• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      機(jī)械壓實(shí)對(duì)復(fù)墾土壤粒徑分布多重分形特征的影響

      2017-11-13 01:58:52閔祥宇李新舉李奇超
      關(guān)鍵詞:分形碾壓粒徑

      閔祥宇,李新舉,李奇超

      ?

      機(jī)械壓實(shí)對(duì)復(fù)墾土壤粒徑分布多重分形特征的影響

      閔祥宇,李新舉※,李奇超

      (山東農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,土肥資源高效利用國(guó)家工程實(shí)驗(yàn)室,泰安 271018)

      在高潛水位礦區(qū)復(fù)墾施工現(xiàn)場(chǎng),運(yùn)用多重分形理論研究不同碾壓次數(shù)下復(fù)墾土壤粒徑分布特征,以闡明機(jī)械壓實(shí)對(duì)復(fù)墾土壤粒徑分布非均勻性和異質(zhì)性的影響。結(jié)果表明:機(jī)械碾壓在46.8%~99.9%程度上解釋0~20 和20~40 cm土層土壤粒徑分布特征的變化,隨著碾壓次數(shù)增加,復(fù)墾土壤顆粒呈細(xì)?;厔?shì),容量維(0)隨之減小,表征粒徑分布范圍減??;奇異譜對(duì)稱性Δ隨之增加,表征粒徑分布不對(duì)稱性增加;信息維(1)、信息維/容量維(1)/(0)、關(guān)聯(lián)維(2)和奇異譜譜寬Δ隨之波動(dòng)變化,表征粒徑分布集中程度、局部密集程度和均勻性波動(dòng)變化。研究發(fā)現(xiàn)(1)和(1)/(0),(2)和Δ相關(guān)系數(shù)分別0.767(<0.01)和?0.488(<0.05),在表征復(fù)墾土壤粒徑分布集中程度和均勻性上具有相似作用,多重分形參數(shù)可多角度描述機(jī)械碾壓過程中土壤粒徑分布的細(xì)微差別,其中(0)、Δ和Δ能夠靈敏反映復(fù)墾土壤緊實(shí)度變化,這為深入研究復(fù)墾土壤壓實(shí)問題提供一種精確分析方法。

      土地復(fù)墾;土壤;粒徑;機(jī)械壓實(shí);多重分形

      0 引 言

      煤炭是中國(guó)主要能源,在未來一段時(shí)間內(nèi),煤炭作為中國(guó)主體能源的地位不會(huì)改變[1]。煤炭開采為中國(guó)經(jīng)濟(jì)發(fā)展做出貢獻(xiàn),同時(shí)造成了大量土地的損毀,隨著中國(guó)經(jīng)濟(jì)新常態(tài)發(fā)展,地方政府和礦山企業(yè)也開始逐漸重視損毀土地修復(fù),培育出多種符合生態(tài)文明建設(shè)的復(fù)墾模式。而在高潛水位礦區(qū),采煤沉陷土地往往塌陷較深,形成永久性積水,因此除了生態(tài)修復(fù)外,恢復(fù)土地多采用充填復(fù)墾的方式。但充填復(fù)墾往往工程量較大,涉及到多種機(jī)械的使用,機(jī)械碾壓造成的土壤壓實(shí)會(huì)影響復(fù)墾土壤生產(chǎn)力[2-4],因此復(fù)墾土壤機(jī)械碾壓?jiǎn)栴}是一項(xiàng)重要研究?jī)?nèi)容。

      土壤粒徑分布是土壤最基本的物理性質(zhì)之一,影響土壤肥力、質(zhì)地、持水能力等性質(zhì)[5],與復(fù)墾土壤質(zhì)量關(guān)系緊密,因此研究機(jī)械碾壓下復(fù)墾土壤粒徑分布特征能夠衡量機(jī)械碾壓對(duì)復(fù)墾土壤質(zhì)量的影響。目前國(guó)內(nèi)相關(guān)學(xué)者將土壤粒徑分布特征應(yīng)用在復(fù)墾土壤質(zhì)量的研究上,孫紀(jì)杰等[6]研究發(fā)現(xiàn)通過施加蘑菇料可有效恢復(fù)復(fù)墾土壤粒徑分布特征;郭凌俐等[7]利用地統(tǒng)計(jì)方法研究黃土區(qū)復(fù)墾土壤不同深度土壤粒徑分布的空間分布特征,發(fā)現(xiàn)復(fù)墾粉粒含量最多,黏粒含量最少,且土壤粒徑分布具有空間的自相關(guān)性;黃曉娜等[8]研究發(fā)現(xiàn)載重不同施工機(jī)械在不同的碾壓次數(shù)下會(huì)對(duì)土壤顆粒組成造成不同的影響。

      然而土壤顆粒分布存在異質(zhì)特征和不均勻性,單一運(yùn)用質(zhì)地分類方法不足以完整表征土壤粒徑分布特征[9-10],需要一種新方法對(duì)土壤粒徑分布特征進(jìn)行定量描述,因此分形理論應(yīng)運(yùn)而生。分形理論在土壤粒徑分布上的應(yīng)用最早由Tyler等[11]提出,并先后由Grout等[12]和Pieri等[13]將分形理論由單重分形發(fā)展到多重分形以更好地描述土壤粒徑分布的異質(zhì)特征,并逐漸被國(guó)內(nèi)外學(xué)者采納,管孝艷等[14]和白一茹等[15]研究發(fā)現(xiàn)土壤粒徑分布多重分形參數(shù)與土壤質(zhì)地間存在較好相關(guān)關(guān)系;孫哲等[16]研究發(fā)現(xiàn)退化土壤粒徑分布多重分形特征發(fā)生變化,且與有機(jī)質(zhì)含量關(guān)系密切;Rodríguez-Lado等[17]研究發(fā)現(xiàn)成土母質(zhì)、氣候條件和土地利用方式等土壤形成因素與土壤多重分形參數(shù)存在相關(guān)關(guān)系;Miranda等[18]研究發(fā)現(xiàn)高度風(fēng)化土壤粒徑分布多重分形特征發(fā)生變化;Paz-Ferreiro等[19]研究發(fā)現(xiàn)不同耕作模式下土壤徑分布多重分形特征存在差異。

