• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      移動(dòng)式防洪系統(tǒng)力學(xué)性能及滲漏特性試驗(yàn)研究

      2017-11-13 03:21:41陳守開(kāi)李慧敏王遠(yuǎn)明丁澤霖汪倫焰
      關(guān)鍵詞:移動(dòng)式預(yù)埋件基座

      陳守開(kāi),李慧敏,王遠(yuǎn)明,郭 磊,丁澤霖,汪倫焰,孫 飚

      ?

      移動(dòng)式防洪系統(tǒng)力學(xué)性能及滲漏特性試驗(yàn)研究

      陳守開(kāi)1,2,李慧敏1,2※,王遠(yuǎn)明3,郭 磊1,2,丁澤霖1,2,汪倫焰1,2,孫 飚3

      (1. 華北水利水電大學(xué)水利學(xué)院,鄭州450045;2. 河南省水環(huán)境治理與生態(tài)修復(fù)院士工作站,鄭州 450002;3. 黑龍江省三江工程建設(shè)管理局,哈爾濱 150081)

      移動(dòng)式防洪系統(tǒng)是一種具備高安全性的標(biāo)準(zhǔn)化防洪方法,但在中國(guó)的城市防洪系統(tǒng)應(yīng)用還不多,對(duì)其技術(shù)性能的研究不足是制約因素之一。該文依托某市的移動(dòng)式防洪墻工程,設(shè)計(jì)移動(dòng)式防洪墻綜合試驗(yàn)基地,蓄水試驗(yàn)以及立柱加卸載試驗(yàn),研究了移動(dòng)式防洪系統(tǒng)的預(yù)埋件安裝方法、受力性能和滲漏特性。結(jié)果表明,預(yù)埋件的直接安裝法與預(yù)留槽孔法均能滿(mǎn)足施工工藝和正常運(yùn)行要求,但前者優(yōu)于后者;蓄水后,移動(dòng)式防洪墻存在滲漏現(xiàn)象,其與水位呈現(xiàn)指數(shù)的變化規(guī)律,當(dāng)水位超過(guò)1.5 m時(shí)滲漏量會(huì)快速增大,達(dá)到1.7 m時(shí)滲漏量可達(dá)300 L/h;立柱加卸載(0~100 kN)過(guò)程中,首先會(huì)引起混凝土塑性變形,進(jìn)而導(dǎo)致立柱產(chǎn)生殘余位移,其受力過(guò)程表明立柱、預(yù)埋件與基座混凝土體系的破壞過(guò)程應(yīng)是由預(yù)埋件兩側(cè)混凝土逐漸向迎水面發(fā)展。

      應(yīng)力;應(yīng)變;力學(xué)性能;移動(dòng)式防洪系統(tǒng);預(yù)埋件安裝;滲漏特性;位移

      0 引 言

      城市人口密集,財(cái)富集中,是一個(gè)國(guó)家或地區(qū)的經(jīng)濟(jì)、科技、文化或政治中心。中國(guó)濱水城市發(fā)展迅速,濱水建筑、園林都已具有相當(dāng)規(guī)模,己發(fā)展成為城市靚麗的風(fēng)景線,是市民和游客休閑、觀光的圣地。但是難免要經(jīng)受洪水的考驗(yàn)與威脅,城市已成為流域防洪的重點(diǎn)[1]。中國(guó)許多城市防洪標(biāo)準(zhǔn)偏低,與城市發(fā)展很不相符。據(jù)初步統(tǒng)計(jì),有防洪任務(wù)的城市639座,其中仍有80%的城市防洪標(biāo)準(zhǔn)不足50 a一遇;有近60%的城市不足20 a一遇[2],城市防洪任務(wù)形式十分嚴(yán)峻[3-5]?,F(xiàn)代化的城市建設(shè),要從城市生態(tài)環(huán)境的要求和城市可持續(xù)發(fā)展的高度出發(fā),進(jìn)行全面規(guī)劃。良好的城市防洪工程體系是現(xiàn)代化城市可持續(xù)發(fā)展的基本保障[6],良好的水環(huán)境和河流景觀又是現(xiàn)代化城市的重要標(biāo)志[7-8]。這就要求防洪工程建設(shè)既要符合城市建設(shè)要求,又要滿(mǎn)足水面和岸上雙向風(fēng)景觀賞要求,同時(shí)還要滿(mǎn)足市民和游客的親水性要求。傳統(tǒng)填土筑堤加高擴(kuò)建和修建鋼筋混凝土防洪墻提高防洪標(biāo)準(zhǔn)的建設(shè)方式,勢(shì)必破壞現(xiàn)有景觀、多占用有限而珍貴的城市土地,更重要的是難以協(xié)調(diào)防洪安全與城市建設(shè)要求、水面和岸上雙向風(fēng)景觀賞要求、親水性要求的矛盾[9]。

