• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of semi-tensor product-based kernel function for SVM nonlinear classification

    2022-02-11 09:06:32ShengliXueLijunZhangZeyuZhu
    Control Theory and Technology 2022年4期

    Shengli Xue·Lijun Zhang·Zeyu Zhu

    Received:7 June 2022/Revised:4 August 2022/Accepted:16 September 2022/Published online:28 November 2022

    ?The Author(s),under exclusive licence to South China University of Technology and Academy of Mathematics and Systems Science,Chinese Academy of Sciences 2022,corrected publication 2022

    Abstract The kernel function method in support vector machine(SVM)is an excellent tool for nonlinear classification.How to design a kernel function is difficult for an SVM nonlinear classification problem,even for the polynomial kernel function.In this paper,we propose a new kind of polynomial kernel functions,called semi-tensor product kernel(STP-kernel),for an SVM nonlinear classification problem by semi-tensor product of matrix(STP)theory.We have shown the existence of the STP-kernel function and verified that it is just a polynomial kernel. In addition, we have shown the existence of the reproducing kernel Hilbert space(RKHS)associated with the STP-kernel function.Compared to the existing methods,it is much easier to construct the nonlinear feature mapping for an SVM nonlinear classification problem via an STP operator.

    Keywords SVM·Semi-tensor product·STP-kernel·Nonlinear classification·Reproducing kernel Hilbert space(RKHS)

    1 Introduction

    Binary classification has made a basic and crucial impact in pattern recognition and machine learning field.Support vector machine(SVM)was proposed in the late 1990s in[1]and has been successfully applied in many fields[2–9].Given a data set, the classical linear SVM model uses a hyperplane to divide the data points into two classes,while maximizing the margin between the two classes and minimizing the misclassification of data points. Accordingly, nonlinear SVM model borrows the idea of linear classification model to first transform the nonlinear classification problem into a linear separable problem by a feature mapping[10],and then design a linear hyperplane to separate two sets of the mapped points in the feature space using the linear classification technique.How to design nonlinear kernel functions in SVM classification problem is a key point.A proper kernel function can largely reduce the computation cost and simplify the nonlinear classification problem to a linear counterpart in a higher dimensional feature space. The polynomial kernel and the Gaussian kernel,etc.,are widely applied to nonlinear classification problems.So far,there have ever been no common and useful methods for constructing the kernel functions,even polynomial kernel functions.Therefore,we attempt to design an algorithm for the SVM polynomial kernel function based on semi-tensor product of matrices theory.

    The semi-tensor product(STP)of matrices,proposed by Cheng in[11],is a generalization of the conventional matrix product and well defined for arbitrary two finite-dimensional matrices.STP has been applied to control theory[12],image compression[13],game theory[14]and logic reasoning[15].Recently,Cheng[16]used STP technique to transform multivariable polynomial into a linear structure form similar to single variable polynomial [16]. As a result, any homogeneous polynomial can be expressed as a power function under the frame of STP.That is,in the higher dimension space generated by STP operator,the homogeneous polynomial is of linear-like form(Refer to[16]for details).

    Motivated by STP representation of multivariable polynomial in [16], in this paper, we propose a new kind of polynomial kernel functions, denoted by the STP-kernel,for nonlinear SVM model via a semi-tensor product. The proposed STP-kernel technique can produce the well-known polynomial kernel.Based on that,we study the existence of the STP-kernel and show the STP-kernel is also a Mercer’s kernel.Then,the reproducing kernel Hilbert space(RKHS)associated with the STP-kernel is investigated, and some interesting properties are obtained.Numerical examples are taken to illustrate the effectiveness and efficiency of the proposed STP-kernel function.

    The rest of the paper is organized as follows.In Sect.2,we introduce some preliminary knowledge about semi-tensor product and SVM-based binary classification.In Sect.3,we define the STP-kernel function and show that it is a Mercer’s kernel.In Sect.4,we show that STP-kernel is a generalization of polynomial kernel.RKHS associated with STP-kernel is investigated in Sect.5.Section 6 concludes the paper.

    2 Preliminaries

    In this section, we introduce some preliminary knowledge about semi-tensor product and SVM-based nonlinear binary classification. For the symbols and notions of semi-tensor product in this paper,refer to[16].

    2.1 Semi-tensor product

    Definition1 [16]LetA∈Mm×n,B∈Mp×qandt=n∨pbe the least common multiple ofnandp.Then,the left STP ofAandB,denoted byA×B,is defined as

    where ?is the Kronecker product.

    Proposition 1[16]Let x∈Rm and y∈Rn be two column vectors.Then,x×y is well defined.Moreover,

    x×y=x?y.

    is always well defined.

