左娟莉,李逢超,郭鵬程,孫帥輝,羅興锜
?
不同進(jìn)氣方式下氣力提升泵水力特性理論模型與驗(yàn)證
左娟莉,李逢超,郭鵬程※,孫帥輝,羅興锜
(西安理工大學(xué)西北旱區(qū)生態(tài)水利工程國(guó)家重點(diǎn)試驗(yàn)室培育基地,西安 710048)
為了深入研究氣力提升泵的提升性能,該文首先進(jìn)行了理論分析,建立了適用于不同進(jìn)氣方式的氣力提升模型。同時(shí)通過(guò)改變進(jìn)氣面積與氣孔分布方式進(jìn)行試驗(yàn)研究,試驗(yàn)結(jié)果與理論分析結(jié)果吻合較好,該模型在一定范圍內(nèi)能夠較好地預(yù)測(cè)提升泵的提升流量;并且根據(jù)試驗(yàn)結(jié)果,進(jìn)一步分析了不同進(jìn)氣方式對(duì)氣力提升泵的液體提升量與提升效率的影響規(guī)律。結(jié)果表明:首先,7 mm方形噴嘴進(jìn)氣方式下,隨著氣流量的增加,提升液體流量先較快增加,之后上升趨勢(shì)逐漸變緩,提升效率先迅速升高,達(dá)到峰值后又下降,而沉浸比升高會(huì)使峰值效率提高。其次,沉浸比為0.5時(shí),不同進(jìn)氣面積下,較小的進(jìn)氣面積導(dǎo)致提升效率降低;在相同進(jìn)氣面積下,不同的氣孔排布方式對(duì)提升液體流量與提升效率的影響并不明顯。再次,當(dāng)管內(nèi)流型接近彈狀流型時(shí),提升效率較高,穩(wěn)定性較好;在環(huán)狀流下,提升泵的效率最低,穩(wěn)定性差。
泵;模型;試驗(yàn);氣力提升泵;進(jìn)氣方式
氣力提升泵是通過(guò)管內(nèi)多相流動(dòng)輸送物料的一種裝置,其結(jié)構(gòu)簡(jiǎn)易,無(wú)機(jī)械傳動(dòng)部件,可避免水錘等相關(guān)動(dòng)力學(xué)問(wèn)題,因此,其通常被應(yīng)用于高壓、高溫、真空、放射性、腐蝕性液體中,并可代替深井泵從形狀不規(guī)則的礦井中提升液態(tài)礦物。相比于機(jī)械泵,氣力提升泵具有更低的維護(hù)費(fèi)用和更高的可靠性。目前,該泵已經(jīng)應(yīng)用于深井取水、污水處理、煉鋼廠(chǎng)清渣等眾多領(lǐng)域。
在早期研究中,Stapanoff[1]運(yùn)用熱力學(xué)理論研究了沉浸比、含氣率對(duì)氣力提升泵提升效率的影響。Stenning等[2]針對(duì)彈狀流下的氣力提升泵,建立一維分析模型,成功預(yù)測(cè)了試驗(yàn)裝置的性能特征。此后,Kato等[3-4]分析了高沉浸比下,氣流量、沉浸比和管徑等基本參數(shù)對(duì)氣力提升泵排水量、排固量以及提升效率的影響規(guī)律。Geest等[5]通過(guò)試驗(yàn)研究了3種進(jìn)氣方式(錐形噴射,環(huán)形噴射以及狹槽噴射)對(duì)提升性能的影響,結(jié)果表明在氣流量與沉浸比較低時(shí),后兩者所對(duì)應(yīng)提升量與效率均高于前者。Kumar等[6]選用直管、錐管和階梯管3種管型進(jìn)行分析,結(jié)果表明錐管的揚(yáng)水能力及效率均高于其余2種。Kassab等[7-10]主要試驗(yàn)研究了氣流量、浸入率、管徑等基本參數(shù)對(duì)氣力提升性能規(guī)律的影響。Hanafizadeh等[11-13]對(duì)測(cè)管內(nèi)含氣率及壓力分布進(jìn)行測(cè)試,獲得了流型識(shí)別的精確方法。Dhotre等[14]在研究氣-液兩相流中通過(guò)探討氣孔數(shù)量與氣泡初始直徑的關(guān)系獲得了管內(nèi)流型分布特征。Sadek等[15]結(jié)合氣力提升試驗(yàn),提出了可使氣力提升泵運(yùn)行效率達(dá)到最高時(shí)的理論模型。Pedram等[16]結(jié)合圖像分析技術(shù),用高速相機(jī)獲取了氣力提升泵內(nèi)彈狀流、團(tuán)狀流和環(huán)狀流的視覺(jué)探測(cè)數(shù)據(jù),得出氣力提升泵在彈狀流下性能達(dá)到最佳的結(jié)論。江濤等[17]通過(guò)氣力提升的方法對(duì)沉積在網(wǎng)箱底部的廢棄物及高濃度尾水進(jìn)行收集和處理,有效降低了網(wǎng)箱養(yǎng)殖水域的污染。Hanafizadeh等[18]則對(duì)階梯管道進(jìn)行分析,其研究成果表明合理的管道結(jié)構(gòu)能改善流型,進(jìn)而增強(qiáng)氣力提升性能,這些結(jié)論對(duì)于河道清淤或者濱海砂礦開(kāi)采有一定指導(dǎo)意義。