      如何在不影響城市濱水景觀的情況下提高城市的防洪標(biāo)準(zhǔn),可移動(dòng)式、可拆卸式的防洪系統(tǒng)恰好滿(mǎn)足這一需求[10]。國(guó)內(nèi)外學(xué)者設(shè)計(jì)并應(yīng)用了多種形式的移動(dòng)式防洪墻,包括:側(cè)翻拍門(mén)式[11]、升降式[12]、充水橡膠袋[12]、充水編織袋[13]、裝配式鋼閘板[1]、裝配式玻璃鋼[14]、拼裝式鋼筋混凝土[15]、懸掛式鋼閘板[16]、翻轉(zhuǎn)式鋼結(jié)構(gòu)[17]和裝卸式鋼結(jié)構(gòu)防汛墻[18],并進(jìn)行了受力性能試驗(yàn)[19-21]、有限元仿真分析[20]和動(dòng)力性能分析[22-23],英國(guó)環(huán)境署頒布了移動(dòng)式防洪墻設(shè)計(jì)和生產(chǎn)標(biāo)準(zhǔn)[24],并出版了使用指南[25]。

      移動(dòng)式防洪墻在歐美許多國(guó)家已經(jīng)得到了成功應(yīng)用[26],如1984年德國(guó)科隆市第一次安裝了移動(dòng)防洪擋板用于抵御河道洪水;奧地利在2002年因遭遇持續(xù)暴雨天氣并引發(fā)多瑙河百年不遇的特大洪水導(dǎo)致大面積受災(zāi)后,也引進(jìn)了該種防洪設(shè)備,其格萊恩市于2013年6月成功抵御了該地區(qū)最大降雨量記錄的考驗(yàn)。近年,移動(dòng)式防洪系統(tǒng)在中國(guó)的黑龍江、浙江等省份的重要防洪城市中也有嘗試,但尚無(wú)成功防汛御洪的經(jīng)歷。移動(dòng)式防洪墻可設(shè)置于江河堤壩上、大型港口碼頭、鐵路隧道口、高速公路涵洞口、人防洞口、城市大型社區(qū)等處,以抵御洪澇災(zāi)害。相比傳統(tǒng)的沙袋阻擋洪水,移動(dòng)式防洪墻具有勞動(dòng)強(qiáng)度低、工作效率高、滲漏量小以及不易沖垮等優(yōu)點(diǎn)[27],在不破壞城市景觀的情況下,提高了城市防洪標(biāo)準(zhǔn),有效抵御洪水災(zāi)害[28]。移動(dòng)防洪墻系統(tǒng)通常由立柱(邊柱)、擋板、止水、螺栓、壓緊裝置、預(yù)埋件等構(gòu)部件組成[29-30],其工作原理為,在預(yù)設(shè)防洪的位置事先建成埋置有預(yù)埋件的鋼筋混凝土基座,洪水來(lái)臨前,在預(yù)埋件上安裝立柱、在立柱間安裝擋板及止水條形成封閉墻體抵擋洪水,洪水來(lái)臨時(shí),水通過(guò)擋板與立柱接觸部位進(jìn)入中空的擋板增加防洪墻自重提高穩(wěn)定性,洪水退去后逆序拆除各部件并按標(biāo)記有序存于倉(cāng)庫(kù)保管。這種組合式的防洪系統(tǒng)通常關(guān)注2個(gè)問(wèn)題,一是移動(dòng)式防洪系統(tǒng)受力安全性問(wèn)題,二是抵御洪水時(shí)防洪墻系統(tǒng)的滲漏特性,但目前尚缺乏系統(tǒng)的研究。針對(duì)這2個(gè)問(wèn)題,本文依托某市的移動(dòng)式防洪墻工程,通過(guò)蓄水試驗(yàn)和立柱加載試驗(yàn),研究移動(dòng)式防洪系統(tǒng)的滲漏特征、立柱及預(yù)埋件基礎(chǔ)的受力狀況,以期為移動(dòng)式防洪墻在國(guó)內(nèi)的應(yīng)用與推廣提供參考。