    From Proposition 2, STP can be regarded as an operator from a lower dimensional space to a higher dimensional space.

    Definition 2Letx∈Rnbe a column vector,2 ≤k∈N+.Then,the STP operator×kis defined as follows:

    Remark 1

    (1) It is easy to verify that ×k(ax) =a2×k(x), for allx∈Rn,a∈R,that is to say,the STP operator×kis a nonlinear operator.

    (2) In the following text,we will sometimes useφ(x)=xkto represent×k(x)=xk.

    By Proposition 2,letx=(x1,···,xn)T,it is easy to see that the components ofxkform a set ofkth degree homogeneous polynomials, denoted by, and define= R as zero-degree polynomials,i.e.,constants.Letf(x) ∈there exists a matrixF∈M1×nksuch that

    Notexkis not a basis ofue to containing some redundant elements.That is,matrixFin(3)is not unique.

    A basis of,called the natural basis and denoted byis defined as

    where 0 ≤d1≤d2≤···≤dn≤k,d j∈N.

    Proposition 3[16]The cardinality(size)of Nkn is

    Next, we introduce how to represent the coefficient of a homogeneous polynomials inby a natural basisand vice versa.

    Define matricesTB(n,k) ∈Ms×t,TN(n,k) ∈Mt×s,we have the following result(for details,please refer to[16,pp.440–441]):

    Proposition 4[16]

    2.Assume p(x) ∈is a kth degree homogeneous polynomial,and p(x)=Fxk=Sx(k),then

    Example 1[16]Letn=2 andk=3.

    2. Assumef(x) =(1,2,1,1,?1,?1,?2,?1)x3.Using(6),we have

    f(x)=(1,2,?2,?1)x(3).

    2.2 SVM-based nonlinear binary classification

    Given a data set of two classes as follows[17]:

    The nonlinear classification task could be done by an SVM model with a kernel function[10],which is obtained by the following optimization model:

    Fig. 1 The hyperplane f(x) = wTψ(x)+b of SVM in the feature space

    2.3 Positive definite kernel and RKHS

    Definition 3 LetXbe an abstract set.We say thatK:X×X→R is symmetric whenK(x,t)=K(t,x)for allx,t∈X.

    For the kernelKdefined onX×X,x∈X, we denote byKxthe function

    Then, the following theorem describes the conditions for RKHS.

    (1)for all x∈X,Kx∈HK,

    (3)for all f∈HK and x∈X,f(x)=〈Kx,f〉HK.

    By Theorem 1,the Hilbert spaceHKis said to be aRKHS.The kernelKis said to bereproducing kernel.Property(3)in Theorem 1 is referred to as thereproducing propertyof the reproducing kernel.

    Lemma 1[19]A RKHS of functions on X is characterized by its kernel K on X×X,then it is equivalent that K is a reproducing kernel and that K is a positive definite kernel.

    Remark 2[20]Commonly,a positive definite kernel is calledMercer kernelor reproducing kernel.

    From (8) and (9), we note that the kernel technique is a key point to solve the nonlinear classification problem, the choice of kernel function will determine whether a hyperplane separating the data in the feature space exists.So far,some widely used kernel functions are Gaussian(RBF)kernel and quadratic(2nd order polynomial)kernel,etc.

    Here,we give two examples of kernel functions as follows.

    We knowK(x,y) = 〈x,y〉is the well-known homogeneous polynomial kernel.

    Example 3(Non-homogeneous polynomial kernel)LetX?Rn,a> 0,d∈N+,the non-homogeneous polynomial kernel is

    Leta= 0,it is simplified as a homogeneous polynomial kernel.

    3 STP representation of polynomial kernel function

    In this section, we claim that a polynomial kernel can be expressed as a form of semi-tensor product of a matrix. In fact,Cheng in[11]proposed that a multivariable polynomial can be expressed as a linear structure form similar to a single variable polynomial, which motivates us to construct STPbased polynomial kernel with linear structure in the higher dimension space.Here,we will use an example to verify our idea. For example, we assume the following homogeneous polynomialψ(x)is a nonlinear separable function in a given data space.

    Its corresponding STP representation can be written as

    whereA=(1,1,0,?2,0,0,0,?1)is a row vector,andx3is

    We note that(13),a nonlinear function in R2,is converted into a linear formψ(x) =Ax3in R8.In other words,from the perspective of SVM nonlinear binary classification, the STP operator ×3in Definition 2 can transform a nonlinear classifier(13)in the data space R2into a linear classifier(14)in a high dimension of feature space R8.

    Motivated by the above example, we proceed to investigate the following common known example in SVM classification theory[1].

