• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多跳吞吐量分析及鄰節(jié)點(diǎn)實(shí)時(shí)估計(jì)算法設(shè)計(jì)

    2017-11-15 06:10:19朱清超
    計(jì)算機(jī)應(yīng)用 2017年9期
    關(guān)鍵詞:吞吐量信道分組

    朱清超

    (1.武警工程大學(xué) 信息工程系,西安 710086; 2.空軍工程大學(xué) 信息與導(dǎo)航學(xué)院,西安 710077)(*通信作者電子郵箱tgzy0516zqc@126.com)

    多跳吞吐量分析及鄰節(jié)點(diǎn)實(shí)時(shí)估計(jì)算法設(shè)計(jì)

    朱清超1,2*

    (1.武警工程大學(xué) 信息工程系,西安 710086; 2.空軍工程大學(xué) 信息與導(dǎo)航學(xué)院,西安 710077)(*通信作者電子郵箱tgzy0516zqc@126.com)

    針對(duì)媒體接入控制(MAC)協(xié)議吞吐量理論分析中單跳性、靜態(tài)性不足,提出一種面向移動(dòng)自組網(wǎng)(MANET)的多跳分析模型,并設(shè)計(jì)了鄰節(jié)點(diǎn)實(shí)時(shí)估計(jì)算法。首先,基于二維離散時(shí)間馬爾可夫鏈(DTMC)吞吐量模型,定義距離參數(shù)歐實(shí)比(ERR),建立泊松網(wǎng)絡(luò)(PN)分布時(shí)多跳吞吐量分析模型;其次,定性分析理論與仿真誤差的原因之一在于鄰節(jié)點(diǎn)的動(dòng)態(tài)性,即模型缺乏移動(dòng)性考慮;然后,基于卡爾曼濾波算法,定義系統(tǒng)狀態(tài)更新規(guī)則和測(cè)量規(guī)則,設(shè)計(jì)一種與泊松節(jié)點(diǎn)分布、隨機(jī)行走模型相適應(yīng)的鄰節(jié)點(diǎn)實(shí)時(shí)估計(jì)算法;最后,對(duì)比分析多跳吞吐量分析模型的性能。實(shí)驗(yàn)結(jié)果表明,雖引入0.13 s計(jì)算時(shí)延,但在吞吐量方面,其精度提高了8%,實(shí)現(xiàn)了理論分析模型的多跳擴(kuò)展和移動(dòng)性考量。

    移動(dòng)自組網(wǎng);吞吐量;媒體接入控制;泊松分布;卡爾曼濾波算法

    0 引言

    移動(dòng)自組網(wǎng)(Mobile Ad Hoc NETwork, MANET)[1-2]是節(jié)點(diǎn)任意移動(dòng)、無(wú)需基礎(chǔ)設(shè)施、多跳轉(zhuǎn)發(fā)的自治網(wǎng)絡(luò),以較強(qiáng)的魯棒性和抗毀性等優(yōu)勢(shì)成為地震、極地考察等惡劣環(huán)境的首選,其路由協(xié)議[3-4]和媒體接入控制(Media Access Control, MAC)協(xié)議[5-6]等算法的優(yōu)化是目前研究的重點(diǎn)。由于MAC協(xié)議直接與物理信道交互,為網(wǎng)絡(luò)層、傳輸層等上層協(xié)議提供接口,基于載波監(jiān)聽多址接入碰撞避免(Carrier Sense Multiple Access with Collision Avoidance, CSMA/CA)機(jī)制的分布式協(xié)調(diào)功能(Distribution Coordination Function, DCF)協(xié)議已成為事實(shí)標(biāo)準(zhǔn)[7-8],其時(shí)延、吞吐量和可靠性等性能分析的重要性不言而喻。

    Bianchi[9]首次針對(duì)DCF協(xié)議,基于伯努利碰撞、重傳不限、理想信道、飽和數(shù)據(jù)流等假設(shè),定義回退時(shí)間計(jì)數(shù)器和回退步數(shù)等隨機(jī)變量,對(duì)二次握手基本接入機(jī)制和四次握手RTS(Ready To Send)/CTS(Clear To Send)/DATA/ACK (Acknowledgement)虛擬載波監(jiān)聽(Virtual Carrier Sense, VCS)機(jī)制建立二維離散時(shí)間馬爾可夫鏈(Discrete Time Markov Chain, DTMC)模型,推導(dǎo)吞吐量與分組傳輸率、傳播時(shí)間等參數(shù)之間定量表達(dá)式,其誤差低于0.1%,奠定了DCF協(xié)議理論分析的基礎(chǔ),且新算法層出不窮[10-11]。但“萬(wàn)變不離其宗”,局限性凸顯:一是單跳性,即基于DTMC模型僅適用于相鄰節(jié)點(diǎn)的統(tǒng)計(jì)分析,缺乏多跳轉(zhuǎn)發(fā)的考量;二是靜態(tài)性,即分組傳輸過程中假設(shè)收發(fā)節(jié)點(diǎn)靜止,忽略新增或“死亡”鄰節(jié)點(diǎn)對(duì)吞吐量的影響。二者均與MANET特性相悖,已成為限制DTMC擴(kuò)展的“瓶頸”,因此其多跳建模問題迫在眉睫,關(guān)鍵在于節(jié)點(diǎn)分布特性的統(tǒng)計(jì)分析。