Zuo等[19-21]對(duì)帶有氣力提升泵的加速器驅(qū)動(dòng)次臨界反應(yīng)堆進(jìn)行深入研究,探討了氣力提升泵對(duì)整個(gè)冷卻回路自然循環(huán)能力的影響。魏海等[22]改進(jìn)現(xiàn)有氣力輸送設(shè)備的鎖氣器,使花生莢果在輸送過(guò)程中裂莢率和破碎率均降低。孫波等[23-24]研究了直徑為50 mm圓管內(nèi)的兩相流動(dòng)過(guò)程以及局部S管道對(duì)氣力提升性能的影響規(guī)律和管內(nèi)流型分析。王孝紅[25]針對(duì)河流推移質(zhì)和懸疑質(zhì)增多,大量泥沙淤積導(dǎo)致大壩沖砂閘或尾水渠檢修閘無(wú)法正常開(kāi)啟或關(guān)閉的現(xiàn)象,對(duì)氣力提升法在水電站淤沙處理的運(yùn)用進(jìn)行了詳細(xì)研究。
綜上所述,國(guó)內(nèi)外學(xué)者對(duì)氣力提升泵的研究成果較多,但所建立的氣力提升模型均不夠完善。故本文展開(kāi)理論分析,建立適用不同進(jìn)氣面積的氣力提升模型;同時(shí)通過(guò)試驗(yàn),分析不同進(jìn)氣方式對(duì)提升泵提升性能的影響規(guī)律;最后將試驗(yàn)結(jié)果和理論計(jì)算結(jié)果進(jìn)行對(duì)比驗(yàn)證。
氣力提升泵內(nèi)為復(fù)雜的兩相流動(dòng),在對(duì)其管內(nèi)流動(dòng)進(jìn)行理論分析時(shí),可對(duì)氣力提升過(guò)程做必要假設(shè)和合理簡(jiǎn)化。為了能夠獲得更加可靠的計(jì)算值,本文結(jié)合Griffith等[26]推導(dǎo)出的彈狀流下氣液兩相的滑移比公式,對(duì)Parker[27]提出的氣力提升泵的一維無(wú)量綱方程進(jìn)行修正,其推導(dǎo)過(guò)程如下:氣力提升模型如圖1所示,提升管道插入液體中,提升管長(zhǎng)度為,橫截面積為,提升管底部距離自由液面為,自由液面壓強(qiáng)為大氣壓強(qiáng),進(jìn)氣管道出口聯(lián)接提升管底部,進(jìn)氣管道橫截面積為A。
注:Vl為進(jìn)口處液體速度,m·s-1;Vg為進(jìn)口處氣體速度,m·s-1;V2為氣液混合速度,m·s-1;H為管內(nèi)液面的高度,m;L為提升管長(zhǎng)度,m。
在對(duì)氣力提升泵建模時(shí),先將提升管分為2個(gè)區(qū)域,氣體通過(guò)1截面被噴射入提升管中,與液體混合后將其提升至出口,1與2截面之間的區(qū)域?yàn)闅庖夯旌蠀^(qū),2截面至提升管出口的區(qū)域?yàn)闅庖撼浞职l(fā)展區(qū)。管道底部氣體進(jìn)入速度為V,液體進(jìn)入速度為V,2截面處氣液兩相的混合速度為2。
首先針對(duì)1與2截面之間的區(qū)域建立控制方程,根據(jù)伯努利方程可得截面1處壓強(qiáng)為
式中1為提升泵進(jìn)口的靜壓,Pa;p為大氣壓,Pa;ρ為液體密度,kg/m3;為重力加速度,m/s2;V為進(jìn)口處液體速度,m/s。忽略氣體的壓縮性,由于1與2截面之間質(zhì)量守恒,可得連續(xù)性方程
忽略壁面摩擦,1與2截面之間的動(dòng)量方程為
式中2為截面2處的靜壓,Pa;ρ為氣體密度,kg/m3;為進(jìn)口處氣體速度,m/s。通常情況下,ρQρQ,則式(4)可簡(jiǎn)化為
將式(3)代入式(5)中,可得到
將式(6)帶入到(1)中,得到
再針對(duì)2截面以上區(qū)域,建立動(dòng)量方程[2]
式中為壁面的剪切應(yīng)力,N/m2;為提升管的直徑,m;為氣液混合質(zhì)量,kg;式(9)可理解為2截面與提升管出口的壓差等于管道中的流體質(zhì)量與管壁摩擦力之和,其中混合流體的質(zhì)量可由式(10)計(jì)算得來(lái)。
式中為相間滑移比。壁面剪切應(yīng)力應(yīng)為[26]
結(jié)合(8)與(11),最終可得到提升管內(nèi)部流動(dòng)的理論模型[27]
滑移比的計(jì)算采用Griffith等[26]在彈狀流下得出的結(jié)論