    Figure 2 shows us how a nonlinear classification problem in R2is transformed into a linear classification problem in R3by a feature mapping as follows:

    Then, the corresponding kernel function with respect toψ(·)is written as follows:

    Now,we define a feature mappingφ(x)∈R4by the STP operator as follows:

    and the corresponding kernel function is written as

    We note that (17) is identical to (20), i.e.,K(x,y) =K′(x,y).It implies semi-tensor product(18)can also specify the feature mapping(15)and construct a new kind of kernel function. One can also see that the feature mapping is not unique for a given kernel function. However, in practice, it is not easy to construct the feature mapping for a nonlinear classification problem.So far,even for the polynomial kernel,how to construct the feature mappingψorφof the kernelK(x,y)is unknown.Clearly STP provides a new approach to constructing the polynomial kernel function from the data space.In the sequel,we will investigate how STP generates a polynomial kernel function in theory.

    4 STP-kernel generates polynomial kernel

    In this section, we show that the nonlinear function based on STP is just a kernel function in SVM theory,called STPkernel.

    Next,we will give the definition and criteria of the STPkernel.

    Theorem 2STP-kernel

    K(x,y)=〈φ(x),φ(y)〉Rnk

    is apositivedefinitekernel,aMercer kernel,andalsoareproducing kernel.ProofBy Definition 4, we know that the kernel matrixKassociated with kernelKis symmetric,and it is easy to verify that

    soKis positively definite. It follows that STP-kernelK(x,y)=〈φ(x),φ(y)〉Rnkis a positive definite kernel.By Remark 2,we know thatKis a Mercer kernel,also a reproducing kernel. ■

    Next,we show that STP-kernel is a polynomial kernel.To begin with,we first introduce a lemma to support our result.

    Lemma 2[21]For any positive integer m and any nonnegative integer n,the multinomial formula describes how a sum with m terms expands when raised to an arbitrary power n:

    Proposition 5A STP-kernel generates a polynomial kernel,i.e.,

    ProofWe only need to show

    By Lemma 2 and (22), the right hand side of (24) can be written as

    Let

    By rearranging every item in(25),we have

    According to the definition of homogeneous polynomial kernel(11),the conclusion is drawn. ■

    SoK(x,y)=〈x2,y2〉R4is a positive definite kernel.

    It is natural we can generalize Proposition 5 to the nonhomogeneous kernel case.

    ProofThe proof isthe same as Proposition 5 ifwedefinex′=(√,xT)T∈RnandK′(x′,y′)=K(x,y).Leta=0,the homogeneous STP-kernel is obtained. ■

    then

    SoK(x,y)=〈φ(x),φ(y)〉R9is a positive definite kernel.

    5 Reproducing Kernel Hilbert space of STP-kernel

    In previous sections, we have shown STP-kernel is a reproducing kernel which determines a unique RKHS. In this section, we will investigate the structure properties of RKHS associated with homogeneous STP-kernel (nonhomogeneous STP-kernel can be done similarly).

    We have already constructed STP-kernelK(x,y) =〈φ(x),φ(y)〉Rnkusing the feature mappingφ:x→xk,which maps everyndimensional data pointx∈Rnintonkdimensional feature space Rnk. Next, we show how we specify the RKHS of the STP-kernel. Let us describe it as follows.

    For clarity, we will introduce some notations (Refer to the proof of Theorem 1 in[19]for details).Here we briefly introduce three Hilbert spacesHd,HKandH■:

    HK:RKHS of homogeneous polynomial kernel;

    Hd:Hilbert space of homogeneous polynomials;

    H■:the RKHS of STP-kernel,

    relations among which are explored more detailed in the sequel.

    LetHKbe the completion ofH0with the associated norm.If the kernel ofHKis a homogeneous polynomial kernel with feature mapping

    then,forx,t∈X,we have

    From Theorem 1,it concludes thatK(·,·)is a Mercer kernel,also a reproducing kernel.We can makeHdan inner product space by taking

    forf,g∈Hd,f= Σwαxα,g= Σvαxα. This inner product,called the Weyl inner product,satisfies

    |f(x)|≤‖f‖w‖x‖d,

    where‖f‖wdenotes the norm induced by〈·〉W,and‖x‖is Euclid norm ofx∈Rn+1.

    Then,we have the following result aboutHKandHd.

    Proposition 7[19]Both HK and Hd are isomorphic as function spaces and inner product spaces,denoted by HK~=Hd.

    Considering STP-kernel together with the above two kernels,we have the following theorem.

