狼人影院| 亚洲国产精品一区二区三区在线| 成人国语在线视频| 超碰成人久久| 精品国产一区二区三区四区第35| 亚洲七黄色美女视频| 国产精品三级大全| 亚洲精品第二区| 亚洲欧美成人精品一区二区| 日韩av不卡免费在线播放| 欧美精品av麻豆av| 国产日韩欧美视频二区| 国产精品国产av在线观看| 国产精品一区二区在线观看99| 婷婷色综合大香蕉| 黑人猛操日本美女一级片| 亚洲欧美日韩另类电影网站| 国产一卡二卡三卡精品 | 精品久久久久久电影网| 色播在线永久视频| 涩涩av久久男人的天堂| 国产伦人伦偷精品视频| 国产男人的电影天堂91| 亚洲四区av| 亚洲精品久久成人aⅴ小说| 亚洲激情五月婷婷啪啪| 两个人看的免费小视频| 免费看av在线观看网站| 亚洲第一青青草原| 久久久久久久久久久久大奶| 少妇人妻久久综合中文| 国产在视频线精品| 亚洲国产精品国产精品| 你懂的网址亚洲精品在线观看| 各种免费的搞黄视频| 老司机亚洲免费影院| 成年动漫av网址| 一级片免费观看大全| 久久午夜综合久久蜜桃| 青春草国产在线视频| 亚洲在久久综合| 欧美日韩一级在线毛片| 久久国产亚洲av麻豆专区| 午夜福利视频在线观看免费| 亚洲av电影在线进入| 午夜激情久久久久久久| 亚洲精品日本国产第一区| 男女无遮挡免费网站观看| 亚洲第一区二区三区不卡| xxx大片免费视频| 午夜激情av网站| 高清视频免费观看一区二区| 日韩精品有码人妻一区| 国产成人免费无遮挡视频| 国产乱人偷精品视频| 肉色欧美久久久久久久蜜桃| www.精华液| 秋霞在线观看毛片| 捣出白浆h1v1| 人人妻人人澡人人看| 午夜福利影视在线免费观看| 在线观看免费视频网站a站| 这个男人来自地球电影免费观看 | 日日摸夜夜添夜夜爱| 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 午夜av观看不卡| 精品少妇久久久久久888优播| 悠悠久久av| 在线天堂最新版资源| 欧美少妇被猛烈插入视频| 亚洲国产欧美网| 久久久久久人妻| 满18在线观看网站| 激情五月婷婷亚洲| 999精品在线视频| 免费高清在线观看日韩| 日韩制服骚丝袜av| 午夜福利影视在线免费观看| 精品一品国产午夜福利视频| 免费人妻精品一区二区三区视频| 啦啦啦在线免费观看视频4| 999久久久国产精品视频| 亚洲久久久国产精品| 国产欧美日韩综合在线一区二区| 9191精品国产免费久久| av在线app专区| 天天操日日干夜夜撸| 中文字幕最新亚洲高清| 久久久久久免费高清国产稀缺| 国产一区二区三区综合在线观看| 午夜av观看不卡| 啦啦啦视频在线资源免费观看| 国产精品久久久久久久久免| 岛国毛片在线播放| 中国三级夫妇交换| 国产 精品1| 考比视频在线观看| 欧美人与性动交α欧美精品济南到| 久久国产亚洲av麻豆专区| 巨乳人妻的诱惑在线观看| 汤姆久久久久久久影院中文字幕| 啦啦啦中文免费视频观看日本| 日本91视频免费播放| 最新的欧美精品一区二区| 国产av国产精品国产| 一级爰片在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲,一卡二卡三卡| 少妇精品久久久久久久| 亚洲精品久久久久久婷婷小说| 毛片一级片免费看久久久久| 精品一品国产午夜福利视频| 69精品国产乱码久久久| 女性被躁到高潮视频| 黄片小视频在线播放| 亚洲免费av在线视频| 亚洲熟女毛片儿| 最近最新中文字幕大全免费视频 | 精品国产一区二区久久| 中文字幕精品免费在线观看视频| 另类亚洲欧美激情| 美女主播在线视频| 婷婷色综合www| 亚洲精华国产精华液的使用体验| 久久久久精品久久久久真实原创| 免费日韩欧美在线观看| 捣出白浆h1v1| 国产视频首页在线观看| 免费黄网站久久成人精品| 久久久久久久久久久久大奶| 亚洲成人手机| 久久久精品免费免费高清| 日韩不卡一区二区三区视频在线| 建设人人有责人人尽责人人享有的| 欧美人与善性xxx| 亚洲av福利一区| 飞空精品影院首页| 高清黄色对白视频在线免费看| 国产成人系列免费观看| 人体艺术视频欧美日本| 久久久久精品国产欧美久久久 | 老汉色av国产亚洲站长工具| 国产精品亚洲av一区麻豆 | 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 久久av网站| 七月丁香在线播放| 国产精品一二三区在线看| 中文字幕另类日韩欧美亚洲嫩草| 两个人看的免费小视频| 国产精品久久久av美女十八| 精品国产乱码久久久久久小说| 国产精品嫩草影院av在线观看| 精品人妻熟女毛片av久久网站| 