      1 移動(dòng)式防洪墻試驗(yàn)方案

      1.1 產(chǎn)品來(lái)源

      本文所采用的移動(dòng)式防洪墻來(lái)自德國(guó)IBS公司,該產(chǎn)品已在德國(guó)、奧地利、英國(guó)及中國(guó)等均得到了應(yīng)用,安裝效果如圖1a所示,主要構(gòu)件形式如圖1b所示。該系統(tǒng)單跨跨度3.0 m,最大擋水高度1.8 m。該系統(tǒng)立柱及擋板采用鋁合金(拉伸強(qiáng)度200 MPa、屈服強(qiáng)度165 MPa),壓力固定裝置及預(yù)埋件使用不銹鋼(屈服強(qiáng)度190 MPa、抗拉強(qiáng)度500 MPa),其構(gòu)件的型號(hào)、材料如表1所示。

      表1 移動(dòng)式防洪墻主要構(gòu)件型號(hào)及材質(zhì)

      圖1 移動(dòng)式防洪墻系統(tǒng)及其主要構(gòu)件

      1.2 試驗(yàn)設(shè)計(jì)

      為了研究移動(dòng)式防洪墻的受力安全性和滲漏特性,設(shè)計(jì)蓄水試驗(yàn)和立柱加載試驗(yàn)。蓄水試驗(yàn)用于研究正常蓄水至1.8 m時(shí)防洪墻的滲漏特性與基座受力情況,設(shè)計(jì)了3跨防洪墻(圖2),包含2個(gè)端柱、2個(gè)中柱及其預(yù)埋件、3跨擋板(共27塊擋板);立柱加載試驗(yàn),主要研究加載范圍從0到100 kN時(shí),立柱-預(yù)埋件-鋼筋混凝土基座體系的受力特征,包含1座單獨(dú)澆筑的獨(dú)立基礎(chǔ),1臺(tái)液壓自動(dòng)加載裝置、1個(gè)中柱及其預(yù)埋件。

      圖2 蓄水試驗(yàn)平面布置

      試驗(yàn)采用的監(jiān)測(cè)儀器包括鋼筋計(jì)、應(yīng)變計(jì)、位移計(jì)及應(yīng)變片,本次試驗(yàn)所采用的監(jiān)測(cè)儀器由基康公司生產(chǎn),其中鋼筋計(jì)為BGK4911振弦式鋼筋計(jì),應(yīng)變計(jì)為BGK4200埋入式應(yīng)變計(jì),應(yīng)變片為BX120-3CA電阻應(yīng)變計(jì),位移計(jì)為L(zhǎng)EC150-10-04-C-5d,量測(cè)采用BGK408型振弦式讀數(shù)儀。

      其中鋼筋計(jì)、應(yīng)變計(jì)安裝在鋼筋混凝土基座中,分別測(cè)量預(yù)埋件周?chē)匿摻顟?yīng)力和混凝土應(yīng)變;位移計(jì)、應(yīng)變片用于立柱加載試驗(yàn),分別測(cè)量立柱的整體位移和表面應(yīng)變。鋼筋計(jì)和應(yīng)變計(jì)的布設(shè)、安裝及量測(cè)參照《建筑工程施工過(guò)程結(jié)構(gòu)分析與監(jiān)測(cè)技術(shù)規(guī)范》(JGJ/T302-2013)[31]執(zhí)行,布置位置如圖3所示。

      a. 側(cè)視圖

      a. Side view

      b. 正視圖

      b. Front view

      注:R1~R5為鋼筋計(jì)編號(hào),S1~S3為應(yīng)變計(jì)編號(hào)。下同。“312@150”指布置3根直徑12 mm、間距150 mm的鋼筋,余同。

      Note: R1-R5 are steel bar meter number, S1-S3 are strain gauge number.The same as below. 312@150 refers to three steel bars with diameter 12 mm and spacing 150 mm, the same as others.

      圖3 預(yù)埋件周?chē)摻罴颁摻钣?jì)、應(yīng)變計(jì)布置示意圖

      Fig.3 Layout of reinforcing steel bar and steel bar meter and strain gauge

      1.3 試驗(yàn)方法與程序

      1)中柱預(yù)埋件安裝。中柱預(yù)埋件分別按兩種工藝進(jìn)行安裝,一種為直接安裝法,即鋼筋綁扎后安裝固定預(yù)埋件,再澆筑混凝土后完成;另一種為預(yù)留槽孔法,在基座預(yù)先留設(shè)槽孔,待基座混凝土澆筑后一定齡期,再安裝預(yù)埋件,澆筑二期混凝土后完成。預(yù)埋件安裝控制精度為:軸線方向誤差±5 mm,垂直方向誤差±10 mm,水平角度誤差≤3°,垂直角度誤差0.15%以?xún)?nèi),相鄰預(yù)埋件間距誤差±3 mm,間隔預(yù)埋件間距誤差±5 mm。