    ProofWe only need to address two issues as follows:

    1. They have the same generator setH0.

    2. They have the same inner product though their expressions are different.

    By Proposition 7,we have thatHKHdas RHKS,the remaining task for us is to verifyH■has the same generator setH0and inner product asHKandHd.The former can be seen by(23),the later can be seen obviously by Proposition 5. Relations amongH■,HKandHdcan be seen from the commutative diagram(Fig.3).

    By the commutative diagram (Fig. 3), we have the following equations. Three pairs of equations in sides of the tetrahedron:

    Three pairs of equations in underside of the tetrahedron:

    Fig.3 Commutative diagram

    whereτ1→σ1→μ1→τ1is clockwise, whileτ2→μ2→σ2→τ2is anticlockwise.

    Letx=(x1,x2,···,xn)T∈X?Rnand

    Then,linear mappingsσ1,σ2;τ1,τ2;μ1,μ2are defined as follows:

    The proof of Theorem 3 shows us an algorithm for finding RKHSH,so the following result is trivial.

    Proposition 8His the RKHS associated with STP-kernel,and it is a proper subspace ofRnk.

    ProofIt can be induced directly from Theorem 3. ■

    Next,we take an example to make clear the equivalence ofH,HKandHd.

    Example 6Forn=d= 2,x=(x1,x2)T,then the feature mappings ofH,HKandHdare written as follows:

    Then, by (32)–(34), transformations amongHK,Hd,H■are written as follows:

    6 Conclusion

    In this paper,the STP-kernel is first put forward for the SVMbased nonlinear classification.The proposed STP-kernel can produce the well-known polynomial kernel.Certain theoretical properties are studied,including the solution existence,reproducing properties of the STP-kernel. Particularly, we investigate relations between the STP-kernel and the polynomial kernel in theory.Numerical examples are conducted to investigate the effectiveness and efficiency of the proposed STP-kernel model.

    AcknowledgementsWe thank Prof. Daizhan Cheng for giving some valuablesuggestions,andalsotheanonymousreviewersfortheirhelpful comments.