    在節(jié)點(diǎn)分布方面,文獻(xiàn)[12]指出目前協(xié)議研究集中于既定網(wǎng)絡(luò)分布,對(duì)MANET而言,由于節(jié)點(diǎn)移動(dòng)性,該條件并非恒成立,并研究了低功耗自適應(yīng)集簇分層型協(xié)議(Low Energy Adaptive Clustering Hierarchy, LEACH)算法在不同節(jié)點(diǎn)分布時(shí)對(duì)應(yīng)吞吐量性能,指出泊松分布對(duì)應(yīng)結(jié)果更接近實(shí)際場(chǎng)景,比均勻分布更優(yōu)。文獻(xiàn)[13]指出MANET節(jié)點(diǎn)分布及移動(dòng)性影響網(wǎng)絡(luò)吞吐量的提升,建立實(shí)際節(jié)點(diǎn)模型異常復(fù)雜,且可信度和可靠性降低,鑒于此分析了隨機(jī)行走(Random Walk, RW)模型在方形區(qū)域內(nèi)的節(jié)點(diǎn)移動(dòng)分布規(guī)律,結(jié)果表明穩(wěn)態(tài)時(shí)節(jié)點(diǎn)趨于指數(shù)分布,而非均勻分布。文獻(xiàn)[14]指出MANET節(jié)點(diǎn)可近似服從均勻分布或泊松分布,但二者對(duì)應(yīng)網(wǎng)絡(luò)連通性行為迥異,須區(qū)別對(duì)待,并對(duì)比了不同節(jié)點(diǎn)分布時(shí)AODV(Ad Hoc On-demand Distance Vector routing)、OLSR(Optimized Link State Routing)和HWMP(Hybrid Wireless Mesh Protocol)路由算法吞吐量、丟包率和端到端時(shí)延性能,進(jìn)一步驗(yàn)證了泊松分布的實(shí)用性和可行性。文獻(xiàn)[15]定量證明了水下傳感器網(wǎng)絡(luò)同樣滿足這一條件。因此泊松網(wǎng)絡(luò)(Poisson Network, PN)分布吞吐量分析具有較高的研究?jī)r(jià)值。

    為此基于DTMC模型和PN,針對(duì)單跳性,定義歐氏距離與實(shí)際統(tǒng)計(jì)距離比例,建立一種多跳吞吐量分析模型;針對(duì)靜態(tài)性,基于卡爾曼濾波算法,設(shè)計(jì)一種鄰節(jié)點(diǎn)實(shí)時(shí)評(píng)估機(jī)制。通過二者實(shí)現(xiàn),進(jìn)一步完善MANET吞吐量分析模型,為參數(shù)的優(yōu)化設(shè)計(jì)及DCF的應(yīng)用奠定基礎(chǔ)。

    1 多跳吞吐量模型設(shè)計(jì)及分析

    1.1 多跳吞吐量模型設(shè)計(jì)

    為建立DCF多跳模型,首先作如下假設(shè):1)碰撞屬于伯努利過程,即信道僅存在碰撞和成功兩種狀態(tài);2)節(jié)點(diǎn)不間斷發(fā)送分組,即滿足飽和數(shù)據(jù)流條件;3)重發(fā)次數(shù)不受限制,確保分組成功接收,且發(fā)送概率獨(dú)立同分布;4)信道為理想條件,即不考慮噪聲和干擾。

    以此為基礎(chǔ)Bianchi[9]建立DTMC模型,其單跳鄰節(jié)點(diǎn)對(duì)應(yīng)吞吐量S為:

    (1)

    其中:P為有效載荷,σ為分組傳輸時(shí)間,變量p、ptr、τ、ps、Ts、Tc分別為節(jié)點(diǎn)條件碰撞概率、發(fā)送分組概率、接入時(shí)延、成功傳輸概率、成功傳輸時(shí)間和碰撞時(shí)間。具體計(jì)算如下:

    p=1-(1-τ)N-1

    ptr=1-(1-τ)N

    Tc=RTS+DIFS+δ

    Ts=RTS+SIFS+δ+CTS+SIFS+δ+H+E[P]+

    SIFS+δ+ACK+DIFS+δ

    常量N為競(jìng)爭(zhēng)節(jié)點(diǎn)數(shù)目,H為物理層和MAC層報(bào)頭比特?cái)?shù)之和,δ為傳播時(shí)延,RTS、DIFS、CTS、SIFS、ACK為RTS、DIFS (Distributed Inter-frame Space)、CTS、SIFS (Short Inter-frame Space)、ACK等VCS對(duì)應(yīng)傳輸分組傳輸時(shí)間。