摩擦系數(shù)通過(guò)由Colebrook[28]得出,經(jīng)過(guò)Haaland[29]驗(yàn)證的公式獲得
式中為管壁粗糙度,為雷諾數(shù)。
式(14)為修正后的氣力提升泵理論模型,該模型考慮了進(jìn)氣方式對(duì)提升性能的影響。使用該模型進(jìn)行計(jì)算時(shí),、、、、均為已知量。首先給定進(jìn)氣量Q,任取Q值,計(jì)算出與,將與代入式(15)中,若等式左右兩端差值小于10-3,則認(rèn)為此時(shí)的Q為給定進(jìn)氣量Q下的理論值;若等式左右兩端差值大于10-3,則重新選取Q進(jìn)行計(jì)算,直到使等式左右兩端差值小于10-3為止。
為驗(yàn)證該文建立的氣力提升模型,設(shè)計(jì)并搭建了氣力提升系統(tǒng),如圖2所示。壓縮機(jī)產(chǎn)生的壓縮空氣,通過(guò)干燥機(jī)除去水分與油漬,經(jīng)噴嘴進(jìn)入提升管,帶動(dòng)管中液體向上運(yùn)動(dòng)。管內(nèi)初始水位通過(guò)液位控制箱控制,氣液兩相經(jīng)過(guò)提升管上部的氣液分離箱后,液體沿下降管進(jìn)入測(cè)量水箱(水桶)。
1. 空氣壓縮機(jī) 2. 干燥機(jī) 3. 針形閥 4. 流量計(jì) 5. 止回閥 6. 壓力表 7. 氣液分離器 8. 液位控制箱 9. 儲(chǔ)水箱 10. 底座 11. 噴嘴 12. 測(cè)量水箱 13. 提升管
本試驗(yàn)使用LGYT系列噴油螺桿式空氣壓縮機(jī)供氣,其排氣量為1.7 m3/min,排氣壓力為0.8 MPa。為了觀(guān)察管內(nèi)流型變化,采用德國(guó)LaVision公司的CCD高速攝像機(jī)進(jìn)行可視化試驗(yàn)研究。試驗(yàn)中的提升管、氣液分離箱與液位控制箱均為有機(jī)玻璃材質(zhì),提升管管徑為40 mm,管長(zhǎng)為1 500 mm。同時(shí)在提升管外加裝一層水罩,有效減少了拍攝流型時(shí)產(chǎn)生的光學(xué)畸變。管道中的氣流量通過(guò)針形閥控制,使用開(kāi)封儀表廠(chǎng)生產(chǎn)的LUXZ型智能旋進(jìn)漩渦氣體流量計(jì)記錄管路中瞬時(shí)進(jìn)氣量,該流量計(jì)流量范圍為1.2~15 m3/h,公稱(chēng)壓力為1.6 MPa,精度為1.0級(jí)。氣力壓力表采用富陽(yáng)恒豐儀表公司生產(chǎn)的船用壓力表YC-100,測(cè)量壓力范圍為0.0~1.0 MPa,精度等級(jí)為1.6級(jí)。為了防止提升管中的液體倒流入氣體管道,在噴嘴前設(shè)置了止回閥。試驗(yàn)中利用秒表記錄氣力提升泵工作時(shí)間,使用電子秤稱(chēng)量流入水桶的液體,最后計(jì)算出氣力提升泵提升液體流量。
本文主要研究進(jìn)氣方式對(duì)氣力提升泵提升性能的影響規(guī)律,因此試驗(yàn)設(shè)計(jì)了100、50、25 mm2共3種進(jìn)氣面積的噴嘴,擬對(duì)比不同進(jìn)氣面積對(duì)其提升性能的影響,每種面積下又設(shè)置3種氣孔分布方式,擬對(duì)比不同氣孔分布方式對(duì)其提升性能的影響,如圖3所示。
圖3 3種不同進(jìn)氣面積噴嘴的示意圖
氣力提升泵提升液體的流量是其最基本的性能指標(biāo)。圖4為使用7 mm方孔噴嘴時(shí),液體流量隨進(jìn)氣量的變化曲線(xiàn)。其中,沉浸比為管內(nèi)初始液位與提升管高度的比值,即通過(guò)調(diào)節(jié)圖2中的蝸輪蝸桿高度,進(jìn)而調(diào)節(jié)液位控制箱內(nèi)液體的高度,由于連通器原理,從而調(diào)節(jié)提升立管初始液位高度,管內(nèi)不同的初始液位高度與提升管總高度之比即可得到不同的沉浸比。
由圖4可知,隨著氣流量的增加,初始階段液體流量增加迅速,當(dāng)氣流量超過(guò)某一值后,液體流量便趨于穩(wěn)定。隨著氣流量繼續(xù)增加,液體流量變化較小。此外,隨著沉浸比的增大,提升液體流量不斷增加。
圖4 使用7 mm方形噴嘴在不同沉浸比下液體體積流量隨氣體體積流量的變化
氣力提升泵的效率是評(píng)價(jià)其提升能力的核心要素,根據(jù)氣力提升泵的工作原理,效率應(yīng)為氣體在提升管出入口具有能量的差值與液體在提升管出口所具有能量的比值[25]。本文采用Niclin的效率公式[30]