    国产精品久久久av美女十八| 免费高清在线观看日韩| 亚洲精华国产精华精| 两人在一起打扑克的视频| 黑人欧美特级aaaaaa片| 侵犯人妻中文字幕一二三四区| 亚洲自拍偷在线| 男女床上黄色一级片免费看| 一区二区三区精品91| 欧洲精品卡2卡3卡4卡5卡区| 精品福利观看| 国产真人三级小视频在线观看| 国产三级黄色录像| 亚洲成av人片免费观看| 亚洲免费av在线视频| av超薄肉色丝袜交足视频| 欧美乱码精品一区二区三区| 久久伊人香网站| 欧美中文综合在线视频| 99久久综合精品五月天人人| 成年女人毛片免费观看观看9| 国产精品永久免费网站| 免费在线观看日本一区| 国内精品久久久久精免费| 一进一出好大好爽视频| 欧美日韩精品网址| 真人做人爱边吃奶动态| 久久热在线av| 亚洲欧美精品综合久久99| 午夜久久久在线观看| 国产高清videossex| 天堂影院成人在线观看| 国产精品一区二区免费欧美| 成人欧美大片| 看黄色毛片网站| 免费一级毛片在线播放高清视频 | 欧美日韩黄片免| 成人av一区二区三区在线看| 成人国产一区最新在线观看| 国产成人系列免费观看| 丝袜美腿诱惑在线| 成人三级做爰电影| 超碰成人久久| 一区二区三区激情视频| 国产乱人伦免费视频| 亚洲无线在线观看| 99在线人妻在线中文字幕| 国产91精品成人一区二区三区| 亚洲片人在线观看| 少妇被粗大的猛进出69影院| 亚洲久久久国产精品| 久久久久久大精品| 亚洲av第一区精品v没综合| 亚洲五月天丁香| 欧美成狂野欧美在线观看| 国产国语露脸激情在线看| 欧美丝袜亚洲另类 | a级毛片在线看网站| 亚洲欧美精品综合久久99| 欧美绝顶高潮抽搐喷水| 日韩精品免费视频一区二区三区| 狠狠狠狠99中文字幕| 操美女的视频在线观看| 日韩国内少妇激情av| 天天躁狠狠躁夜夜躁狠狠躁| 99国产综合亚洲精品| 精品国产一区二区久久| 色播在线永久视频| 欧美日本亚洲视频在线播放| 久久精品国产亚洲av高清一级| 国产单亲对白刺激| 老司机在亚洲福利影院| 国产精品免费一区二区三区在线| 国产熟女午夜一区二区三区| 亚洲av片天天在线观看| 悠悠久久av| 老汉色av国产亚洲站长工具| 一区二区三区精品91| 精品第一国产精品| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 欧美色欧美亚洲另类二区 | 满18在线观看网站| 黄色丝袜av网址大全| 国产视频一区二区在线看| 国产精品久久久人人做人人爽| 日本 欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 在线十欧美十亚洲十日本专区| 日韩成人在线观看一区二区三区| 色播亚洲综合网| 美女扒开内裤让男人捅视频| 亚洲中文字幕日韩| 亚洲精品国产精品久久久不卡| 成年人黄色毛片网站| 黑人欧美特级aaaaaa片| 神马国产精品三级电影在线观看 | 男女床上黄色一级片免费看| 久久这里只有精品19| 亚洲国产欧美网| 多毛熟女@视频| 成人永久免费在线观看视频| 久热这里只有精品99| 这个男人来自地球电影免费观看| 国产精品野战在线观看| 日韩成人在线观看一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲第一欧美日韩一区二区三区| 国产视频一区二区在线看| 亚洲,欧美精品.| 禁无遮挡网站| 9191精品国产免费久久| 97人妻精品一区二区三区麻豆 | 嫁个100分男人电影在线观看| 久久热在线av| 国产男靠女视频免费网站| 久久人妻福利社区极品人妻图片| 欧美成人免费av一区二区三区| 久久久久国产精品人妻aⅴ院| 久久狼人影院| 国产精品久久视频播放| 成人欧美大片| 精品国产一区二区三区四区第35| 青草久久国产| 久久久久久久久中文| 国产三级在线视频| 一夜夜www| 首页视频小说图片口味搜索| 怎么达到女性高潮| 大型av网站在线播放| 午夜影院日韩av| 国产精品免费一区二区三区在线| 亚洲精品国产精品久久久不卡| av超薄肉色丝袜交足视频| 97超级碰碰碰精品色视频在线观看| 人人澡人人妻人| 精品福利观看| 97人妻精品一区二区三区麻豆 | 欧美不卡视频在线免费观看 | 亚洲情色 制服丝袜| 精品少妇一区二区三区视频日本电影| 久久久国产欧美日韩av| 国产一区二区在线av高清观看| 亚洲人成电影观看| 多毛熟女@视频| 麻豆成人av在线观看| 97人妻精品一区二区三区麻豆 | 天天躁狠狠躁夜夜躁狠狠躁| 美女高潮到喷水免费观看| 午夜福利在线观看吧| 欧美成人免费av一区二区三区| 亚洲自偷自拍图片 自拍| 国产精品影院久久| videosex国产| 麻豆国产av国片精品| 