    以此為基礎(chǔ),為實(shí)現(xiàn)多跳擴(kuò)展,歐氏距離與實(shí)際多跳統(tǒng)計(jì)距離是必須考慮的因素,前者與節(jié)點(diǎn)分布相關(guān),后者根據(jù)最短路由信息獲得,二者比率可衡量收發(fā)節(jié)點(diǎn)路徑的多跳性,在此定義為歐實(shí)比(Ratio of Euclidean distance and Real statistical distance, ERR)用符號(hào)γ表示,其值越大越好,但不大于1。考慮圖1中PN對(duì)應(yīng)節(jié)點(diǎn)分布,文獻(xiàn)[16-17]證明,第i跳距離di和角度φi在PN中服從Nakagami-m分布。下面定量分析不同節(jié)點(diǎn)任意跳數(shù)之間對(duì)應(yīng)吞吐量,具體過程如下。

    圖1 節(jié)點(diǎn)隨機(jī)分布多跳分析示意圖

    根據(jù)ERR定義可得:

    為簡(jiǎn)化計(jì)算,考慮γ2,即:

    (2)

    對(duì)于MANET而言,節(jié)點(diǎn)之間距離和傳輸角度均屬隨機(jī)變量,顯然γ2為隨機(jī)變量??紤]n跳路徑,對(duì)式(2)取平均值可得:

    Edi,φi(r2)=Edi(Eφi(r2|di));i=0,1,…,n

    (3)

    根據(jù)文獻(xiàn)[18],可知:

    (4)

    其中:θ為收發(fā)節(jié)點(diǎn)連線與下一跳之間的角度。此時(shí)進(jìn)一步轉(zhuǎn)化為di和φi表達(dá)式,即:

    (5)

    (6)

    根據(jù)雅可比算法和伽馬分布特性可得:

    (7)

    同理:

    (8)

    (9)

    聯(lián)立式(9)和式(1)可得多跳吞吐量。為測(cè)試模型精度,在此基于徒步場(chǎng)景及IEEE標(biāo)準(zhǔn),各參數(shù)取值如表1所示,仿真結(jié)果如圖2所示。

    從圖2可知,ERR模型與NS2仿真結(jié)果隨節(jié)點(diǎn)數(shù)遞增,達(dá)到穩(wěn)態(tài)時(shí)保持恒定。原因在于節(jié)點(diǎn)增加時(shí),收發(fā)節(jié)點(diǎn)對(duì)數(shù)目增加,網(wǎng)絡(luò)吞吐量隨之增加,但飽和后由于帶寬、碰撞等原因,吞吐量維持不變。但二者存在一定誤差,ERR吞吐量比NS2高10%,導(dǎo)致該誤差的因素較多,下面對(duì)其定性分析。

    圖2 吞吐量分析與仿真結(jié)果

    表1中DSR為動(dòng)態(tài)源路由(Dynamic Source Routing),CW為競(jìng)爭(zhēng)窗口(Contention Window),cbr為恒比特率(Constant Bit Rate),DIFS為分布式幀間隔(Distributed Inter-frame Space),SIFS為短時(shí)間隔(Short Inter-frame Space),PHY為物理層報(bào)頭(Physical Header)。

    表1 參數(shù)設(shè)置

    1.2 誤差分析

    為簡(jiǎn)化分析過程,在此結(jié)合簡(jiǎn)單拓?fù)鋵⒄`差原因歸咎于接入公平性、信道容量和鄰節(jié)點(diǎn)因素等。

    1.2.1 影響參數(shù)

    1)接入公平性。

    圖3所示為6節(jié)點(diǎn)3跳拓?fù)鋱D,分為抑制型和自私型不公平性,在此定性分析其對(duì)多跳吞吐量的影響。一是各節(jié)點(diǎn)競(jìng)爭(zhēng)窗口(CW)相等時(shí),理論上任意節(jié)點(diǎn)(如A~F)接入信道概率或平均吞吐量應(yīng)近似相同。但實(shí)際不然,從圖3(a)可知,當(dāng)A與B交互RTS/CTS分組時(shí),節(jié)點(diǎn)(如C)可監(jiān)聽到該幀,基于二進(jìn)制指數(shù)回退(Binary Exponential Backoff, BEB)算法產(chǎn)生退避,并存儲(chǔ)信道不可用周期,對(duì)于A而言顯示為下一跳不可達(dá),導(dǎo)致所有經(jīng)過C轉(zhuǎn)發(fā)的分組(目的為E和F)均被丟棄,直接導(dǎo)致吞吐量降低,節(jié)點(diǎn)E原理相同。二是各節(jié)點(diǎn)CW不等時(shí),如圖3(b)所示,對(duì)于兩條通信鏈路A?B、C?D,各節(jié)點(diǎn)競(jìng)爭(zhēng)CW不同(如節(jié)點(diǎn)A和C分別對(duì)應(yīng)64和32),當(dāng)傳輸分組時(shí),根據(jù)BEB規(guī)則,A~D中CW減半,此時(shí)B鄰節(jié)C對(duì)應(yīng)CW較小,成功與B互聯(lián),而A和D處于等待狀態(tài),分組傳輸數(shù)量小于步驟1,吞吐量降低。因此仿真中經(jīng)歷了接入不公平性,但ERR模型未考慮。