      2)蓄水試驗(yàn)(圖4),包括正常蓄水時(shí)預(yù)埋件周?chē)摻罨炷潦芰υ囼?yàn)和防洪墻整體滲漏試驗(yàn)。

      圖4 移動(dòng)式防洪墻及蓄水試驗(yàn)

      鋼筋混凝土受力試驗(yàn)。蓄水前,測(cè)量并記錄鋼筋計(jì)與應(yīng)變計(jì)讀數(shù);蓄水至1.8 m并穩(wěn)定后,再次測(cè)量并記錄鋼筋計(jì)與應(yīng)變計(jì)讀數(shù);計(jì)算得到蓄水前后鋼筋應(yīng)力及混凝土應(yīng)變的變化情況,據(jù)此分析2種預(yù)埋件安裝方法的受力差異。

      滲漏試驗(yàn)。通過(guò)測(cè)讀水位尺,得到滲漏引起的蓄水池水位值,研究防洪墻滲漏變化規(guī)律。本試驗(yàn)從水位1.75 m時(shí)開(kāi)始,前150 h,觀測(cè)頻次為6~12 h;150 h后,觀測(cè)頻次為50~100 h,至400 h止。

      3)加載試驗(yàn)。除基座的鋼筋計(jì)及應(yīng)變計(jì)外,加載試驗(yàn)還需在立柱布置位移計(jì)及應(yīng)變片,布置情況如圖5所示。應(yīng)變片C1、C2布置在立柱側(cè)面,距離基座面1.02 m;位移計(jì)A1、A2、A3布置在立柱背水面,分別距離基座面0.25、1.02和1.57 m;試驗(yàn)采取液壓千斤頂連續(xù)加載的方式,設(shè)定限載100 kN,各測(cè)量設(shè)備分別在0、25、50、75和97 kN時(shí)測(cè)量1次。

      注:A1~A3是位移計(jì)編號(hào);C1~C2是應(yīng)變片編號(hào)。

      2 試驗(yàn)結(jié)果分析

      2.1 正常蓄水時(shí)的受力分析

      蓄水前及蓄水后的實(shí)測(cè)基座鋼筋計(jì)、應(yīng)變計(jì)及其變化值見(jiàn)表2。

      表2 兩種安裝方法鋼筋計(jì)實(shí)測(cè)值和應(yīng)變計(jì)實(shí)測(cè)值

      蓄水后,在水壓力、水重和防洪系統(tǒng)自重作用下,各部位受力均發(fā)生變化。直接安裝法的應(yīng)力情況為:最大拉應(yīng)力出現(xiàn)在R1、R4位置,產(chǎn)生約0.9 MPa的拉應(yīng)力,R3、R5表現(xiàn)為受壓,產(chǎn)生約5.8 MPa的壓應(yīng)力。與直接安裝法相比,預(yù)留槽孔法的R1、R3、R4位置的受力特征一致,但是產(chǎn)生的拉應(yīng)力更大,如R4達(dá)1.39 MPa,R5則表現(xiàn)出相反的受力特征,即產(chǎn)生了0.82 MPa的拉應(yīng)力。同時(shí),2種安裝方法下混凝土的應(yīng)變特征一致,但后者產(chǎn)生的應(yīng)變更大,如S2分別產(chǎn)生了5.45×10-6(直接安裝法)和11.95×10-6(預(yù)留槽孔法)的拉應(yīng)變。分析認(rèn)為,這是由于預(yù)留槽孔法安裝的預(yù)埋件與基座的整體性較差,類(lèi)似預(yù)埋件與槽孔混凝土形成構(gòu)件嵌入基座而成,使其預(yù)埋件周?chē)摻顟?yīng)力、混凝土應(yīng)變均大于直接安裝法。但2種安裝方法,其正常蓄水的實(shí)際受力值變化均不大,遠(yuǎn)未達(dá)到鋼筋屈服強(qiáng)度(335 MPa)和混凝土極限拉伸應(yīng)變(100×10-6),運(yùn)行安全。