      綜上分析,土壤粒徑分布普遍存在多重分形特征,多重分析理論可較好表征土壤粒徑分布的不均勻性,但多重分形理論并未應(yīng)用在高潛水位礦區(qū)復(fù)墾土壤粒徑分布的表征上。機(jī)械碾壓造成復(fù)墾土壤微結(jié)構(gòu)發(fā)生變化[20],應(yīng)用多重分形理論表征機(jī)械碾壓下復(fù)墾土壤粒徑分布特征,可以在土壤顆粒分布的均勻性和局部異質(zhì)性層次上精確研究機(jī)械碾壓對(duì)土壤粒徑分布的影響,從而深入探索機(jī)械對(duì)復(fù)墾土壤的壓實(shí)過程。

      1 材料與方法

      1.1 研究區(qū)概況

      研究區(qū)位于山東省濟(jì)寧市南陽(yáng)湖農(nóng)場(chǎng)二號(hào)井礦區(qū)采煤塌陷地復(fù)墾項(xiàng)目區(qū)內(nèi)(35°20′10.61″N,116°37′32.69″E),南接微山湖,西靠京杭大運(yùn)河,北連濟(jì)寧市區(qū),東臨濟(jì)東大煤田,年平均氣溫13.5 ℃,四季分明,氣候溫和,陽(yáng)光充足,降雨量充沛。

      研究區(qū)復(fù)墾前土地明顯下沉呈濱湖洼地,該復(fù)墾項(xiàng)目采用耕層表土剝離及回覆,客土充填的方式進(jìn)行復(fù)墾,表土剝離厚度40 cm,充填客土來源項(xiàng)目區(qū)東西部土壤,復(fù)墾土壤土體結(jié)構(gòu)見圖1。研究區(qū)內(nèi)共包括31個(gè)復(fù)墾田塊,每個(gè)田塊大致為100 m×100 m正方形。充填客土進(jìn)行逐層水平填筑,并用TD80B型推土機(jī)或HW-60型蛙式打夯機(jī)進(jìn)行壓實(shí)至設(shè)計(jì)標(biāo)高,再回覆表土用TD80B型推土機(jī)推土至表面平整,機(jī)械載質(zhì)量7.18 t。

      圖1 復(fù)墾土體結(jié)構(gòu)示意圖

      1.2 樣品采集和處理

      表土回覆后,現(xiàn)場(chǎng)觀測(cè)發(fā)現(xiàn)機(jī)械整平需要8次以上重復(fù)碾壓,因此設(shè)計(jì)機(jī)械碾壓次數(shù)梯度為0,1,3,5,7,9次可較好描述表土回覆后受機(jī)械碾壓影響的全過程,并根據(jù)復(fù)墾土壤層次劃分土壤采樣深度0~20,20~40和40~60 cm,其中0~20和20~40 cm為回覆表土層,40~60 cm為填充層。為避免不同田塊間土壤差異,選擇在同一復(fù)墾田塊進(jìn)行取樣研究,每次碾壓后相隔20~25 m梅花狀布置采樣點(diǎn)(圖2),共13個(gè)采樣點(diǎn),通過土鉆收集不同深度復(fù)墾土樣。

      圖2 采樣點(diǎn)分布示意圖

      表土(0~40 cm)碾壓前為砂質(zhì)壤土,容重為1.321 g/cm3,體積含水率為22.9%,每碾壓1次土壤緊實(shí)度增加約50 kPa,碾壓從0次至9次各土層土壤緊實(shí)度不斷增加(圖3)。

      圖3 復(fù)墾土壤緊實(shí)度分布

      研究中土壤緊實(shí)度采用美國(guó)Spectrum公司生產(chǎn)的SC900型土壤硬度計(jì)直接測(cè)定,分辨率為35 kPa;

      土壤粒徑分布采用美國(guó)Beckman Coulter公司生產(chǎn)的LS13320型激光粒度分析儀測(cè)量,測(cè)度范圍0.02~2 000m,測(cè)量前將土鉆收集的各采樣點(diǎn)土樣充分混勻后四分法取樣,自然風(fēng)干后過2 mm篩,分別用質(zhì)量分?jǐn)?shù)30%的H2O2和質(zhì)量分?jǐn)?shù)10%的HCl煮沸以除去土壤中有機(jī)質(zhì)和碳酸鹽,后加入去離子水震蕩?kù)o置除去上清液直至土壤溶液呈中性,再以六偏磷酸鈉為分散劑上機(jī)測(cè)量[14-16,21],每個(gè)土樣進(jìn)行3次重復(fù)。

      碾壓前表土土壤通過環(huán)刀取樣,實(shí)驗(yàn)室內(nèi)烘箱(105 ℃)烘干至衡質(zhì)量,電子天平(0.01 g)稱量土樣烘干前后的質(zhì)量計(jì)算土壤容重和體積含水量[22-23],計(jì)算公式為:

      容重=干土質(zhì)量/環(huán)刀體積 (1)

      體積含水率=(濕土質(zhì)量-干土質(zhì)量)/環(huán)刀體積 (2)

      1.3 土壤粒徑分布多重分形計(jì)算

      式中φ為土壤顆粒粒徑,m;1=0.02m,為土壤顆粒最小粒徑;φ為對(duì)土壤顆粒粒徑對(duì)數(shù)變化后的無量綱值。對(duì)數(shù)變化后,無量綱區(qū)間將有100個(gè)等距離子區(qū)間。

      用多重分形理論對(duì)土壤粒徑分布進(jìn)行描述,可理解為用尺度均為的“盒子”對(duì)粒徑分布的跨度進(jìn)行覆蓋,覆蓋完成所需“盒子”數(shù)為。在量綱區(qū)間中,將有()=2個(gè)尺度大小相同的“盒子”,“盒子”尺度即小區(qū)間大小=5×2-k,為使最小的子區(qū)間中含有測(cè)量值,文中令=1,2,3,4,5,6,從而無量綱區(qū)間被2,4,8,16,32和64等分,對(duì)應(yīng)的子區(qū)間大小分別為2.5,1.25,0.625,0.312、0.156和0.078。