式中in為氣體的進(jìn)氣壓強(qiáng),Pa。
圖5為采用7 mm方形噴嘴的提升泵在不同沉浸比下的效率曲線(xiàn)圖。由圖5可知,沉浸比在0.4與0.6之間時(shí),隨著沉浸比不斷增大,提升泵的峰值效率不斷增加;且峰值點(diǎn)不斷前移,對(duì)應(yīng)氣流量不斷減小;而沉浸比在0.7、0.8、0.9時(shí),提升效率曲線(xiàn)隨氣流量的增加持續(xù)下降,沒(méi)有出現(xiàn)峰值,這是因?yàn)楫a(chǎn)生峰值效率處的氣體流量過(guò)小,超出試驗(yàn)所用流量計(jì)量程,難以采集到其對(duì)應(yīng)的數(shù)據(jù)。峰值處的流型為彈狀流向攪拌流過(guò)渡狀態(tài),峰值點(diǎn)的前移說(shuō)明管內(nèi)流型更早的發(fā)生了轉(zhuǎn)捩。
圖5 使用7 mm方形噴嘴在不同沉浸比下提升效率隨氣體體積流量的變化
結(jié)合圖4與圖5可知,隨著氣流量的增加,提升效率先迅速增加,達(dá)到峰值后又迅速下降;提升液體流量起先持續(xù)較快增加然后上升趨勢(shì)逐漸變緩。觀(guān)察管內(nèi)流動(dòng),當(dāng)氣體流量不斷增大時(shí),管內(nèi)流型依次為泡狀流、彈狀流、攪拌流、環(huán)狀流。在效率峰值附近,管內(nèi)流型為彈狀流附近狀態(tài)。提升效率的迅速下降是因?yàn)檫^(guò)高的進(jìn)氣量導(dǎo)致管內(nèi)含氣率過(guò)高,可被提升的液體變少。若進(jìn)氣量不斷提高,液體流量仍會(huì)緩慢增加,但提升效率將持續(xù)下降。
對(duì)圖3中每種噴嘴分別進(jìn)行試驗(yàn),得到提升泵液體流量和進(jìn)氣壓力隨氣流量的變化關(guān)系如圖6所示。由圖6a可知,進(jìn)氣面積為100和50 mm2時(shí),進(jìn)氣面積對(duì)液體提升量影響較小。但當(dāng)進(jìn)氣面積為25 mm2時(shí),隨著氣流量的增加,液體提升量明顯高于其他面積的噴嘴,Parker指出這是由于氣體進(jìn)口的動(dòng)量增加導(dǎo)致的[27]。進(jìn)一步研究發(fā)現(xiàn),在100與50 mm2的進(jìn)氣面積下,隨著氣流量增大,氣壓緩慢增加;但在使用25 mm2噴嘴時(shí),隨著氣流量增加,氣壓迅速增加,如圖6b所示。這是由于噴嘴處過(guò)流面積太小,高速氣流無(wú)法及時(shí)通過(guò)造成的。
圖6 沉浸比為0.5時(shí)不同進(jìn)氣方式下液體體積流量和氣體壓力隨氣體體積流量的變化
圖7將3種不同進(jìn)氣面積下提升泵的提升效率隨氣流量的變化規(guī)律進(jìn)行了對(duì)比;圖8則為同一面積,不同進(jìn)氣方式下提升效率隨氣流量的變化規(guī)律對(duì)比圖。由圖7可知,不同的進(jìn)氣面積對(duì)提升效率有顯著影響,進(jìn)氣面積越小,提升泵的提升效率越低。這是因?yàn)檫^(guò)小的進(jìn)氣面積雖然會(huì)導(dǎo)致管內(nèi)氣壓升高,提升液體量增加,但管內(nèi)氣壓的升高也使提升泵進(jìn)口處輸入了更多能量,相比較之下,輸出能量的增加量遠(yuǎn)小于輸入能量的增加量,因此提升泵效率減小。由圖8可知,相同的進(jìn)氣面積下,不同氣孔分布方式對(duì)提升泵的提升效率影響并不明顯。
圖7 沉浸比為0.5時(shí)3種進(jìn)氣面積下提升泵的提升效率變化
圖8 沉浸比為0.5時(shí)相同進(jìn)氣面積下提升泵的提升效率變化
氣力提升泵內(nèi)流動(dòng)為復(fù)雜的氣液兩相流動(dòng),不同流型對(duì)提升泵的性能影響較大。本文通過(guò)高速攝像機(jī)拍攝,得到了不同進(jìn)氣量下管內(nèi)流型的變化規(guī)律。當(dāng)氣流量較小時(shí),管內(nèi)含氣率較低,氣相在液相中僅以小氣泡的形式存在,如圖9a所示;隨著氣流量的增大,管內(nèi)含氣率增加,彌散的小氣泡聚合成彈狀氣泡,如圖9b所示。此時(shí)流型相對(duì)穩(wěn)定,提升管振動(dòng)較小,提升效率較高;繼續(xù)增大氣流量,氣相失去原有的穩(wěn)定形態(tài),氣液相互摻混,兩相湍流劇烈,此時(shí)流型為攪拌流,如圖9c所示;當(dāng)氣流量達(dá)到最大時(shí),管內(nèi)含液率極低,液體主要以液膜的形式附著在管壁,氣體在提升管中心形成高速氣柱,帶動(dòng)管壁附近的液體向上運(yùn)動(dòng),管內(nèi)流型為環(huán)狀流,如圖9d所示,此時(shí)提升泵振動(dòng)劇烈,噪音大,效率低。