      2.2 正常蓄水時(shí)滲漏分析

      實(shí)測(cè)水位與觀測(cè)時(shí)間的關(guān)系如圖6所示。實(shí)測(cè)水位隨時(shí)間變化并不滿(mǎn)足線性相關(guān),通過(guò)Origin的回歸分析得式(1),擬合精度2為0.995??煽闯?,通過(guò)式(1)可對(duì)移動(dòng)式防洪系統(tǒng)這一標(biāo)準(zhǔn)構(gòu)件蓄水后(1.75m以下)的水位變化進(jìn)行有效預(yù)測(cè),便于滲漏量的分析。

      式中H為水位,m;t為時(shí)間,h。其中t=0時(shí),H≈1.75 m。

      目前,移動(dòng)式防洪墻的滲漏規(guī)律在國(guó)內(nèi)外尚缺乏系統(tǒng)研究,其滲漏一般只發(fā)生在接觸位置,即擋板與立柱(邊柱)之間、底部擋板與基礎(chǔ)之間以及擋板與擋板之間。鑒于現(xiàn)有試驗(yàn)條件,各部分滲漏量難以通過(guò)試驗(yàn)分別獲得。若忽略池面水分蒸發(fā)影響,根據(jù)達(dá)西定律,移動(dòng)式防洪墻滲漏量按下式計(jì)算

      式中為滲漏量,L/h;為水池有效蓄水面積,m2,本文試驗(yàn)=30.745m2;為滲流速度,m/h,=d/d。

      將式(1)求導(dǎo)得到滲流速度,代入式(2)計(jì)算得到不同水位下平均滲漏量變化規(guī)律,并與實(shí)測(cè)水位換算后的平均滲漏量進(jìn)行比較見(jiàn)圖7。由圖6和圖7可知,水位超過(guò)1.5 m時(shí),該防洪墻的水位變幅快、滲漏量大,在50 L/h以上,當(dāng)水位超過(guò)1.7 m時(shí)滲漏量可超過(guò)300 L/h。

      圖7 滲漏量隨水位變化規(guī)律

      2.3 立柱加載試驗(yàn)

      由2.1節(jié)可知,在正常靜水壓下,移動(dòng)式防洪墻的基座受力較小,一般不會(huì)引起鋼筋混凝土基座的破壞。但是在防御洪水過(guò)程中,需要考慮動(dòng)水作用或是外物撞擊,此時(shí),立柱-預(yù)埋件-基座體系是保證防洪安全的關(guān)鍵。各監(jiān)測(cè)儀器的加載及卸載過(guò)程變化如圖8所示,圖中正號(hào)表示受拉,負(fù)號(hào)表示受壓。

      注:橫坐標(biāo)正值表示拉力,負(fù)值表示壓力。

      加載時(shí),立柱斜向應(yīng)變C1和C2隨荷載接近線性變化規(guī)律,加載曲線與卸載曲線基本一致,且C1和C2方向相反、數(shù)值相近,50和97 kN荷載下應(yīng)變值分別約680和1 400,說(shuō)明在加卸載過(guò)程中立柱基本處于線彈性階段(圖8a)。由圖8b可知,立柱徑向位移表現(xiàn)為上部大于下部(A3>A2>A1),如加載至97 kN時(shí),A1、A2、A3的位移值分別為1.25、7.83和17.1 mm;立柱徑向位移隨荷載變化呈現(xiàn)非線性變化,卸載后A1、A2和A3實(shí)測(cè)殘余位移分別為0.17、0.36和0.50 mm,該值與位移計(jì)所在高度恰好呈線性關(guān)系,說(shuō)明整個(gè)加卸載過(guò)程中,立柱處于整體變位,因此該殘余位移應(yīng)由預(yù)埋件的鋼筋混凝土基座引起。

      由圖8c可知,加載至25 kN左右,混凝土即由彈性階段進(jìn)入塑性階段,如S1和S2在加載至97 kN時(shí)分別達(dá)到97.34×10-6和?389.47×10-6,此時(shí)S2遠(yuǎn)未達(dá)到混凝土極限壓縮應(yīng)變(2 000×10-6),但S1已經(jīng)接近混凝土極限拉伸應(yīng)變值,卸載后的S1、S2殘余應(yīng)變分別為6.50×10-6和?26.39×10-6。由圖8d可知,加載超過(guò)25 kN時(shí),鋼筋應(yīng)力隨荷載表現(xiàn)出較明顯的非線性變化,且卸載后存在殘余應(yīng)力,其值分別為0.39 MPa(R1)、0.20 MPa(R2)、0.16 MPa(R3)和0.10 MPa(R4),由于試驗(yàn)采用HRB335級(jí)鋼筋,加載后鋼筋應(yīng)力遠(yuǎn)未達(dá)到其屈服條件,因此鋼筋計(jì)顯示的殘余應(yīng)力是混凝土塑性變形引起的。此外,鋼筋計(jì)的應(yīng)力規(guī)律整體表現(xiàn)為R2>R1>R4>R3,如加載至97 kN,R1~R4實(shí)測(cè)最大應(yīng)力值分別為8.50、12.50、2.70、3.63 MPa,說(shuō)明立柱受水平荷載時(shí),預(yù)埋件側(cè)面受力最大,其次是預(yù)埋件迎水面,因此,若發(fā)生破壞,啟裂點(diǎn)應(yīng)是從預(yù)埋件兩側(cè)面逐漸向迎水面發(fā)展。