      土壤粒徑分布多重分形廣義維數(shù)()的計(jì)算公式為

      土壤粒徑分布多重分形奇異性指數(shù)()的計(jì)算公式為

      土壤粒徑分布多重分形譜函數(shù)(())的計(jì)算公式為

      在?10≤≤10范圍內(nèi),以1為步長(zhǎng)利用最小二乘法擬合公式(2)~(5)計(jì)算出復(fù)墾土壤PSD多重分形廣義維數(shù)譜()、多重分形奇異性指數(shù)()和多重分形函數(shù)譜(())[25-26]。

      研究通過Excel2003和SPSS17.0對(duì)土壤粒徑分布及多重分形參數(shù)()、()和(())進(jìn)行相關(guān)性和差異性檢驗(yàn)以及方差和效應(yīng)分析。

      2 結(jié)果與分析

      2.1 復(fù)墾土壤粒徑分布特征

      通過國(guó)際制土壤粒徑分級(jí)標(biāo)準(zhǔn)(黏粒(0~0.002 mm),粉粒(0.002~0.02 mm),砂粒(0.02~2 mm))[27]進(jìn)行土樣粒級(jí)分類(表1),與未碾壓的表土相比,機(jī)械碾壓后表層(0~20 cm)和心層(20~40 cm)土壤黏粒體積分?jǐn)?shù)顯著偏高(<0.05),砂粒體積分?jǐn)?shù)顯著偏低(<0.05)。隨碾壓次數(shù)的增加,黏粒體積分?jǐn)?shù)升高,砂粒體積分?jǐn)?shù)降低,表明復(fù)墾施工造成土壤顆粒細(xì)化,施工機(jī)械將大粒徑的砂粒碾壓成小粒徑的黏粒。底層(40~60 cm)土壤為客土填充層,碾壓前后土壤顆粒均以黏粒體積分?jǐn)?shù)偏高,且隨碾壓次數(shù)的增加各粒域顆粒累計(jì)體積分?jǐn)?shù)差異不顯著(>0.05),表明施工機(jī)械碾壓對(duì)填充層的影響較小,該現(xiàn)象一方面由于表土回覆前充填客土已經(jīng)受到施工機(jī)械的反復(fù)碾壓,使填充層具有支撐性;另一方面由于表土對(duì)機(jī)械碾壓具有一定的緩沖作用,因此底層(40~60 cm)土壤黏粒體積分?jǐn)?shù)偏高,且各粒域顆粒累計(jì)體積分?jǐn)?shù)差異不顯著(>0.05)。

      表1 不同碾壓次數(shù)下土壤黏粒、粉粒、砂粒體積分?jǐn)?shù)

      注:進(jìn)行LSD檢驗(yàn),同一列不同字母代表差異顯著(<0.05),下同。

      Note: LSDtest, the different letters in the same column mean a significant difference (<0.05), the same below.

      在機(jī)械碾壓過程中,表層(0~20 cm)土壤最先受到影響,因此以表層土壤為例,在未碾壓時(shí),土壤顆粒在砂粒域(0.02~2 mm)出現(xiàn)峰值,且隨碾壓次數(shù)的增加,土壤粒徑分布中的峰值區(qū)逐漸從砂粒域向黏粒域轉(zhuǎn)移。

      2.2 復(fù)墾土壤粒徑分布多重分形特征

      2.2.1 廣義維數(shù)譜-()

      相關(guān)研究表明:均勻分布的土壤粒徑分布廣義維數(shù)譜-()呈直線分布,()為常量,而非均勻分布的土壤粒徑分布廣義維數(shù)譜-()為曲線,具有上下限和彎曲度,曲線愈陡,()值域越寬,不同奇異強(qiáng)度分形結(jié)構(gòu)分布范圍愈大,土壤粒徑分布分形結(jié)構(gòu)的非均勻性愈明顯[14-16]。研究土樣廣義維數(shù)譜-()曲線呈現(xiàn)()值隨值遞增而遞減的“S”型減函數(shù)(圖5),相比與未碾壓土壤,機(jī)械碾壓后表土粒徑分布廣義維數(shù)譜曲線更陡,且隨碾壓次數(shù)的增加,廣義維數(shù)譜曲線陡峭程度先升高后降低,表層(0~20 cm)土壤在碾壓3次時(shí)土壤粒徑分布廣義維數(shù)譜曲線最陡;心層(20~40 cm)土壤在碾壓7次時(shí)土壤粒徑分布廣義維數(shù)譜曲線最陡;底層(40~60 cm)土壤各碾壓次數(shù)下廣義維數(shù)譜曲線曲度波動(dòng)性較大,其曲線曲度與表土覆蓋前客土所受到機(jī)械碾壓的影響程度有關(guān)。

      當(dāng)<0時(shí),土壤粒徑分布稀疏區(qū)域信息被放大;當(dāng)>0時(shí),土壤粒徑分布密集區(qū)域信息被放大[14]。通過觀察圖5,研究土樣粒徑分布在<0時(shí)()的遞減程度大于>0時(shí)()的遞減程度,表明復(fù)墾土壤稀疏區(qū)分布的土壤顆粒受到機(jī)械碾壓的影響更為敏感。

      圖4 不同碾壓次數(shù)下表層土壤顆粒體積分?jǐn)?shù)分布

      圖5 復(fù)墾土樣廣義維數(shù)譜q-D(q)曲線

      研究表明,令=0,1,2時(shí)土壤粒徑分布具有(0)≥(1)≥(2)規(guī)律,當(dāng)三者相等時(shí),土壤粒徑表現(xiàn)出相似性的單重分形特征;三者不等時(shí),土壤粒徑表現(xiàn)出各異性的多重分布特征[16]。

      表2為研究土樣粒徑分布廣義維數(shù)譜參數(shù),其中(0)為容量維,代表土壤粒徑分布范圍,(0)越大土壤粒徑范圍分布越寬;(1)為信息維,反映土壤粒徑分布的集中程度,(1)越大土壤粒徑分布越集中;(2)為關(guān)聯(lián)維,表示土壤粒徑測(cè)量間隔的均勻性,(2)越大土壤粒徑測(cè)量間隔越均勻。研究土樣廣義維數(shù)譜參數(shù)均(0)>(1)>(2),表明研究土樣粒徑分布具有各異性。