    圖3 接入不公平性示意圖

    2)信道容量。

    DCF協(xié)議面向單信道設(shè)計(jì),吞吐量受限于信道容量,且自動(dòng)切換至其他空閑信道,如圖4所示。一是任意節(jié)點(diǎn)(如B)占用信道,覆蓋范圍內(nèi)節(jié)點(diǎn)C將信道1置為忙碌,則D無(wú)法與C在信道1建立連接,對(duì)應(yīng)分組被存儲(chǔ)或丟棄。二是若假設(shè)信道1容量為10分組,對(duì)于中間節(jié)點(diǎn)B而言,大于10個(gè)分組的數(shù)據(jù)將被丟棄,或切換至信道2傳輸,時(shí)延增加。二者均限制了吞吐量提升,但ERR未考慮信道容量對(duì)吞吐量的影響,是導(dǎo)致誤差產(chǎn)生的重要因素。

    圖4 單信道示意圖

    3)鄰節(jié)點(diǎn)因素。

    如圖5所示,對(duì)網(wǎng)絡(luò)覆蓋區(qū)域進(jìn)行九宮格分割。受MANET多跳和移動(dòng)性影響,中心方格內(nèi)A作為中繼節(jié)點(diǎn)的概率較高,對(duì)應(yīng)信道接入成功率降低。且各方格內(nèi)節(jié)點(diǎn)隨機(jī)移動(dòng),節(jié)點(diǎn)數(shù)變?yōu)殡S機(jī)變量,競(jìng)爭(zhēng)同一信道的節(jié)點(diǎn)數(shù)并非常數(shù),而ERR未考慮該參數(shù)的影響。

    除此之外,干擾和噪聲[20-21]同樣影響吞吐量分析精度,為簡(jiǎn)化分析,參考Bianchi模型及其優(yōu)化算法,在此忽略二者影響。值得注意的是,接入公平性可通過行為檢測(cè)及處理機(jī)制[22-23]緩解,信道容量因素可基于認(rèn)知MAC協(xié)議[24-25]得以改進(jìn),二者均得到廣泛研究。但是由于節(jié)點(diǎn)移動(dòng)隨機(jī)性,導(dǎo)致鄰節(jié)點(diǎn)數(shù)目的時(shí)變性,使得分析轉(zhuǎn)為隨機(jī)過程,相應(yīng)研究較少,為此在對(duì)其定性分析基礎(chǔ)上提出一種鄰節(jié)點(diǎn)實(shí)時(shí)評(píng)估算法。

    圖5 分組碰撞示意圖

    1.2.2 鄰節(jié)點(diǎn)分析

    根據(jù)NS2中trace文件參數(shù)定義[26],提取14.59~14.95 s和28.5~28.75 s時(shí)間內(nèi)相關(guān)分組,結(jié)果如圖6所示。

    理想條件時(shí)若節(jié)點(diǎn)A成功競(jìng)爭(zhēng)信道,將發(fā)送RTS/DATA分組,并接收目的節(jié)點(diǎn)CTS/ACK等。而事實(shí)并非如此,在14 s和28 s時(shí)刻,節(jié)點(diǎn)A完成一次DATA傳輸后,出現(xiàn)多個(gè)分組競(jìng)爭(zhēng)信道,且不同時(shí)刻RTS分組數(shù)不同。究其原因,一是RTS傳輸超時(shí),接收節(jié)點(diǎn)將其丟棄,源節(jié)點(diǎn)因未收到CTS將自動(dòng)重傳;二是鄰節(jié)點(diǎn)數(shù)目隨時(shí)間變化,新增鄰節(jié)點(diǎn)未檢測(cè)到前期分組,因而產(chǎn)生RTS競(jìng)爭(zhēng)信道。為定性分析具體原因,可根據(jù)對(duì)應(yīng)時(shí)間內(nèi)trace文件(相同節(jié)點(diǎn)相鄰時(shí)間連續(xù)兩次發(fā)送RTS可視為重傳,僅統(tǒng)計(jì)局部區(qū)域節(jié)點(diǎn)5、8、23、24、26)和nam圖統(tǒng)計(jì)不同時(shí)間節(jié)點(diǎn)分布及分組情況,結(jié)果如圖7和圖8所示。