      3 結(jié) 論

      1)移動(dòng)式防洪墻立柱預(yù)埋件的2種安裝方法中,直接安裝法力學(xué)條件優(yōu)于預(yù)留槽孔法。當(dāng)蓄水至1.8 m時(shí),直接安裝法實(shí)測(cè)最大鋼筋應(yīng)力和混凝土應(yīng)變分別為0.9 MPa和5.45×10-6,小于預(yù)埋槽孔法的1.39 MPa和11.95×10-6。因此,建議工程首選直接安裝法。

      2)通過(guò)三跨移動(dòng)式防洪系統(tǒng)蓄水池的蓄水試驗(yàn),實(shí)測(cè)水位與時(shí)間、滲漏量與水位呈指數(shù)變化關(guān)系,當(dāng)水位高于1.5 m時(shí),滲漏量會(huì)快速增加,超過(guò)50 L/h,說(shuō)明當(dāng)擋水超過(guò)一定高度后,需要重點(diǎn)關(guān)注移動(dòng)式防洪系統(tǒng)的滲漏問(wèn)題。

      3)單立柱加卸載試驗(yàn)(本次限載100 kN)表明,加載至25 kN時(shí),預(yù)埋件周?chē)炷脸霈F(xiàn)塑性變形,荷載達(dá)到97 kN時(shí),接近極限拉伸應(yīng)變,而整個(gè)加、卸載過(guò)程,立柱和鋼筋均處于彈性階段,即實(shí)測(cè)的立柱殘余位移、鋼筋殘余應(yīng)力是由混凝土的塑性變形引起的。加卸載過(guò)程受力分析表明,立柱-預(yù)埋件-基座體系破壞將從預(yù)埋件周?chē)炷灵_(kāi)始,并逐漸向迎水面方向發(fā)展,直至整體破壞。因此,移動(dòng)式防洪系統(tǒng)工程應(yīng)充分重視預(yù)埋件周?chē)炷恋氖┕べ|(zhì)量。

      [1] 劉加海. 裝配式鋼閘板組合防洪墻研究[D]. 成都:四川大學(xué),2005.

      Liu Jiahai. Study on Compound Flood Control Wall of Fabricated Cantilever Sheet[D]. Chengdu: Sichuan University, 2005. (in Chinese with English abstract)

      [2] 辛長(zhǎng)爽,金銳. 我國(guó)城市防洪體系存在的問(wèn)題及解決途徑的探討[J]. 水利學(xué)報(bào),2007(S1):423-427. Xin Changshuang, Jin Rui. Discussing on problem and solving project of city’s flood control system in china [J]. Journal of Hydraulic Engineering, 2007(S1): 423-427. (in Chinese with English abstract)

      [3] 李原園,酈建強(qiáng),石海峰,等. 中國(guó)防洪若干重大問(wèn)題的思考[J]. 水科學(xué)進(jìn)展,2010,21(4):490-495.

      Li Yuanyuan, Li Jianqiang, Shi Haifeng, et al. Strategic thinking on major issues in china flood control[J]. Advances in Water Science, 2010, 21(4): 490-495. (in Chinese with English abstract)

      [4] 張建云,王銀堂,賀瑞敏,等. 中國(guó)城市洪澇問(wèn)題及成因分析[J]. 水科學(xué)進(jìn)展,2016,27(4):485-491.

      Zhang Jianyun, Wang Yintang, He Ruimin, et al. Discussing on the urban flood and waterlogging and causes analysis in China[J]. Advances in Water Science, 2016, 27(4): 485-491. (in Chinese with English abstract)

      [5] 張建云. 城市化與城市水文學(xué)面臨的問(wèn)題[J]. 水利水運(yùn)工程學(xué)報(bào),2012(1):1-4.