      隨碾壓次數(shù)的增加,表層(0~20 cm)和心層(20~40 cm)土壤(0)均逐漸減小,土壤粒徑分布范圍變小,底層(40~60 cm)土壤(0)逐漸增加,壤土粒徑分布范圍變大。隨碾壓次數(shù)的增加,表層(0~20 cm)和心層(20~40 cm)土壤(1)和(2)相對(duì)波動(dòng)性較大,碾壓過程出現(xiàn)峰值和谷值,表明土壤粒徑分布在“集中—分散”和“均勻—不均勻”之間變化。底層(40~60 cm)土壤(1)和(2)差異不顯著(>0.05)。

      另外,(1)/(0)表示土壤粒徑分布的離散程度,(1)/(0)接近于1表明土壤顆粒多分布在密集區(qū);(1)/(0)接近于0表明土壤顆粒多分布在稀疏區(qū)[16]。研究土樣(1)/(0)在0.946~0.982之間,接近于1,表明研究土樣土壤顆粒主要分布在密集區(qū)域。其中表層(0~20 cm)和心層(20~40 cm)土壤(1)/(0)變化波動(dòng)性大,有峰值和谷值出現(xiàn),表明土壤粒徑分布離散程度在“局部密集-局部離散”之間變化,表層(0~20 cm)和心層(20~40 cm)土壤均在3次碾壓時(shí)土壤粒徑局部分布最為離散。底層(40~60 cm)土壤(1)/(0)差異不顯著(>0.05)。

      2.2.2 奇異譜函數(shù)-()

      多重分形奇異譜函數(shù)可將土壤粒徑分布的復(fù)雜程度和不規(guī)則程度定量化表述。研究表明,粒徑分布均勻的土壤多重分形奇異譜函數(shù)-()為常量[12-13,16],研究土樣土壤粒徑分布奇異譜函數(shù)-()均為上凸?fàn)钋€(圖6),有譜長(zhǎng)和譜寬,且不同碾壓次數(shù)下譜長(zhǎng)和譜寬存在差異,表明研究土壤具有非勻質(zhì)特征,且不同碾壓次數(shù)使土壤經(jīng)歷的局部疊加程度不同,不規(guī)則程度出現(xiàn)差異。

      表2 各土層深度不同碾壓梯度土壤廣義維數(shù)譜參數(shù)

      圖6 復(fù)墾土樣奇異譜α-f(α)曲線

      表3為研究土壤粒徑分布奇異譜參數(shù),其中Δmax?min,為多重分形奇異譜譜寬,描述了土壤顆粒在分形結(jié)構(gòu)上的局部特征,Δ越大土壤粒徑分布越不均勻[16]。碾壓過程中表層(0~20 cm)和心層(20~40 cm)土壤Δ有峰值的出現(xiàn),在碾壓3次和7次時(shí)達(dá)到最大值,分別為1.512和1.301,此時(shí)表層(0~20 cm)和心層(20~40 cm)土壤粒徑分布最不均勻。

      Δ=(min)?(max),反映多重分形奇異譜的不對(duì)稱性,當(dāng)Δ<0時(shí),土壤粒徑分布小概率子集占主要地位,奇異譜函數(shù)呈右鉤狀上凸曲線;Δ>0時(shí),土壤粒徑分布大概率子集占主要地位,奇異譜函數(shù)呈左鉤狀上凸曲線[14]。表3顯示研究土樣Δ均為正數(shù),表明研究土壤里粒徑分布以大概率子集占主要地位,隨碾壓次數(shù)的增大,表層(0~20 cm)和心層(20~40 cm)Δ有增加趨勢(shì),表明碾壓增加表層(0~20 cm)和心層(20~40 cm)土壤粒徑分布的不對(duì)稱性,增大土壤顆粒在大概率子集上的分布密度。底層(40~60 cm)土壤Δ和Δ差異不顯著。

      表3 各土層深度不同碾壓梯度土壤奇異譜參數(shù)

      2.2.3 土壤粒徑分布參數(shù)統(tǒng)計(jì)性檢驗(yàn)

      復(fù)墾土壤表土層和填充層因土源和碾壓的不同,在土壤粒徑分布上和多重分形參數(shù)上存在差異,尤其在土壤粒徑分布的均勻性和對(duì)稱性上差異明顯。經(jīng)表土(0~20 cm表層和20~40 cm心層)土壤粒徑分布參數(shù)主體間效應(yīng)檢驗(yàn)發(fā)現(xiàn)(表4),不同碾壓次數(shù)之間表土各粒域土壤顆粒體積分?jǐn)?shù)、多重分形廣義維數(shù)譜參數(shù)和奇異譜參數(shù)差異極顯著(<0.01),但不同表土深度之間除Δ差異顯著(<0.05)外,其余各參數(shù)差異均不顯著,表明復(fù)墾過程中碾壓次數(shù)是影響表土土壤粒徑分布的主要變異來源,對(duì)表土土壤粒徑分布相關(guān)參數(shù)變異的貢獻(xiàn)率從46.8%到99.9%,且機(jī)械碾壓對(duì)整個(gè)表土層均產(chǎn)生影響,除表層(0~20 cm)和心層(0~20 cm)間Δ存在顯著差異(<0.01),其余各參數(shù)間差異不顯著。

      表4 表土土壤粒徑分布參數(shù)效應(yīng)分析

      注:**表示差異極顯著(<0.01);*表示差異顯著(<0.05).下同。

      Note:** means very significant difference (<0.01); * means significant difference (<0.05).The same below.

      2.3 復(fù)墾土壤緊實(shí)度與粒徑分布多重分形參數(shù)的關(guān)系

      復(fù)墾土壤緊實(shí)度與(0)、Δ和Δ有較好的相關(guān)性,相關(guān)系數(shù)分別為?0.840、0.755和0.782(<0.01);與(1)、(2)和(1)/(0)無顯著相關(guān)關(guān)系(圖7)。緊實(shí)度增加會(huì)顯著降低土壤粒徑分布范圍,增加粒徑分布的不均勻性和不對(duì)稱性,但不會(huì)明顯影響到土壤粒徑分布的集中和離散程度,以及測(cè)度間隔的均勻性。