    從圖7不難看出,在14.59~14.95 s時(shí)間內(nèi),節(jié)點(diǎn)5和8發(fā)送RTS分別為2次和3次,而trace文件表明RTS被成功接收,并非傳輸超時(shí)所致,因而原因一不成立。根據(jù)CSMA/CA機(jī)制原理,若發(fā)送節(jié)點(diǎn)成功競(jìng)爭(zhēng)信道,其鄰節(jié)點(diǎn)將檢測(cè)到RTS或NAV(Network Allocation Vector)分組,執(zhí)行指數(shù)退避,事實(shí)與之相悖,則表明存在其他節(jié)點(diǎn),在發(fā)送RTS之前,由于未監(jiān)聽到其他節(jié)點(diǎn)分組,則感知信道空閑,傳輸自身RTS,從而導(dǎo)致碰撞產(chǎn)生。圖8證實(shí)了該結(jié)論的正確性,14 s時(shí)節(jié)點(diǎn)24包含5、8、26等鄰節(jié)點(diǎn),而28 s時(shí)僅覆蓋節(jié)點(diǎn)8,后者對(duì)應(yīng)RTS分組數(shù)將小于前者,與圖6和7相符。由此不難得出,對(duì)于MANET而言,鄰節(jié)點(diǎn)數(shù)具有時(shí)變性,而Bianchi和ERR模型中均未考慮其影響,進(jìn)而導(dǎo)致圖2所示偏差。因此為提高ERR精度,引入鄰節(jié)點(diǎn)實(shí)時(shí)評(píng)估算法勢(shì)在必行。

    在算法設(shè)計(jì)之前必須明確的是,由于MANET節(jié)點(diǎn)依移動(dòng)模型隨機(jī)移動(dòng)[27-28](如RW、隨機(jī)路點(diǎn)模型(Random WayPoint mobility model, RWP)等),則其值為隨機(jī)變量。根據(jù)PN假設(shè),此時(shí)問題轉(zhuǎn)化為PN分布經(jīng)過隨機(jī)移動(dòng)后的節(jié)點(diǎn)估計(jì)問題。根據(jù)文獻(xiàn)[29]可知,PN經(jīng)過RW后節(jié)點(diǎn)仍服從泊松分布,則只需實(shí)現(xiàn)PN分布時(shí)的鄰節(jié)點(diǎn)數(shù)估計(jì)即可。鑒于卡爾曼濾波算法[30]的高效性,在此利用該算法建立鄰節(jié)點(diǎn)實(shí)時(shí)評(píng)估模型。

    圖6 不同時(shí)刻對(duì)應(yīng)分組統(tǒng)計(jì)

    圖7 14 s和28 s時(shí)RTS傳輸數(shù)目統(tǒng)計(jì)

    圖8 不同時(shí)刻節(jié)點(diǎn)分布

    2 鄰節(jié)點(diǎn)估計(jì)算法設(shè)計(jì)

    由式(1)可得N與p的逆函數(shù)

    N=f(p)=1+

    (10)

    式(10)描述了鄰節(jié)點(diǎn)N與條件碰撞概率p、回退次數(shù)m和競(jìng)爭(zhēng)窗口W之間的定量關(guān)系,則N值轉(zhuǎn)化為p值的估計(jì)。由假設(shè)可知p滿足獨(dú)立同分布,則各節(jié)點(diǎn)可獨(dú)立估計(jì)p值。由于p定量表示為特定時(shí)隙內(nèi)分組傳輸失敗的概率,即時(shí)隙內(nèi)存在其他節(jié)點(diǎn)傳輸幀的概率,其值等于傳輸失敗的次數(shù)與總傳輸次數(shù)的比值,前者包括時(shí)隙內(nèi)碰撞次數(shù)Ncoll和忙碌次數(shù)Nbusy。

    令時(shí)隙內(nèi)總傳輸次數(shù)為Ntotal,由定義可知:

    p=(Ncoll+Nbusy)/Ntotal

    (11)

    在滿足時(shí)變性的基礎(chǔ)上,為達(dá)到參數(shù)估計(jì)實(shí)時(shí)性要求,p值對(duì)歷史數(shù)據(jù)依賴度越低越好,而離散卡爾曼濾波算法滿足該特性,在此將其用于p值估計(jì)。

    將時(shí)間軸離散為Ntotal段,各段時(shí)隙時(shí)間E[σ],其中E[σ]為變量,Ntotal為預(yù)定義常數(shù)。定義第k段時(shí)間內(nèi)條件碰撞概率為pk,則式(11)變?yōu)?