圖9 提升管管內(nèi)流型
結(jié)合本文對(duì)提升流量以及提升效率的分析,可得出當(dāng)氣力提升泵內(nèi)流型在彈狀流向攪拌流過(guò)渡時(shí),提升效率較高,穩(wěn)定性較好,振動(dòng)較小,在環(huán)狀流時(shí),提升效率最低,穩(wěn)定性差,振動(dòng)與噪音大。
將本次試驗(yàn)值與理論值進(jìn)行對(duì)比,驗(yàn)證理論模型的有效性,如圖10所示。由圖10d可知,當(dāng)進(jìn)氣量較小時(shí),相對(duì)誤差很大;隨著進(jìn)氣量的增大,相對(duì)誤差將逐漸減小至某一最小值。在最小值附近,試驗(yàn)數(shù)據(jù)與理論值均吻合較好,相對(duì)誤差在5%以?xún)?nèi),理論模型能夠較為準(zhǔn)確的預(yù)測(cè)提升泵的液體流量。當(dāng)進(jìn)氣量超過(guò)誤差最小值對(duì)應(yīng)的進(jìn)氣量并逐漸增大時(shí),理論值與試驗(yàn)值誤差越來(lái)越大,相對(duì)誤差逐步上升至5%以上。主要原因是本文采用的滑移比公式為Griffith等[28]在彈狀流下得出的結(jié)論,管內(nèi)流型越接近彈狀流,值的計(jì)算越準(zhǔn)確,理論值與試驗(yàn)值誤差越小。在100 mm2(4 mm′8)進(jìn)氣面積下,相對(duì)誤差在進(jìn)氣量7.0 m3/h附近達(dá)到最小,最小誤差為0.77%;在50 mm2(4 mm′4)進(jìn)氣面積下,相對(duì)誤差在進(jìn)氣量6.0 m3/h附近達(dá)到最小,最小誤差為1.88%;在25 mm2(2mm′8)進(jìn)氣面積下,相對(duì)誤差在進(jìn)氣量5.0 m3/h附近達(dá)到最小,最小誤差為0.79%。結(jié)合管內(nèi)流型發(fā)展可知,隨著進(jìn)氣量的增加,提升液體流量的理論值與試驗(yàn)結(jié)果誤差越來(lái)越小,這是因?yàn)榇藭r(shí)管內(nèi)流型為泡狀流向彈狀流發(fā)展期;當(dāng)理論值與試驗(yàn)數(shù)據(jù)基本吻合時(shí),管內(nèi)流型為彈狀流;當(dāng)進(jìn)氣量繼續(xù)增加,管內(nèi)流動(dòng)向攪拌流及環(huán)狀流發(fā)展,管內(nèi)流型越來(lái)越偏離彈狀流,理論值與試驗(yàn)結(jié)果的誤差越來(lái)越大。
注:100 mm2進(jìn)氣面積的試驗(yàn)數(shù)據(jù)為使用Ф4 mm×8噴嘴所得;50 mm2進(jìn)氣面積的試驗(yàn)數(shù)據(jù)為使用Ф4 mm×4噴嘴所得;25 mm2進(jìn)氣面積的試驗(yàn)數(shù)據(jù)為使用Ф2 mm×8噴嘴所得。
本文針對(duì)氣力提升泵的進(jìn)氣方式展開(kāi)試驗(yàn)研究,并建立氣力提升泵的理論模型進(jìn)行分析計(jì)算,得出以下結(jié)論:
1)7 mm方形噴嘴進(jìn)氣方式下,隨著氣流量的增加,提升液體流量先較快增加,之后上升趨勢(shì)逐漸變緩;提升效率先迅速增加,達(dá)到峰值后又迅速下降;沉浸比的升高會(huì)使氣力提升泵峰值效率提高,且峰值點(diǎn)不斷前移。
2)沉浸比為0.5時(shí),進(jìn)氣面積為25 mm2,液體提升量明顯高于其他面積的噴嘴;不同進(jìn)氣面積下,較小的進(jìn)氣面積會(huì)導(dǎo)致氣體管路的氣壓升高,對(duì)提升液體有促進(jìn)作用,但降低了氣力提升泵的提升效率;相同進(jìn)氣面積下,不同的氣孔排布方式對(duì)氣力提升泵的液體流量與提升效率的影響并不明顯。
3)隨著氣流量的增加,提升管內(nèi)的流型依次為泡狀流,彈狀流,攪拌流,環(huán)狀流。彈狀流附近時(shí),提升效率較高,穩(wěn)定性較好;在環(huán)狀流下,提升泵的效率最低,穩(wěn)定性差。
4)通過(guò)理論分析,建立了氣力提升模型。當(dāng)管內(nèi)流型為彈狀流時(shí),理論模型能夠較好的預(yù)測(cè)提升泵的提升流量;但當(dāng)管內(nèi)流型為其他流型時(shí),理論值與試驗(yàn)值誤差較大,相對(duì)誤差會(huì)逐漸上升至5%以上,理論模型將失效。