      圖7 復(fù)墾土壤緊實(shí)度與多重分形參數(shù)的關(guān)系

      3 討 論

      復(fù)墾土壤粒徑分布具有多重分形特征,(0)、(1)、(2)、(1)/(0)、Δ和Δ均可以從不同角度描述復(fù)墾土壤異質(zhì)特征[28],相關(guān)研究表明,一些參數(shù)在描述土壤異質(zhì)性時(shí)表現(xiàn)出相同的作用[14-16,28],通過參數(shù)間相關(guān)性檢驗(yàn)(表5)發(fā)現(xiàn)(1)和(1)/(0)均可以表征土壤粒徑分布的集中程度,兩者相關(guān)系數(shù)為0.767(<0.01);(2)和Δ均可以表征土壤粒徑分布的均勻性,兩者相關(guān)系數(shù)為?0.488(<0.05)。因此可通過(0)表征機(jī)械碾壓下復(fù)墾土壤粒徑分布范圍,(1)和(1)/(0)表征機(jī)械碾壓下復(fù)墾土壤粒徑分布集中程度,(2)和Δ表征機(jī)械碾壓下復(fù)墾土壤粒徑分布均勻性,Δ表征機(jī)械碾壓下復(fù)墾土壤粒徑分布對(duì)稱性。

      表5 多重分形參數(shù)間相關(guān)性分析

      黃曉娜等[8]模擬機(jī)械碾壓對(duì)復(fù)墾土壤顆粒的影響發(fā)現(xiàn)機(jī)械碾壓使土復(fù)墾壤砂粒體積分?jǐn)?shù)減少,粉粒含量升高。本研究發(fā)現(xiàn)機(jī)械碾壓使土壤顆粒從砂粒域向黏粒域轉(zhuǎn)移,并借助多重分形理論研究土壤粒徑分布變化引起的其異質(zhì)特征差異。研究表明,機(jī)械碾壓對(duì)表層(0~20 cm)和心層(20~40 cm)土壤粒徑分布影響明顯,機(jī)械碾壓使粗制土壤顆粒分布區(qū)間數(shù)量的減少,細(xì)制土壤顆粒分布區(qū)間數(shù)量增加,但整體粗制土壤顆粒分布區(qū)間數(shù)量減少明顯(圖4),因此隨碾壓次數(shù)的增加,土壤粒徑分布范圍減小,不對(duì)稱性增加。機(jī)械碾壓過程土壤粒徑分布集中程度和均勻性呈現(xiàn)波動(dòng)性的變化,整體表現(xiàn)為“(局部)集中—(局部)離散—(局部)再集中”和“均勻—不均勻—再均勻”,這可從機(jī)械碾壓后土壤顆粒分布和轉(zhuǎn)移的角度上解釋,一方面,碾壓前期土壤微團(tuán)粒結(jié)構(gòu)較好,土壤顆粒聚積在0.02~0.2 mm區(qū)間內(nèi),此時(shí)土壤顆粒分布集中,在3次和7次碾壓時(shí),表層(0~20 cm)和心層(20~40 cm)土壤顆粒在0.02~0.2 mm區(qū)間內(nèi)的累積減少,向<0.002 mm區(qū)間轉(zhuǎn)移,此時(shí)土壤顆粒分布分散,繼續(xù)碾壓,土壤顆粒不斷向<0.002 mm區(qū)間聚積,此時(shí)土壤顆粒再集中;另一方面,小概率密度區(qū)間的存在會(huì)使整個(gè)粒徑分布的不均勻性增加,在機(jī)械碾壓使土壤顆粒細(xì)化的過程中小概率密度區(qū)間會(huì)在砂粒域或黏粒域產(chǎn)生,但小概率密度區(qū)間也會(huì)隨著土壤顆粒的轉(zhuǎn)移或聚積而消失,因此碾壓過程中土壤顆粒分布的均勻性較為波動(dòng),在3次和7次碾壓時(shí),表層(0~20 cm)和心層(20~40 cm)土壤粒徑分布最不均勻,表明此時(shí)存在小概率密度區(qū)間,繼續(xù)碾壓隨著小概率密度區(qū)間消失土壤粒徑分布的均勻性回升。底層(40~60 cm)土壤粒徑分布異質(zhì)特征受機(jī)械碾壓的影響較小,隨碾壓次數(shù)的增加,除粒徑分布的范圍增加外,對(duì)稱性、集中程度和均勻性變化均不明顯,而其粒徑分布的范圍增加主要是由于表土細(xì)小顆粒沉降到底層引起的。

      土壤粒徑變化可準(zhǔn)確衡量土壤環(huán)境的變化,相關(guān)研究表明,土壤粒徑分布與土壤有機(jī)質(zhì)含量、土壤水鹽、土壤有機(jī)碳、土壤微生物量等關(guān)系緊密[5,29-30],而多重分形理論在研究土壤粒徑分布方面具有較高的靈敏性和精準(zhǔn)度,可從不同方面衡量土壤粒徑分布特征,針對(duì)復(fù)墾土壤機(jī)械壓實(shí)過程,借助該方法可以定量多角度的揭示機(jī)械碾壓對(duì)不同土層土壤粒徑分布的影響,并發(fā)現(xiàn)(0)、Δ和Δ可靈敏反映土壤緊實(shí)度的變化,相關(guān)系數(shù)分別為?0.840、?0.755和0.782(<0.01),這對(duì)定量研究復(fù)墾土壤壓實(shí)過程有重要意義。

      4 結(jié) 論

      1)復(fù)墾過程機(jī)械碾壓使表土土壤顆粒細(xì)化,隨碾壓次數(shù)的增加,表層(0~20 cm)和心層(20~40 cm)土壤黏粒體積分?jǐn)?shù)顯著升高(<0.05),砂粒體積分?jǐn)?shù)顯著降低(<0.05),土壤粒徑分布中的峰值區(qū)逐漸從砂粒域向黏粒域轉(zhuǎn)移,底層(40~60 cm)土壤黏粒、粉粒和砂粒體積分?jǐn)?shù)差異不顯著(>0.05)。

      2)復(fù)墾土壤粒徑分布具有多重分形特征,且土壤顆粒多分布在密集區(qū),以大概率子集占主要地位。機(jī)械碾壓使復(fù)墾土壤顆粒經(jīng)歷不同程度局部疊加,對(duì)稀疏區(qū)分布的土壤顆粒影響更大,且機(jī)械碾壓對(duì)表層(0~20 cm)和心層(20~40 cm)土壤粒徑分布異質(zhì)特征影響明顯,貢獻(xiàn)率為46.8%~99.9%,但對(duì)底層(40~60 cm)土壤粒徑分布的異質(zhì)特征影響不明顯(>0.05)。