      Zhang Jianyun. The vital problems for the urbanization and urban hydrology today[J]. Hydro-Science and Engineering, 2012(1): 1-4. (in Chinese with English abstract)

      [6] 王紹玉,劉佳. 城市洪水災(zāi)害易損性多屬性動(dòng)態(tài)評(píng)價(jià)[J]. 水科學(xué)進(jìn)展,2012,23(3):334-340.

      Wang Shaoyu, Liu Jia. Multi-attribute dynamic evaluation of urban flood disaster vulnerability[J]. Advances in Water Science, 2012, 23(3): 334-340. (in Chinese with English abstract)

      [7] 周堅(jiān). 城市防洪墻景觀設(shè)計(jì)理念和方法的研究[J]. 河海大學(xué)學(xué)報(bào):自然科學(xué)版,1999,27(6):44-47.

      Zhou Jian. Conception and method of landscape design of urban flood-retaining walls[J]. Journal of Hohai University: Natural Sciences, 1999, 27(6): 44-47. (in Chinese with English abstract)

      [8] 王虹,丁留謙,程曉陶,等. 美國(guó)城市雨洪管理水文控制指標(biāo)體系及其借鑒意義[J]. 水利學(xué)報(bào),2015,46(11):1261-1271.

      Wang Hong, Ding Liuqian, Chen Xiaotao, et al. Hydrologic control criteria framework in the united states and its referential significance to china[J]. Journal of Hydraulic Engineering, 2015, 46(11): 1261-1271. (in Chinese with English abstract)

      [9] 樓肖華,周濤. 山地城市濱江路的規(guī)劃建設(shè)和防洪標(biāo)準(zhǔn):以重慶主城為例[J]. 城市問(wèn)題,2009(12):50-55.

      Lou Xiaohua, Zhou Tao. Planning and construction and flood control standard of river-side road in mountain city: A case study of Chongqing city[J]. Urban Problems, 2009(12): 50-55. (in Chinese with English abstract)

      [10] 楊平. 新型防洪墻在城市防洪工程中的應(yīng)用[J]. 上海水務(wù),2015,31(2):61-63,77.

      Yang Ping. Application of new-type flood control wall in urban flood control project[J]. Shanghai Water, 2015, 31(2): 61-63, 77. (in Chinese with English abstract)

      [11] Koppe B, Ode U. Mobile flood protection systems for urban areas[C]//Third Chinese-German Joint Symposium on Coastal and Ocean Engineering National Cheng Kung University, Tainan November, 2006: 8-16.

      [12] Koppe B, Brinkmann B. Development and testing of water-filled tube systems for flood protection measures[C]// International Conference on Textile Composites and Inflatable Structure, Structural Membranes 2011, CIMNE, Barcelona, 2011: 1-11.

      [13] Heinlein K, Wagner R. Mobile flood protection by use of technical textiles[J]. Bautechnik, 2012, 89(7): 471-477.

      [14] 劉文俊. 裝配式玻璃鋼子堤在城區(qū)防洪工程中的應(yīng)用[J]. 中國(guó)農(nóng)村水利水電,2005(11):93-94.

      Liu Wenjun. Application of fabricated glass fiber reinforced plastic embankment in urban flood control engineering[J]. China Rural Water and Hydropower, 2005(11): 93-94. (in Chinese with English abstract)

      [15] 王光,袁曉明,鄭麗華. 拼裝式鋼筋混凝土防汛子堤[J].森林工程,2001,17(2):44-45,47.

      Wang Guang, Yuan Xiaoming, Zheng Lihua. Flood prevention embankment with pieces steel concrete together[J]. Forest Engineering, 2001, 17(2): 44-45, 47. (in Chinese with English abstract)

      [16] 孟祥光,武永新,劉云. 新型懸掛式防洪堤開(kāi)發(fā)研究[J]. 水電能源科學(xué),2015(5):124-126.

      Meng Xiangguang, Wu Yongxin, Liu Yun. Design and development of new hanging flood embankment [J]. Water Resources and Power, 2015(5): 124-126. (in Chinese with English abstract)

      [17] 劉云. 新型翻轉(zhuǎn)式鋼結(jié)構(gòu)子堤技術(shù)研究[D]. 天津:天津大學(xué),2014.

      Liu Yun. Study on the New turnover type steel sub-embankment[D]. Tianjin: Tianjin University, 2014. (in Chinese with English abstract)

      [18] 余新洲,束一鳴,秦明. 裝卸式防汛墻在波浪作用下的變形分析[J]. 水電能源科學(xué),2012,30(2):111-114.