黄色丝袜av网址大全| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品男人的天堂亚洲| 亚洲精品粉嫩美女一区| 免费看十八禁软件| 给我免费播放毛片高清在线观看| 国产精品久久电影中文字幕| 国产乱人伦免费视频| xxx96com| 日本黄色视频三级网站网址| 日本欧美视频一区| 叶爱在线成人免费视频播放| 99在线视频只有这里精品首页| 欧美一级a爱片免费观看看 | 操美女的视频在线观看| 91精品国产国语对白视频| 老熟妇乱子伦视频在线观看| 亚洲 国产 在线| 国产免费av片在线观看野外av| 日日干狠狠操夜夜爽| bbb黄色大片| 黄色a级毛片大全视频| 亚洲专区国产一区二区| 美女大奶头视频| 国产精品自产拍在线观看55亚洲| 中文字幕人妻熟女乱码| 亚洲情色 制服丝袜| 侵犯人妻中文字幕一二三四区| av在线播放免费不卡| 叶爱在线成人免费视频播放| 精品一区二区三区四区五区乱码| 50天的宝宝边吃奶边哭怎么回事| 男女午夜视频在线观看| 欧美乱妇无乱码| 色播在线永久视频| 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| 又紧又爽又黄一区二区| 亚洲人成77777在线视频| 成人三级做爰电影| 亚洲中文字幕一区二区三区有码在线看 | 最新在线观看一区二区三区| 成年版毛片免费区| 日韩视频一区二区在线观看| 黑人欧美特级aaaaaa片| 97人妻精品一区二区三区麻豆 | 很黄的视频免费| 岛国在线观看网站| 女生性感内裤真人,穿戴方法视频| 国产单亲对白刺激| 黄色 视频免费看| 久久人妻熟女aⅴ| 久久热在线av| 国产不卡一卡二| 一级作爱视频免费观看| 欧美国产精品va在线观看不卡| 欧美老熟妇乱子伦牲交| 欧美黄色淫秽网站| 午夜视频精品福利| 国产成人影院久久av| 热re99久久国产66热| 亚洲精品久久成人aⅴ小说| 麻豆国产av国片精品| 老司机深夜福利视频在线观看| 久久中文看片网| 女人精品久久久久毛片| 亚洲成人久久性| 久久草成人影院| 在线观看www视频免费| 欧美日韩亚洲综合一区二区三区_| 国产精品永久免费网站| 亚洲欧美日韩无卡精品| 亚洲人成电影免费在线| 亚洲熟女毛片儿| av在线天堂中文字幕| 日本在线视频免费播放| 波多野结衣高清无吗| av超薄肉色丝袜交足视频| 波多野结衣巨乳人妻| 男人舔女人下体高潮全视频| 非洲黑人性xxxx精品又粗又长| 国语自产精品视频在线第100页| 久久精品影院6| 一卡2卡三卡四卡精品乱码亚洲| 少妇粗大呻吟视频| a级毛片在线看网站| 热re99久久国产66热| 国产又爽黄色视频| 国产成人一区二区三区免费视频网站| 亚洲三区欧美一区| 99国产精品一区二区蜜桃av| 日日夜夜操网爽| 亚洲片人在线观看| 久久精品国产99精品国产亚洲性色 | 男女做爰动态图高潮gif福利片 | 午夜福利影视在线免费观看| 日韩精品青青久久久久久| 亚洲成人国产一区在线观看| 亚洲人成电影观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产高清国产av| avwww免费| 一级片免费观看大全| 在线播放国产精品三级| 亚洲成人免费电影在线观看| 亚洲激情在线av| 青草久久国产| 窝窝影院91人妻| 亚洲av成人不卡在线观看播放网| 亚洲av日韩精品久久久久久密| x7x7x7水蜜桃| 亚洲国产日韩欧美精品在线观看 | 两个人免费观看高清视频| 极品人妻少妇av视频| 国产亚洲精品久久久久久毛片| 精品国产乱码久久久久久男人| 午夜免费鲁丝| 亚洲第一青青草原| 国产精品 欧美亚洲| 男女午夜视频在线观看| 热99re8久久精品国产| 精品少妇一区二区三区视频日本电影| 亚洲av第一区精品v没综合| 日日爽夜夜爽网站| 中文字幕人妻丝袜一区二区| 国产高清videossex| 亚洲美女黄片视频| 非洲黑人性xxxx精品又粗又长| 亚洲成人免费电影在线观看| 久久人妻福利社区极品人妻图片| 亚洲欧美精品综合久久99| 亚洲九九香蕉| 黄片大片在线免费观看| 国产精品电影一区二区三区| 国产一区二区三区视频了| 欧美黄色片欧美黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人操中国人逼视频| 精品久久久久久,| 欧美日韩亚洲综合一区二区三区_| 好男人在线观看高清免费视频 | 51午夜福利影视在线观看| 99久久综合精品五月天人人| 一二三四在线观看免费中文在| 久久中文看片网| 69精品国产乱码久久久| 男男h啪啪无遮挡| 无遮挡黄片免费观看| 叶爱在线成人免费视频播放| 美女扒开内裤让男人捅视频| 亚洲三区欧美一区| АⅤ资源中文在线天堂| 