    (12)

    其中第k段時(shí)間內(nèi)空閑或節(jié)點(diǎn)發(fā)送成功時(shí)Ni=0,概率為P(Ni=0)=1-p;反之Ni=1,P(Ni=1)=p,則隨機(jī)變量pk符合二項(xiàng)式分布,即:

    (13)

    為建立卡爾曼估計(jì)算法,需制定兩種規(guī)則:系統(tǒng)狀態(tài)更新規(guī)則和測(cè)量規(guī)則。用離散時(shí)刻k對(duì)應(yīng)的節(jié)點(diǎn)數(shù)目Nk表示即時(shí)狀態(tài),則其一般表達(dá)式為:

    Nk=Nk-1+Ωk

    (14)

    即任意時(shí)刻k,節(jié)點(diǎn)數(shù)目Nk為k-1時(shí)刻N(yùn)k-1與當(dāng)前時(shí)刻隨機(jī)噪聲變量Ωk之和,式(14)可用于鄰節(jié)點(diǎn)數(shù)目的實(shí)時(shí)更新。

    對(duì)于測(cè)量模型,根據(jù)式(12),任意時(shí)刻k,假設(shè)存在Nk個(gè)競(jìng)爭(zhēng)節(jié)點(diǎn),則pk可用式(10)的逆函數(shù)h(Nk)表示,因此可將式(12)重寫為:

    pk=f-1(Nk)+vk=h(Nk)+vk

    (15)

    (16)

    (17)

    3 性能仿真

    為考量算法精度,參數(shù)設(shè)置與表1相同,唯一區(qū)別在于引入鄰節(jié)點(diǎn)估計(jì)算法,結(jié)果如圖9所示。此外為進(jìn)一步評(píng)估算法優(yōu)劣,記錄算法前后所需仿真時(shí)間,每組操作三次取平均值,如表2所示。

    圖9 改進(jìn)后吞吐量結(jié)果

    從圖9中不難看出,吞吐量理論值與仿真值已基本吻合,誤差低于2%。不僅說(shuō)明了原因分析的正確性,同時(shí)證明了節(jié)點(diǎn)估計(jì)算法的有效性。值得注意的是,算法實(shí)現(xiàn)過程引入了計(jì)算時(shí)延,約為0.13 s,仍存在一定的改進(jìn)空間,可通過改進(jìn)卡爾曼算法進(jìn)一步優(yōu)化,限于篇幅,在此不作贅述。

    表2 是否使用鄰節(jié)點(diǎn)估計(jì)算法計(jì)算時(shí)延對(duì)比

    4 結(jié)語(yǔ)

    論文基于Bianchi模型,定義歐實(shí)比,建立多跳吞吐量分析模型,定性分析鄰節(jié)點(diǎn)實(shí)時(shí)估計(jì)的必要性,并基于泊松分布和卡爾曼濾波算法,設(shè)計(jì)一種鄰節(jié)點(diǎn)實(shí)時(shí)估計(jì)算法,且仿真結(jié)果表明,算法提高了吞吐量理論分析精度,但同時(shí)引入計(jì)算時(shí)延,且缺乏隱藏終端、節(jié)點(diǎn)能量利用率考慮,后期將針對(duì)該問題的優(yōu)化機(jī)制展開研究。

    References)

    [1] VENKANNA U, VELUSAMY R L. Black hole attack and their counter measure based on trust management in MANET: a survey [C]// Proceedings of the 2011 3rd International Conference on Advances in Recent Technologies in Communication and Computing. Stevenage, UK: IET, 2011: 232-236.

    [2] 朱清超,陳靖,龔水清,等.移動(dòng)自組網(wǎng)媒體接入控制協(xié)議吞吐量與公平性均衡設(shè)計(jì)[J].計(jì)算機(jī)應(yīng)用,2015,35(11):3275-3279.(ZHU Q C, CHEN J, GONG S Q, et al. Design of medium access control protocol tradeoff between throughput and fairness in MANET[J]. Journal of Computer Applications, 2015, 35(11): 3275-3279.)

    [3] KATIYAR S, GUJRAL R, MALLICK B. Comparative performance analysis of MANET routing protocols in military operation using NS2 [C]// Proceedings of the 2015 International Conference on Green Computing and Internet of Things. Washington, DC: IEEE Computer Society, 2015: 603-609.

    [4] 李世寶,婁琳琳,陳瑞祥,等.基于方向預(yù)測(cè)的移動(dòng)自組網(wǎng)概率轉(zhuǎn)發(fā)算法[J].計(jì)算機(jī)應(yīng)用,2013,33(8):2117-2120.(LI S B, LOU L L, CHEN R X, et al. Probabilistic forwarding algorithm of mobile Ad Hoc networks based on directional prediction [J]. Journal of Computer Applications, 2013, 33(8): 2117-2120.)