      3)機(jī)械碾壓使表層(0~20 cm)和心層(20~40 cm)土壤容量維逐漸減小,對(duì)稱度有增加趨勢(shì),表現(xiàn)為粒徑分布范圍變小,不對(duì)稱性增加,土壤顆粒往大概率子集聚積;碾壓過程中土壤信息維、關(guān)聯(lián)維和譜寬出現(xiàn)峰值和谷值,機(jī)械碾壓使粒徑分布在“集中—分散”和“均勻—不均勻”之間變化;隨碾壓次數(shù)的增加,信息維/容量維出現(xiàn)波動(dòng)性變化,表層(0~20 cm)和心層(20~40 cm)土壤粒徑分布均在3次碾壓時(shí)最為局部離散。

      4)信息維和信息維/容量維,關(guān)聯(lián)維和譜寬存在相關(guān)性,相關(guān)系數(shù)分別為0.767(<0.01)和?0.488(<0.05),可通過容量維表征機(jī)械碾壓下復(fù)墾土壤粒徑分布范圍,信息維和信息維/容量維表征機(jī)械碾壓下復(fù)墾土壤粒徑分布集中程度,關(guān)聯(lián)維和譜寬表征機(jī)械碾壓下復(fù)墾土壤粒徑分布均勻性,對(duì)稱度表征機(jī)械碾壓下復(fù)墾土壤粒徑分布對(duì)稱性;容量維、譜寬和對(duì)稱度可反映復(fù)墾土壤緊實(shí)度變化,相關(guān)系數(shù)為?0.840、?0.755和0.782(<0.01),緊實(shí)度增加會(huì)顯著降低土壤粒徑分布范圍,增加粒徑分布的不均勻性和不對(duì)稱性。

      [1] 付梅臣,郭衛(wèi)斌,李建民,等. 我國(guó)煤礦區(qū)低碳型土地復(fù)墾現(xiàn)狀與展望[J]. 中國(guó)礦業(yè),2015(5):49-52.

      Fu Meichen, Guo Weibin, Li Jianmin, et al. Low-carbon land reclamation in China’s coal mining areas: Current situation and prospects[J]. China Mining Magazine, 2015(5): 49-52. (in Chinese with English abstract)

      [2] 劉寧,李新舉,郭斌,等. 機(jī)械壓實(shí)過程中復(fù)墾土壤緊實(shí)度影響因素的模擬分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):183-190.

      Liu Ning, Li Xinju, Guo Bin, et al. Simulation analysis on influencing factors of reclamation soil compaction in mechanical compaction process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 183-190. (in Chinese with English abstract)

      [3] 劉濤,王金滿,秦倩,等. 礦區(qū)機(jī)械壓實(shí)對(duì)土壤孔隙特性影響的研究進(jìn)展[J]. 土壤通報(bào),2016,47(1):233-238.

      Liu Tao, Wang Jinman, Qin Qian, et al. Advance in the study on the effect of mechanical compaction on soil pore characteristics in mining area[J]. Chinese Journal of Soil Science, 2016, 47(1): 233-238. (in Chinese with English abstract)

      [4] 王金滿,郭凌俐,白中科,等. 基于CT分析露天煤礦復(fù)墾年限對(duì)土壤有效孔隙數(shù)量和孔隙度的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):229-236.

      Wang Jinman, Guo Lingli, Bai Zhongke, et al. Effects of land reclamation time on soil pore number and porosity based on computed tomography (CT) images in opencast coal mine dump[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(12): 229-236. (in Chinese with English abstract)

      [5] 呂圣橋,高鵬,耿廣坡,等. 黃河三角洲灘地土壤顆粒分形特征及其與土壤有機(jī)質(zhì)的關(guān)系[J]. 水土保持學(xué)報(bào),2011,25(6):134-138. Lü Shengqiao, Gao Peng, Geng Guangpo, et al. Characteristics of soil particles and their correlation with soil organic matter in lowlands of the Yellow River delta[J]. Journal of Soil and Water Conservation, 2011, 25(6): 134-138. (in Chinese with English abstract)

      [6] 孫紀(jì)杰,李新舉,李海燕,等. 蘑菇廢料施用對(duì)煤礦區(qū)復(fù)墾土壤顆粒組成的影響[J]. 煤炭學(xué)報(bào),2013,38(3):487-492.

      Sun Jijie, Li Xinju, Li Haiyan, et al. Effects of using mushroom material on reclamation soil particle composition in coal mineral area[J]. Journal of China Coal Society, 2013, 38(3): 487-492. (in Chinese with English abstract)

      [7] 郭凌俐,王金滿,白中科,等. 黃土區(qū)露天煤礦排土場(chǎng)復(fù)墾初期土壤顆粒組成空間變異分析[J]. 中國(guó)礦業(yè),2015,24(2):52-59.

      Guo Lingli, Wang Jinman, Bai Zhongke, et al. Analysis of spatial variability of soil granules in early stage of reclamation at opencast coal mine dump in loess area[J]. China Mining Magazine, 2015, 24(2): 52-59. (in Chinese with English abstract)

      [8] 黃曉娜,李新舉,劉寧,等. 不同施工機(jī)械對(duì)煤礦區(qū)復(fù)墾土壤顆粒組成的影響[J]. 水土保持學(xué)報(bào),2014,28(1):136-140.

      Huang Xiaona, Li Xinju, Liu Ning, et al. Effect of different construction machineries on particle composition of reclaimed soil in coal area[J]. Journal of Soil and Water Conservation, 2014, 28(1): 136-140. (in Chinese with English abstract)

      [9] 孫梅,孫楠,黃運(yùn)湘,等. 長(zhǎng)期不同施肥紅壤粒徑分布的多重分形特征[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(11):2173-2181.

      Sun Mei, Sun Nan, Huang Yunxiang, et al. Multifractal Characterization of soil particle size distribution under long-term different fertilizations in upland red soil[J]. Scientia Agricultura Sinica, 2014, 47(11): 2173-2181. (in Chinese with English abstract)

      [10] 王德,傅伯杰,陳利頂,等. 不同土地利用類型下土壤粒徑分形分析:以黃土丘陵溝壑區(qū)為例[J]. 生態(tài)學(xué)報(bào),2007,27(7):3081-3089.