99在线视频只有这里精品首页| 欧美乱码精品一区二区三区| 美女午夜性视频免费| 18美女黄网站色大片免费观看| 日日干狠狠操夜夜爽| 99在线人妻在线中文字幕| 亚洲人成电影免费在线| 啦啦啦韩国在线观看视频| 亚洲中文字幕一区二区三区有码在线看 | 91九色精品人成在线观看| 国产一区在线观看成人免费| av超薄肉色丝袜交足视频| 欧美一级a爱片免费观看看 | 精品欧美一区二区三区在线| 在线观看免费视频日本深夜| 国产欧美日韩精品亚洲av| 老司机午夜十八禁免费视频| 亚洲最大成人中文| 亚洲激情在线av| 精品欧美一区二区三区在线| 日韩成人在线观看一区二区三区| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 99在线视频只有这里精品首页| 女同久久另类99精品国产91| 亚洲精华国产精华精| www日本在线高清视频| 国产精品av久久久久免费| 黄色毛片三级朝国网站| 国产精品九九99| 91老司机精品| 十八禁网站免费在线| 久久人妻av系列| 丰满的人妻完整版| 国产高清videossex| 男女下面进入的视频免费午夜 | 国产激情久久老熟女| 午夜影院日韩av| 免费在线观看亚洲国产| 国产男靠女视频免费网站| 三级毛片av免费| 日本免费一区二区三区高清不卡 | 国产三级在线视频| 操美女的视频在线观看| 久久久久亚洲av毛片大全| 精品熟女少妇八av免费久了| ponron亚洲| 欧美乱妇无乱码| 亚洲欧美激情在线| 嫁个100分男人电影在线观看| 在线观看66精品国产| 亚洲一码二码三码区别大吗| 国产精品国产高清国产av| а√天堂www在线а√下载| 精品卡一卡二卡四卡免费| 色综合婷婷激情| 亚洲激情在线av| 国产av一区在线观看免费| av在线播放免费不卡| 久久久国产成人精品二区| 男女午夜视频在线观看| 国产97色在线日韩免费| 人人妻,人人澡人人爽秒播| 操出白浆在线播放| 嫩草影视91久久| 一级作爱视频免费观看| 好男人电影高清在线观看| 69精品国产乱码久久久| 亚洲专区中文字幕在线| 性少妇av在线| 色在线成人网| 欧美一级毛片孕妇| av在线播放免费不卡| 一卡2卡三卡四卡精品乱码亚洲| 美女大奶头视频| 成年女人毛片免费观看观看9| 91成人精品电影| 国产熟女午夜一区二区三区| 国产高清视频在线播放一区| 国产麻豆成人av免费视频| 老熟妇仑乱视频hdxx| 后天国语完整版免费观看| 身体一侧抽搐| 亚洲人成电影免费在线| 国产精品影院久久| 十分钟在线观看高清视频www| 99国产极品粉嫩在线观看| 人人妻人人澡人人看| 日韩精品青青久久久久久| 黄色片一级片一级黄色片| 久久人人97超碰香蕉20202| 国产欧美日韩综合在线一区二区| 又黄又爽又免费观看的视频| 欧美日本中文国产一区发布| 欧美人与性动交α欧美精品济南到| 成人手机av| 脱女人内裤的视频| 无遮挡黄片免费观看| 久久天躁狠狠躁夜夜2o2o| 91精品国产国语对白视频| 亚洲视频免费观看视频| 日本vs欧美在线观看视频| 精品不卡国产一区二区三区| 淫秽高清视频在线观看| 国产成人啪精品午夜网站| 久久久久亚洲av毛片大全| 18禁裸乳无遮挡免费网站照片 | 亚洲一卡2卡3卡4卡5卡精品中文| 精品福利观看| 色综合站精品国产| 级片在线观看| 男女做爰动态图高潮gif福利片 | 一级a爱片免费观看的视频| 欧美一级毛片孕妇| 日韩欧美一区视频在线观看| 九色国产91popny在线| 人人妻人人爽人人添夜夜欢视频| 亚洲 欧美一区二区三区| 亚洲精品国产精品久久久不卡| 国产成人精品久久二区二区免费| 在线观看免费视频网站a站| 欧美成人免费av一区二区三区| 99re在线观看精品视频| 久久久久精品国产欧美久久久| 精品人妻在线不人妻| 中文字幕最新亚洲高清| 91精品三级在线观看| 黄色毛片三级朝国网站| 黄色视频,在线免费观看| 熟妇人妻久久中文字幕3abv| 日韩av在线大香蕉| 亚洲电影在线观看av| 久久九九热精品免费| 欧美一区二区精品小视频在线| 69精品国产乱码久久久| 人人妻人人澡欧美一区二区 | 日韩欧美三级三区| 亚洲av电影不卡..