在后續(xù)工作中,將嘗試改進(jìn)滑移比公式,完善文中建立的理論模型;并通過(guò)數(shù)值模擬的方法求解流場(chǎng),進(jìn)行更加詳細(xì)的分析。
[1] Stepanoff AJ. Thermodynamic theory of the air lift[J]. Trans. ASME 1929, 51: 49.
[2] Stenning A H, Martin C B. An analytical and experimental study of air-lift pump performance[J]. J. Eng. Gas Turbines Power, 1968, 90(2): 106-110.
[3] Kato H, Tamiya S, Miyazawa T. A study of air-lift pump for solid particles and its application to marine engineering[J]. JSME. 1975, 18(117): 286-294.
[4] Weber M, Dedegil Y. Transport of solids according to the air-lift principle[C]// Proceedings of 4th International Conference on the Hydraulic Transport of Solids in Pipes. Alberta, Canada, 1976, 1-23,93-94.
[5] Geest S, Aoliemans R V, Ellepola J H. Comparison of different air injection methods to improve gas-lift performance[J]. BHR Group Multiphase, 2001, 1: 363-378.
[6] Kumar E A, Kumar K R V, Ramayya A V. Augmentation of airlift pump performance with tapered upriser pipe-an experimental study[J]. IE (I) Journal.MC, 2003, 84(10): 114-119.
[7] Kassab S Z, Kandil H A, WARDA H A, et al. Experimental and analytical investigations of airlift pumps operating in three-phase flow[J]. Chemical Engineering Journal, 2007, 131(1): 273-281.
[8] Cho N C, Hwang I J, Moon L C, et al. An experimental study on the airlift pump with air jet nozzle and booster pump[J]. Journal of Environmental Sciences Supplement, 2009, 21: 19-23.
[9] Esen II. Experimental investigation of a rectangular air-lift pump[J]. Advances in Civil Engineering, 2010, 11(1): 1-5.
[10] Keng W C, Malcolm M. Analysis and modeling of water based bubble pump at atmospheric pressure[J]. International Journal of Refrigeration, 2013, 36: 1521-1528.
[11] Hanafizadeh P, Saidi M H, Karimi A, et al. A effect of bubble size and angle of tapering up-riser pipe on the performance of airlift pumps[J]. Particulate Science and Technology, 2010, 28: 332-347.