      Wang De, Fu Bojie, Chen Liding, et al. Fractal analysis on soil particle size distributions under different land-use types: A case study in the loess hilly areas of the Loess Plateau, China[J]. Acta Ecologica Sinica, 2007, 27(7): 3081-3089. (in Chinese with English abstract)

      [11] Tyler S W, Wheatcraft S W. Fractal scaling of soil particle size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.

      [12] Grout H, Tarquis A M, Wiesner M R. Multifractal analysis of particle size distributions in Soil[J]. Environmental Science & Technology, 1998, 32(32):1176-1182.

      [13] Pieri L, Bittelli M, Pisa P R. Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils[J]. Geoderma, 2006, 135(3): 118-132.

      [14] 管孝艷,楊培嶺,呂燁. 基于多重分形的土壤粒徑分布與土壤物理特性關(guān)系[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(3):44-50. Guan Xiaoyan, Yang Peiling, Lü Ye. Relationships between soil particle size distribution and soil physical properties based on multifractal[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(3): 44-50. (in Chinese with English abstract)

      [15] 白一茹,汪有科. 黃土丘陵區(qū)土壤粒徑分布單重分形和多重分形特征[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(5):43-48.

      Bai Yiru, Wang Youke. Monofractal and multifractal analysis on soil particle distribution in hilly and gully areas of the loess plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5): 43-48. (in Chinese with English abstract)

      [16] 孫哲,王一博,劉國(guó)華,等. 基于多重分形理論的多年凍土區(qū)高寒草甸退化過程中土壤粒徑分析[J]. 冰川凍土,2015,37(4):980-990.

      Sun Zhe, Wang Yibo, Liu Guohua, et al. Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory[J]. Journal of Glaciology and Geocryology 2015, 37(4): 980-990. (in Chinese with English abstract)

      [17] Rodríguez-Lado L, Lado M. Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia (NW Spain)[J]. Geoderma, 2016.

      [18] Miranda J G V, Montero E, Alves M C, et al. Multifractal characterization of saprolite particle-size distributions after topsoil removal[J]. Geoderma, 2006, 134(3): 373-385.

      [19] Paz-Ferreiro J, Vázquez E V, Miranda J G V. Assessing soil particle-size distribution on experimental plots with similar texture under different management systems using multifractal parameters[J]. Geoderma, 2010, 160(1): 47-56.

      [20] 張興義,隋躍宇. 農(nóng)田土壤機(jī)械壓實(shí)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(6):122-125.

      Zhang Xingyi, Sui Yueyu. International research trends of soil compaction induced by moving machine during field operations[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(6): 122-125. (in Chinese with English abstract)

      [21] 管孝艷,楊培嶺,任樹梅,等. 基于多重分形理論的壤土粒徑分布非均勻性分析[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2009,17(2):196-205.

      Guan Xiaoyan, Yang Peiling, Ren Shumei, et al. Heterogeneity analysis of particle size distribution for loamy soil based on multifractal theory[J]. Journal of Basic Science and Engineering, 2009, 17(2): 196-205. (in Chinese with English abstract)

      [22] 黃毅,鄒洪濤,虞娜,等. 新型土壤容重取樣器的研制與應(yīng)用[J]. 水土保持通報(bào),2010,30(2):190-191. Huang Yi, Zou Hongtao, Yu Na, et al. Manufacture and implication of new soil bulk sampler[J]. Bulletin of Soil and Water Conservation, 2010, 30(2): 190-191. (in Chinese with English abstract)

      [23] 張學(xué)禮,胡振琪,初士立. 土壤含水量測(cè)定方法研究進(jìn)展[J]. 土壤通報(bào),2005,36(1):118-121.

      Zhang Xueli, Hu Zhenqi, Chu Shili. Methods for measuring soil water content: a review[J]. Chinese Journal of Soil Science, 2005, 36(1): 118-121. (in Chinese with English abstract)

      [24] Evertsz C J G, Mandelbrot B B. Multifractal Measures [M]. New York: Springler-Verlag, 1992: 922-953.

      [25] 茹豪,張建軍,李玉婷,等. 黃土高原土壤粒徑分形特征及其對(duì)土壤侵蝕的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(4):176-182.

      Ru Hao, Zhang Jianjun, Li Yuting, et al. Fractal features ofsoil particle size distributions and its effect on soil erosion of loess plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 176-182. (in Chinese with English abstract)

      [26] 劉繼龍,馬孝義,付強(qiáng),等. 不同土層土壤特性空間變異性關(guān)系的聯(lián)合多重分形研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(5):37-42.

      Liu Jilong, Ma Xiaoyi, Fu Qiang, et al. Joint multifractal of relationship between spatial variability of soil properties in different soil layers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5): 37-42. (in Chinese with English abstract)

      [27] 高廣磊,丁國(guó)棟,趙媛媛,等. 四種粒徑分級(jí)制度對(duì)土壤體積分形維數(shù)測(cè)定的影響[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2014(6):1060-1068.

      Gao Guanglei, Ding Guodong, Zhao Yuanyuan, et al. Effects of soil particle size classification system on calculating volume-based fractal dimension[J]. Journal of Basic Science and Engineering, 2014(6): 1060-1068. (in Chinese with English abstract)

      [28] 王金滿,張萌,白中科,等. 黃土區(qū)露天煤礦排土場(chǎng)重構(gòu)土壤顆粒組成的多重分形特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(4):230-238.

      Wang Jinman, Zhang Meng, Bai Zhongke, et al. Multi-fractal characteristics of reconstructed soil particle in opencast coal mine dump in loess area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 230-238. (in Chinese with English abstract)

      [29] 張俊華,李國(guó)棟,南忠仁. 黑河中游典型土地利用方式下土壤粒徑分布及與有機(jī)碳的關(guān)系[J]. 生態(tài)學(xué)報(bào),2012,32(12):3745-3753.

      Zhang Junhua, Li Guodong, Nan Zhongren. Soil particle size distribution and its relationship with soil organic carbons under different land uses in the middle of Heihe river[J]. Acta Ecologica Sinica, 2012, 32(12): 3745-3753. (in Chinese with English abstract)

      [30] 胡玉福,彭佳佳,鄧良基,等. 圍欄種植紅柳對(duì)川西北高寒沙地土壤顆粒組成和礦質(zhì)養(yǎng)分的影響[J]. 土壤通報(bào),2015,46(1):54-61.