在线观看| 国产精品久久久久久亚洲av鲁大| 老熟妇仑乱视频hdxx| 香蕉丝袜av| 亚洲精品国产色婷婷电影| 人人妻,人人澡人人爽秒播| 精品熟女少妇八av免费久了| 在线十欧美十亚洲十日本专区| 久久久精品欧美日韩精品| 国产精品一区二区在线不卡| 色在线成人网| 国产av又大| 国语自产精品视频在线第100页| 丝袜美腿诱惑在线| 亚洲色图综合在线观看| 国产免费av片在线观看野外av| 亚洲一区高清亚洲精品| 麻豆久久精品国产亚洲av| 国产精品 国内视频| 国产精品乱码一区二三区的特点 | 欧美中文日本在线观看视频| 一进一出抽搐gif免费好疼| 一区二区三区精品91| 一边摸一边抽搐一进一出视频| 国产精品自产拍在线观看55亚洲| 窝窝影院91人妻| 欧美激情 高清一区二区三区| 午夜成年电影在线免费观看| 亚洲欧美日韩无卡精品| 欧美色欧美亚洲另类二区 | 亚洲最大成人中文| 国产午夜精品久久久久久| 高潮久久久久久久久久久不卡| 黄色女人牲交| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子伦精品免费另类| 亚洲一卡2卡3卡4卡5卡精品中文| 夜夜看夜夜爽夜夜摸| 麻豆av在线久日| 亚洲熟女毛片儿| 国产成人影院久久av| 精品国产亚洲在线| 欧美成人一区二区免费高清观看 | 久久久久亚洲av毛片大全| 后天国语完整版免费观看| 欧美日韩精品网址| 制服丝袜大香蕉在线| 午夜日韩欧美国产| 国产精品一区二区三区四区久久 | 国产av又大| 久久精品91蜜桃| 在线观看午夜福利视频| 变态另类成人亚洲欧美熟女 | 久久精品亚洲熟妇少妇任你| 黄色视频,在线免费观看| 9191精品国产免费久久| 久久香蕉国产精品| 中文字幕久久专区| 老汉色av国产亚洲站长工具| 久久午夜综合久久蜜桃| 一进一出好大好爽视频| 亚洲男人的天堂狠狠| 亚洲欧美日韩无卡精品| 国产精品久久电影中文字幕| 亚洲精品美女久久久久99蜜臀| 咕卡用的链子| 亚洲国产欧美一区二区综合| 日本免费一区二区三区高清不卡 | 国产欧美日韩一区二区三| 99精品在免费线老司机午夜| 欧美成人性av电影在线观看| 精品国产超薄肉色丝袜足j| 久久久精品国产亚洲av高清涩受| 亚洲片人在线观看| 精品国内亚洲2022精品成人| 亚洲精品中文字幕一二三四区| 欧美成人午夜精品| 两人在一起打扑克的视频| 一进一出好大好爽视频| 热re99久久国产66热| 久久精品国产清高在天天线| 黄色毛片三级朝国网站| 国产精品久久久久久人妻精品电影| 亚洲国产欧美日韩在线播放| 欧美黄色淫秽网站| 深夜精品福利| 亚洲自偷自拍图片 自拍| 91国产中文字幕| 女人高潮潮喷娇喘18禁视频| 国产av一区在线观看免费| 亚洲成av片中文字幕在线观看| 国产成人精品久久二区二区免费| av网站免费在线观看视频| 免费在线观看影片大全网站| 成人三级做爰电影| 长腿黑丝高跟| 成人国产综合亚洲| 麻豆国产av国片精品| 成人三级黄色视频| 精品久久久久久久久久免费视频| 国产精品自产拍在线观看55亚洲| 欧美成人午夜精品| 日本vs欧美在线观看视频| 亚洲激情在线av| 咕卡用的链子| a在线观看视频网站| 日韩欧美国产一区二区入口| 日本三级黄在线观看| 亚洲中文av在线| 手机成人av网站| 国产av又大| 美女午夜性视频免费| 高潮久久久久久久久久久不卡| 亚洲欧美一区二区三区黑人| 12—13女人毛片做爰片一| 婷婷丁香在线五月| 19禁男女啪啪无遮挡网站| 岛国在线观看网站| 国产精品美女特级片免费视频播放器 | 久久九九热精品免费| 久久人人精品亚洲av| 人人澡人人妻人| 狠狠狠狠99中文字幕| 国产视频一区二区在线看| 极品人妻少妇av视频| 精品国产一区二区三区四区第35| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美一区视频在线观看| 首页视频小说图片口味搜索| 亚洲第一电影网av| 国产精品久久久久久精品电影 | 精品国产乱子伦一区二区三区| 琪琪午夜伦伦电影理论片6080| 午夜福利影视在线免费观看| 国产成人精品无人区| 中文字幕精品免费在线观看视频| 国内毛片毛片毛片毛片毛片| 成年版毛片免费区| 午夜精品在线福利| 国产一级毛片七仙女欲春2 | 亚洲色图 男人天堂 中文字幕| 色哟哟哟哟哟哟| 午夜精品久久久久久毛片777| 纯流量卡能插随身wifi吗| 国产熟女午夜一区二区三区| 黄色 视频免费看| 欧美日韩福利视频一区二区| 免费看a级黄色片| 欧美一级毛片孕妇| 亚洲视频免费观看视频| 高潮久久久久久久久久久不卡| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲在线自拍视频| 亚洲中文av在线| 中文字幕精品免费在线观看视频| 亚洲av第一区精品v没综合| av免费在线观看网站| 一区二区三区精品91| 每晚都被弄得嗷嗷叫到高潮| 18禁黄网站禁片午夜丰满| 亚洲美女黄片视频| 欧美最黄视频在线播放免费| 久久天躁狠狠躁夜夜2o2o| 国产男靠女视频免费网站| 怎么达到女性高潮| 亚洲黑人精品在线| 最好的美女福利视频网| 怎么达到女性高潮| 一个人观看的视频www高清免费观看 | 国产午夜精品久久久久久| 国产精品98久久久久久宅男小说|