    [5] GUAN Q, YU F R, JIANG S. Prediction-based topology control and routing in cognitive radio mobile Ad Hoc networks [J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4443-4452.

    [6] YOUNIS O, KANT L, CHANG K, et al. Cognitive MANET design for mission-critical networks [J]. IEEE Communications Magazine, 2009, 47(10): 64-71.

    [7] EASTLAKE D 3rd, ABLEY J. IANA considerations and IETF protocol and documentation usage for IEEE 802 parameters [EB/OL]. [2013- 10- 01]. http:// www. rfc-editor.org/rfc/rfc7042.txt.

    [8] EASTLAKE D 3RD. IANA considerations and IETF protocol usage for IEEE 802 parameters [EB/OL]. [2008- 09- 01]. http://www.rfc-editor.org/rfc/rfc5342.txt.

    [9] BIANCHI G. Performance analysis of the IEEE 802.11 distributed coordination function [J]. IEEE Journal on Selected Areas in Communications, 2006, 18(3): 535-547.

    [10] DANESHGARAN F, LADDOMADA M, MESITI F, et al. Unsaturated throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects [J]. IEEE Transactions on Wireless Communications, 2008, 7(4): 1276-1286.

    [11] LEONARDO E J, YACOUB M D. Exact formulations for the throughput of IEEE 802.11 DCF in Hoyt, Rice, and Nakagami-m fading channels [J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2261-2271.

    [12] BAROUDI U, AL-ROUBAIEY A, MEKID S, et al. The impact of sensor node distribution on routing protocols performance: a comparitive study [C]// Proceedings of the 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications. Piscataway, NJ: IEEE, 2012: 25-27.

    [13] LIU Y T, XU J, XIA G Y. Node distribution of the random direction model in a square region [C]// Proceedings of the 2014 International Conference on Mechatronics and Control. Piscataway, NJ: IEEE, 2014: 21-25.

    [14] SIBEKO N, MUDALI P, OKI O, et al. Performance evaluation of routing protocols in uniform and normal node distributions using inter-mesh wireless networks [C]// Proceedings of the 2015 World Symposium on Computer Networks and Information Security. Piscataway, NJ: IEEE, 2015: 1-6.

    [15] MARIMON M C, TANGONAN G, LIBATIQUE N J, et al. Development and evaluation of wave sensor nodes for ocean wave monitoring [J]. IEEE Systems Journal, 2015, 9(1): 292-302.

    [16] TSENG C C, CHEN H T, CHEN K C. On the distance distributions of the wireless Ad Hoc network [C]// Proceedings of the IEEE 63rd Vehicular Technology Conference. Piscataway, NJ: IEEE, 2006: 772-776.

    [17] HAENGGI M. On distances in uniformly random networks [J]. IEEE Transactions on Information Theory, 2005, 51(10): 3584-3586.

    [18] KENDALL M G, MORAN P A P. Geometric Probability [M]. New York: Hafner, 1963: 50-75.

    [19] NAKAGAMI M. The m-distribution—a general formula of intensity distribution of rapid fading [EB/OL]. [2016- 12- 13]. https://www.researchgate.net/publication/239060991_The_m-Distribution-A_General_Formula_of_Intensity_Distribution_of_Rapid_Fading?ev=auth_pub.

    [20] GONG Z, HAENGGI M. The local delay in mobile Poisson networks [J]. IEEE Transactions on Wireless Communications, 2013, 12(9): 4766-4777.

    [21] SCHILCHER U, TOUMPIS S, HAENGGI M, et al. Interference functionals in Poisson networks [J]. IEEE Transactions on Information Theory, 2015, 62(1): 370-383.

    [22] BANCHS A, ORTIN J, GARCIA-SAAVEDRA A, et al. Thwarting selfish behavior in 802.11 WLANs [J]. IEEE/ACM Transactions on Networking, 2016, 24(1): 492-505.

    [23] LI M, SALINAS S, LI P, et al. MAC-Layer selfish misbehavior in IEEE802.11 Ad Hoc networks: detection and defense [J]. IEEE Transactions on Mobile Computing, 2015, 14(6): 1203-1217.

    [24] JEON W S, HAN J A, DONG G J. A novel MAC scheme for multichannel cognitive radio Ad Hoc networks [J]. IEEE Transactions on Mobile Computing, 2012, 11(6): 922-934.

    [25] DEBROY S, DE S, CHATTERJEE M. Contention based multichannel MAC protocol for distributed cognitive radio networks [J]. IEEE Transactions on Mobile Computing, 2014, 13(12): 2749-2762.

    [26] ZHANG X, WU L, ZHANG Y, et al. Interference dynamics in MANETs with a random direction node mobility model [C]// Proceedings of the 2013 IEEE Wireless Communications and Networking Conference. Piscataway, NJ: IEEE, 2013: 3788-3793.