[12] Charalampos T, Eeftherios G. Two-phase flow pattern transitions of short airlift pumps[J]. Journal of Hydraulic Research, 2010, 48(5): 680-685.
[13] Charalampoms T, Eeftherios G. Pressure behavior in riser tube of a short airlift pump[J]. Journal of Hydraulic Research, 2010, 48(1): 65-73.
[14] Dhotre M T, Joshi J B. Design of a gas distributor: Three- dimensional CFD simulation of a coupled system consisting of a gas chamber and a bubble column[J]. Chemical Engineering Journal, 2007, 125:149-163.
[15] Sadek Z, Hamdy A, Hassan A, et al. Air-lift pumps characteristics under two-phase flow conditions[J]. International Journal of Heat and Fluid Flow, 2009, 30: 88-98.
[16] Pedram H, Soheil G, Mohammad H. Visual technique for detection of gas-liquid two-phase flow regime in the airlift pump[J]. Journal of Petroleum Science and Engineering, 2011, 75: 327-335.
[17] 江濤,徐明昌,曾智,等. 大水面網(wǎng)箱收集養(yǎng)殖廢棄物及水系統(tǒng)處理研發(fā)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(20):211-218.
Jiang Tao, Xu Mingchang, Zeng Zhi, et al. Development of waste collection and water treatment system of cage culture in open waters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 211-218. (in Chinese with English abstract)
[18] Hanafizadeh P, Karimi A, Saidi M H. Effect of step geometry on the performance of the airlift pump[J]. Fluid Mechanics Research, 2011, 38(5): 387-408.
[19] Zuo J L, Tian W X, Chen R H, et al. Research on enhancement of natural circulation capability in lead-bismuth alloy cooled reactor by using gas-lift pump[J]. Nuclear Engineering and Design, 2013, 263: 1-9.
[20] 左娟莉,田文喜,秋穗正,等. 鉛鉍合金冷卻反應(yīng)堆內(nèi)氣泡提升泵提升自然循環(huán)能力的理論研究[J]. 原子能科學(xué)技術(shù),2013,47(7):1155-1161.Zuo Juanli, Tian Wenxi, Qiu Suizheng, et al. Research on enhancement of natural circulation capability in lead-bismuth alloy cooled reactor by using gas-lift pump[J]. Atomic Energy Science and Technology, 2013, 47(7): 1155-1161. (in Chinese with English abstract)
[21] Zuo J L, Tian W X, Qiu S Z, et al. Transient safety for analysis driven system with gas-lift pump[C]// International Embedded Topical Meeting on Advances in Thermal Hydraulics-2014,Reno, NV, USA, 2014.
[22] 魏海,謝煥雄,胡志超,等. 花生莢果氣力輸送設(shè)備參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):6-12.
Wei Hai, Xie Huanxiong, Hu Zhichao, et al. Parameter optimization and test of pneumatic conveying equipment for peanut pods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 6-12. (in Chinese with English abstract)
[23] 孫波,孫立成,劉靖宇,等. 豎直較大管徑內(nèi)氣液兩相流截面含氣率實(shí)驗(yàn)研究[J]. 水動(dòng)力學(xué)研究與進(jìn)展,2012,27(1):1-6.Sun Bo, Sun Licheng, Liu Jingyu, et al. Study on void fraction of vertical gas-liquid two-phase flow in a relatively large diameter pipe[J]. Chinese Journal of Hydrodynamics, 2012, 27(1): 1-6. (in Chinese with English abstract)
[24] 劉曼. 局部彎曲對(duì)氣力提升性能的影響規(guī)律及管內(nèi)流型分析[D]. 株洲:湖南工業(yè)大學(xué),2014.Liu Man. Effect of Local Pipe Bends on Airlift Pump Performance and Study of Flow Pattern[D]. Zhuzhou:Hunan University of Technology, 2014. (in Chinese with English abstract)
[25] 王孝紅. 氣力提升法在水電站淤沙處理中的運(yùn)用[J]. 云南水力發(fā)電,2015,31(1):101-103.Wang Xiaohong. A Effective method for silt sedimentation handling in practices[J]. Yunnan Water Power, 2015, 31(1): 101-103. (in Chinese with English abstract)
[26] Griffith P, Wallis G B. Two-Phase slug flow[J]. ASME J. Heat Trans., 1961, 83:307.
[27] Parker G J. The effect of footpiece design on the performance of a small air lift pump[J]. International Journal of Heat and Fluid Flow, 1980, 4(2): 245-252.
[28] Colebrook C F. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws[J]. J. Inst. Civ. Eng., London, 1939, 11:133-156.
[29] Haaland S E. Simple and explicit formulas for the friction factor in turbulent flow[J]. J. Fluids Eng., 1983, 103:89-90.