      Hu Yufu, Peng Jiajia, Deng Liangji, et al. Influences of fencing and planting branchy tamarisk on soil particles composition and mineral nutrients in desertization land in northwestern Sichuan province[J]. Chinese Journal of Soil Science, 2015, 46(1): 54-61. (in Chinese with English abstract)

      Influence of mechanical compaction on reclaimed soil particle size distribution multifractal characteristics

      Min Xiangyu, Li Xinju※, Li Qichao

      (,, 271018,)

      Reclaimed soil particle size distribution (PSD) is different from the normal soil, one main reason is that the soil are compacted by machineries in the process of reclamation, and PSD is closely related to the ability to protect water and fertilizer of soil , so the changing mechanism of PSD caused by the large machinery for reclamation construction is a noteworthy matter. In this research, we established a study area on a filling reclamation site in mining area with high ground-water table in order to study the effects of mechanical compaction to reclaimed soil PSD. Aimed to have a better description of the whole reclamation process, we set up different number of compaction times (0, 1, 3, 5, 7, 9), and divided the reclaimed soil into three layers based on its construction, two backfilling surface soil layers (0-20, 20-40 cm) and one packing soil layer (40-60 cm). Before compacted by the machinery, the surface soil (0-40 cm) was sandy loam, soil density was 1.321 g/cm3, soil volumetric water content was 22.9% at available water content, and 50 kPa was added for each compaction. The reclamation site was divided into 31 plots, and we collecting 13 soil samples on the same plot in order to avoid the variation of soil characteristics. In this research, we used the LS13320 laser particle size analyzer test soil PSD after using hydrogen peroxide and hydrochloric acid to remove organic matter and carbonate from soil respectively, and adopted multifractal method that could describe the heterogeneity of the soil to quantify the reclaimed soil PSD characteristics. The results showed that: mechanical compaction evidently affected soil PSD of topsoil (0-20 cm) and subsoil (20-40 cm), the size of soil particles were refined with the increasing of compaction times, and the peak of soil particle distributions moved from clay range to sandy randy. Reclaimed soil PSD had a multifractal feature, the generalized dimension spectra-()curve was a “S” decreasing function and soil particles were distributed in concentrated areas. The singular spectra-()was a convex curve with left hook and the large probability subset of soil particles was a dominant position. Under the compaction of machinery, reclaimed soil particles encountered the varying local stacking degrees, especially those distributed in sparse areas. Machinery compaction significantly affected the PSD heterogeneous characteristics of topsoil (0-20 cm) and subsoil (20-40 cm), with the increasing of compaction times. Volume dimension(0) decreased, representing the range of PSD was reduced, singularity spectra symmetry degree Δincreased, representing the symmetry of PSD was added, and information dimension(1). Information dimension/volume dimension(1)/(0), correlation dimension(2) and singularity spectra width Δhad fluctuating change, representing the concentration, uniformity and local intensive degree of PSD had fluctuating change. The research found that(1) and(1)/(0),(2) and Δhad similar actions on representing the concentration and uniformity of PSD respectively, and the correlation coefficients were 0.767(<0.01) and ?0.488(<0.05), multifractal parameters could be used to describe the subtle changes of PSD in the process of mechanical compaction, and reclaimed soil compactness had very significant correlations with(0), Δand Δ, with the correlation coefficients of ?0.840, ?0.755 and 0.782(<0.01), respectively, showing that the greater compactness reduced the range of PSD, and added its non-uniformity and symmetry,and(0), Δand Δwere sensitive to the change of reclaimed soil compactness. This provided an accurate analysis method for further research on mechanical compaction of reclaimed soil.

      land reclamation; soils; particle size; mechanical compaction; multifractal dimension

      10.11975/j.issn.1002-6819.2017.20.034

      S153

      A

      1002-6819(2017)-20-0274-10

      2017-05-06

      2017-10-10

      國(guó)家自然科學(xué)基金資助項(xiàng)目(批準(zhǔn)號(hào):41171425)

      閔祥宇,博士生。主要從事土地復(fù)墾,土壤水肥研究。Email:1991mxy@sina.com

      ※通信作者:李新舉,教授,博士生導(dǎo)師。主要研究方向:土地整理、土地復(fù)墾。Email:lxj0911@126.com

      閔祥宇,李新舉,李奇超. 機(jī)械壓實(shí)對(duì)復(fù)墾土壤粒徑分布多重分形特征的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):274-283. doi:10.11975/j.issn.1002-6819.2017.20.034 http://www.tcsae.org

      Min Xiangyu, Li Xinju, Li Qichao. Influence of mechanical compaction on reclaimed soil particle size distribution multifractal characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 274-283. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.20.034 http://www.tcsae.org

      猜你喜歡
      分形碾壓粒徑
      二線碾壓一線的時(shí)代來了 捷尼賽思G80
      車主之友(2022年4期)2022-08-27 00:56:24
      木屑粒徑對(duì)黑木耳栽培的影響試驗(yàn)*
      感受分形
      被命運(yùn)碾壓過,才懂時(shí)間的慈悲
      文苑(2020年8期)2020-09-09 09:30:20
      分形之美
      碾轉(zhuǎn)
      分形空間上廣義凸函數(shù)的新Simpson型不等式及應(yīng)用
      基于近場(chǎng)散射的顆粒粒徑分布測(cè)量
      歡迎訂閱《碾壓式土石壩設(shè)計(jì)》
      Oslo結(jié)晶器晶體粒徑分布特征的CFD模擬
      吉林省| 手游| 菏泽市| 忻城县| 余庆县| 曲靖市| 邢台市| 南华县| 屏边| 延安市| 即墨市| 泸水县| 阳西县| 弋阳县| 依兰县| 松阳县| 大宁县| 阿城市| 丹阳市| 迭部县| 昭平县| 徐汇区| 湖北省| 神农架林区| 寿宁县| 府谷县| 镇原县| 永定县| 扎鲁特旗| 措勤县| 翁牛特旗| 永兴县| 怀化市| 临汾市| 湟中县| 叶城县| 建平县| 桓台县| 伊宁市| 合阳县| 庐江县|