    [27] CHUNG J, CLAYPOOL M. NS by example [EB/OL]. [2015- 06- 10]. http://nile.wpi.edu/NS/.

    [28] SANUM W, KETTHONG P, NOYMANEE J. A deterministic node mobility model for mobile Ad Hoc wireless network using Signum-based discrete-time chaotic map [C]// Proceedings of the 2015 International Telecommunication Networks and Applications Conference. Piscataway, NJ: IEEE, 2015: 114-119.

    [29] AHSEN M, HASSAN S A. A Poisson point process model for coverage analysis of multi-hop cooperative networks [C]// Proceedings of the 2015 International Wireless Communications and Mobile Computing Conference. Piscataway, NJ: IEEE, 2015: 442-447.

    [30] CHUI C K, CHEN G. Kalman filtering with real-time applications [M]// Springer Series in Information Sciences. Berlin: Springer, 2009: 50-56.

    Throughputanalysisofmulti-hopnetworkanddesignofreal-timeestimationonneighbornodes

    ZHU Qingchao1,2*

    (1.SchoolofInformationEngineering,EngineeringUniversityofChineseArmedPoliceForce,Xi’anShaanxi710086,China;2.SchoolofInformationandNavigation,AirForceEngineeringUniversity,Xi’anShaanxi710077,China)

    Aiming at the problems of single hop and static nature in theoretical analysis of Media Access Control (MAC) protocol, a multi-hop analysis model for Mobile Ad Hoc NETwork (MANET) was proposed, and a real-time estimation algorithm for neighbor node was designed. Firstly, a common multi-hop throughput analysis model was established through definition of distance parameter, which equaled to the Ratio of Euclidean distance and Real statistical distance (ERR), based on 2-D discrete time Markov Chain (DTMC) model, with nodes distributed in a Poisson Network (PN). Secondly, one of the reasons resulting in deviation between theory and simulation, dynamic nature of neighbor nodes, was analyzed qualitatively, that was, ERR didn’t take mobility into consideration. Thirdly, a real-time number estimation methodology of neighbor nodes in PN with Random Walk (RW) mobility model was presented based on Kalman filter algorithm through redefinition of state update rule as well as measurement rule. Finally, the performance of the multi-hop throughput analysis model was compared and analyzed. The experimental results show that, although the delay of 0.13 s is introduced, the accuracy is improved by 8% in terms of throughput, Therefore, both extension of multi-hop communication and consideration of mobility are realized in the model.

    Mobile AD Hoc NETwork (MANET); throughput; Medium Access Control (MAC); Poisson distribution; Kalman filter algorithm

    2017- 03- 10;

    2017- 04- 19。

    國(guó)家自然科學(xué)基金資助項(xiàng)目(51075395);陜西省自然科學(xué)基金資助項(xiàng)目(2015JM6340)。

    朱清超(1987—),男,山東濟(jì)寧人,助教,博士研究生,主要研究方向:通信與信息系統(tǒng)。

    1001- 9081(2017)09- 2484- 07

    10.11772/j.issn.1001- 9081.2017.09.2484

    TP393.1

    A

    This work is partially supported by the National Natural Science Foundation of China (51075395), the Natural Science Foundation of Shaanxi Province (2015JM6340).

    ZHUQingchao, born in 1987. Ph. D. candidate. His research interests include communication and information system.

    猜你喜歡
    吞吐量信道分組
    分組搭配
    怎么分組
    分組
    2016年10月長(zhǎng)三角地區(qū)主要港口吞吐量
    集裝箱化(2016年11期)2017-03-29 16:15:48
    2016年11月長(zhǎng)三角地區(qū)主要港口吞吐量
    集裝箱化(2016年12期)2017-03-20 08:32:27
    基于導(dǎo)頻的OFDM信道估計(jì)技術(shù)
    一種改進(jìn)的基于DFT-MMSE的信道估計(jì)方法
    基于MED信道選擇和虛擬嵌入塊的YASS改進(jìn)算法
    2014年1月長(zhǎng)三角地區(qū)主要港口吞吐量
    集裝箱化(2014年2期)2014-03-15 19:00:33
    一種基于GPU的數(shù)字信道化處理方法
    凤台县| 无极县| 屏边| 开鲁县| 兰考县| 宕昌县| 交城县| 郑州市| 冀州市| 张家界市| 阿荣旗| 兴文县| 宝兴县| 磴口县| 江西省| 小金县| 扶沟县| 大埔区| 太保市| 宁陕县| 都兰县| 乾安县| 永修县| 武穴市| 潞西市| 开平市| 攀枝花市| 儋州市| 南郑县| 简阳市| 乾安县| 绵竹市| 怀集县| 安顺市| 蕲春县| 河西区| 北海市| 荆州市| 泰和县| 青海省| 吉水县|