[30] Nicklin D J. The air lift pump theory and optimization[J]. ICHE14, 1963, 29-39.
左娟莉,李逢超,郭鵬程,孫帥輝,羅興锜. 不同進(jìn)氣方式下氣力提升泵水力特性理論模型與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(21):85-91. doi:10.11975/j.issn.1002-6819.2017.21.010 http://www.tcsae.org
Zuo Juanli, Li Fengchao, Guo Pengcheng, Sun Shuaihui, Luo Xingqi. Theoretical model and verification of hydraulic characteristics of air lift pump under different air injection methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 85-91. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.010 http://www.tcsae.org
Theoretical model and verification of hydraulic characteristics of air lift pump under different air injection methods
Zuo Juanli, Li Fengchao, Guo Pengcheng※, Sun Shuaihui, Luo Xingqi
(710048)
Air lift pump is widely applied in oil and ore exploitation,due to its simple structure, high practicability and other prominent advantages.However, the pump is not fully applied because of its low efficiency. To investigate the lift performance of air-lift pump intensively, a theoretical analysis was carried out to and a theoretical model of air-lift for different inlet methods was established in present paper. At the same time, to test the theoretical model and better understand its operating principle, in this paper, the performance of air lift pump was investigated by changing air inlet area and pore distribution pattern in the air lift pump facility. In the experiment, the air, supplied from air compressor, was injected into the riser pipe by nozzle, in order to drive the liquid to move upward in the pipe. Air and water were separated from the gas-liquid separation tank in the top of the riser pipe, and the separated water dropped into the water measuring tank (bucket). In the experimental test, stopwatch recorded the working time of air lift pump, and electronic scale weighed the water from the bucket. The air nozzle selected 3 kinds of injection areas, i.e. 25, 50and 100 mm2, and for each injection area, 3 injection methods were adopted. Various submergence ratios (0.4-0.9) were investigated, while the range of the air flow rate was from 0 to 16.0 m3/h. For each air injection method and submergence ratio, the air flow rate varied, the corresponding flow rate of water was measured, and the promoting efficiency was calculated. We used high-speed camera to capture the flow regime in the tube to deeply discuss the relationship between air lift capacity and the two-phase flow characteristics. By analyzing the experimental data, the results are obtained as follows: Firstly, for the air injection method of 7 mm square nozzle, with the increase of air flow rate, the fluid flow rate of pump increases quickly, and then rises slowly, and the efficiency of pump goes up rapidly to the peak, and then decreases continuously. With the submergence ratio increasing, the peak of promoting efficiency becomes bigger, and the corresponding air flow rate is smaller. Secondly, for the submergence ratio of 0.5, when the air injection area is 25 mm2, the liquid volume flow rate is significantly higher than other areas of nozzle. For the different air injection areas, the smaller area will cause higher pipeline pressure, which helps to lift liquid but decrease promoting efficiency of pump. For the same air injection area, there is little difference in the pump performance with different pore distribution patterns. Thirdly, in the gas-liquid two-phase flow of riser pipe, we observe 4 kinds of flow patterns, i.e. bubbly, slug, churning, and annular flow. In the bubbly and slug flow, there is little noise in the experiment, but in the churning and annular flow, the noise increases gradually. Near the slug flow, the promoting efficiency reaches the highest point, and the stability is good. In the annular flow, the promoting efficiency reaches the lowest point, and the stability is bad. Finally, the experimental results are compared with the theoretical values, while the experimental results agreed well with the theoretical analysis results in present paper, and the model could predict the liquid flow rate of air-lift pump better in a certain range. Near the slug flow, the theoretical model preferably predicts the performance characteristics of air lift pump, and the calculation results have a good agreement with experimental results. In the other flow patterns, the experimental data and the simulation results have some deviation. The cause is that the theoretical model adopts the slip ration formula of Griffith and Wallis, which is only suitable for the slug flow. In the follow-up work, the theoretical model should be improved. In a word, this study provides an important reference for deeply understanding the performance characteristics of air lift pump.
pumps; models; experiments; air lift pump; injection method
10.11975/j.issn.1002-6819.2017.21.010
TK72
A
1002-6819(2017)-21-0085-07
2017-04-07
2017-09-18
國(guó)家自然科學(xué)基金(11605136);陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃(2017JQ5040);陜西省教育廳專(zhuān)項(xiàng)科研計(jì)劃項(xiàng)目(15JK1553)
左娟莉,講師,博士,研究方向?yàn)槎嘞嗔鲃?dòng),流體機(jī)械。 Email:Jenyzuo@163.com
※通信作者:郭鵬程,教授,博士,博士生導(dǎo)師,研究方向?yàn)榱黧w機(jī)械。Email:guoyicheng@126.com