爱豆传媒免费全集在线观看| 精品少妇一区二区三区视频日本电影 | 韩国精品一区二区三区| 午夜福利网站1000一区二区三区| 亚洲情色 制服丝袜| av在线app专区| 婷婷色麻豆天堂久久| 在线观看免费高清a一片| 国产精品久久久人人做人人爽| 99久久精品国产亚洲精品| 999精品在线视频| 电影成人av| 高清欧美精品videossex| 国产成人一区二区在线| 性少妇av在线| 国产精品久久久久久久久免| 大香蕉久久成人网| 欧美精品亚洲一区二区| 五月开心婷婷网| 欧美久久黑人一区二区| 日韩精品免费视频一区二区三区| bbb黄色大片| 久久久久国产精品人妻一区二区| 亚洲成色77777| 亚洲精品国产色婷婷电影| 亚洲欧美色中文字幕在线| av福利片在线| 侵犯人妻中文字幕一二三四区| 最近中文字幕2019免费版| svipshipincom国产片| 国产精品国产三级国产专区5o| 制服丝袜香蕉在线| 欧美精品av麻豆av| 欧美亚洲日本最大视频资源| 国产精品久久久久久人妻精品电影 | 久久久久精品国产欧美久久久 | 色网站视频免费| 一区二区三区四区激情视频| 国产毛片在线视频| 欧美国产精品一级二级三级| 久久久国产欧美日韩av| 国产极品粉嫩免费观看在线| 秋霞在线观看毛片| 午夜福利网站1000一区二区三区| 亚洲精品国产av成人精品| 看免费成人av毛片| 成人漫画全彩无遮挡| 国产精品香港三级国产av潘金莲 | 日本午夜av视频| 天堂俺去俺来也www色官网| a级毛片在线看网站| 国产精品嫩草影院av在线观看| 色94色欧美一区二区| 黑人欧美特级aaaaaa片| 久久天堂一区二区三区四区| 午夜久久久在线观看| 考比视频在线观看| 男女国产视频网站| 在线观看免费视频网站a站| 成年女人毛片免费观看观看9 | 黑丝袜美女国产一区| 日日爽夜夜爽网站| 精品少妇黑人巨大在线播放| 男女高潮啪啪啪动态图| 男女无遮挡免费网站观看| 可以免费在线观看a视频的电影网站 | 午夜福利乱码中文字幕| 精品久久蜜臀av无| 亚洲图色成人| 精品国产乱码久久久久久小说| 妹子高潮喷水视频| 国产极品天堂在线| 国产老妇伦熟女老妇高清| 精品国产露脸久久av麻豆| 国语对白做爰xxxⅹ性视频网站| 女性生殖器流出的白浆| 少妇猛男粗大的猛烈进出视频| 国产成人精品在线电影| 亚洲国产最新在线播放| 岛国毛片在线播放| 亚洲色图综合在线观看| 亚洲精品美女久久久久99蜜臀 | 日韩成人av中文字幕在线观看| 亚洲男人天堂网一区| 一边亲一边摸免费视频| 午夜福利乱码中文字幕| 国产精品欧美亚洲77777| 考比视频在线观看| √禁漫天堂资源中文www| 精品人妻在线不人妻| 免费久久久久久久精品成人欧美视频| 精品一区二区三卡| 国产精品人妻久久久影院| 高清在线视频一区二区三区| 日韩不卡一区二区三区视频在线| 久久久久久久大尺度免费视频| 日本午夜av视频| 性色av一级| 国产精品偷伦视频观看了| 亚洲熟女毛片儿| 汤姆久久久久久久影院中文字幕| 无限看片的www在线观看| 国产男女超爽视频在线观看| 啦啦啦中文免费视频观看日本| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| 久久婷婷青草| 欧美日韩亚洲国产一区二区在线观看 | 韩国高清视频一区二区三区| 精品福利永久在线观看| 欧美日韩精品网址| av网站免费在线观看视频| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久免费av| 国产99久久九九免费精品| 一本一本久久a久久精品综合妖精| 男女国产视频网站| 欧美黑人精品巨大| 一边亲一边摸免费视频| 天天影视国产精品| 国产男人的电影天堂91| 国产精品香港三级国产av潘金莲 | 日本猛色少妇xxxxx猛交久久| 秋霞伦理黄片| 久久久精品94久久精品| 国产不卡av网站在线观看| 久久综合国产亚洲精品| 亚洲久久久国产精品| 久久精品久久精品一区二区三区| 女性生殖器流出的白浆| 国产在视频线精品| 亚洲av中文av极速乱| 如何舔出高潮| 日本wwww免费看| 午夜福利视频在线观看免费| 国产亚洲最大av| 成人免费观看视频高清| 亚洲欧美清纯卡通| 欧美在线一区亚洲| 亚洲精品成人av观看孕妇| 亚洲精品久久久久久婷婷小说| 麻豆乱淫一区二区| 国产一区二区三区av在线| 婷婷成人精品国产| av福利片在线| 亚洲伊人色综图| 成人国产av品久久久| 亚洲五月色婷婷综合| 这个男人来自地球电影免费观看 | 亚洲国产欧美一区二区综合| 亚洲av中文av极速乱| 天天躁夜夜躁狠狠躁躁| 国产精品免费大片|