      Yu Xinzhou, Shu Yiming, Qin Ming. Deformation analysis of disassemble flood control wall under wave action[J]. Water Resources and Power, 2012, 30(2): 111-114. (in Chinese with English abstract)

      [19] 倪立建,林萬(wàn)青. 輕型移動(dòng)式防洪墻擋水試驗(yàn)及結(jié)構(gòu)分析[J]. 浙江水利科技,2017,45(3):37-40, 43.

      Ni Lijian, Lin Wanqing. Water retaining test and structure analysis of light movable flood control wall[J]. Zhejiang Hydrotechnics, 2017, 45(3): 37-40, 43. (in Chinese with English abstract)

      [20] 吳軍君,倪立建,陳海云,等. 移動(dòng)式防洪墻擋水試驗(yàn)研究[J]. 水電能源科學(xué),2017,35(3):85-88.

      Wu Junjun, Ni Lijian, Chen Haiyun, et al. Research on water retaining test of movable flood control wall[J]. Water Resources and Power, 2017, 35(3): 85-88. (in Chinese with English abstract)

      [21] Petr Michal, Srb Pavel, ?evík Ladislav, et al. Testing and numerical analysis of mechanical stress mobile flood barriers[C]//55th International Scientific Conference on Experimental Stress Analysis 2017, EAN, 2017: 350-353.

      [22] 劉加海,張洪雨,鄧忠超. 懸臂式鋼閘板在波浪荷載作用下動(dòng)力響應(yīng)分析[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào),2005,37(3):336-338.

      Liu Jiahai, Zhang Hongyu, Deng Zhongchao. Dynamic analysis of the steel cantilever shutter’s response to wave loads[J]. Journal of Harbin Institute of Technology, 2005, 37(3): 336-338. (in Chinese with English abstract)

      [23] 鄧忠超. 懸臂式鋼閘板在波浪荷載作用下的動(dòng)態(tài)響應(yīng)分析[D]. 哈爾濱:哈爾濱工程大學(xué),2004.

      Deng Zhongchao. Analysis on Dynamic Responses of Cantilever Type Steel Gate Under Wave Load[D]. Harbin: Harbin Engineering University, 2004. (in Chinese with English abstract)

      [24] British Standards Institution, Flood Protection Products- Specification, PAS 1188-4: 2009[S]. BSI Publications.

      [25] Ogunyoye F, Stevens R, Underwood S. Temporary and Demountable Flood Protection Guide[M]. Environment Agency, Bristol August 2011.

      [26] Kádár I. Mobile flood protection walls[J]. Pollack Periodica, 2015, 10(1): 133-142.

      [27] Koppe B, Brinkmann B. Opportunities and drawbacks of mobile flood protection systems[C]// Proceedings of the International Coastal Engineering Conference Shanghai, 2010.

      [28] Liem R, K?ngeter J. Mobile Flood Protection walls: Experiments and reflections on the risk of flood waves caused by a failure[C]//Water Resources Planning and Management Conference, 1999: 1-10.

      [29] 李志鵬,岳金文,洪順軍. 快速組裝移動(dòng)式防洪:CN104499460A[P]. 2015.

      Li Zhipeng, Yue Jinwen, Hong Shunjun. The rapid assembly mobile flood control wall: CN104499460A[P]. 2015. (in Chinese with English abstract)

      [30] 徐朝輝. 移動(dòng)式防洪墻:CN103306237A[P]. 2013.

      [31] 中國(guó)建筑股份有限公司. 中華人民共和國(guó)行業(yè)標(biāo)準(zhǔn):建筑工程施工過(guò)程結(jié)構(gòu)分析與監(jiān)測(cè)技術(shù)規(guī)范:JGJ/T 302-2013[S]. 北京:中國(guó)建筑工業(yè)出版社,2013.

      Test on mechanical and leakage characteristics of mobile flood protection system

      Chen Shoukai1,2, Li Huimin1,2※, Wang Yuanming3, Guo Lei1,2, Ding Zelin1,2, Wang Lunyan1,2, Sun Biao3

      (1.,,450045,;2.450002,;3.150081,)

      The high level urban flood control system is the basic guarantee for the sustainable development of modern cities, and the beautiful water environment and river landscape are the important symbols of modern cities. The need of protection is increasing with rising population density in low-lying coastal and river areas in the last decades. Therefore, the demand for technical protection measures is growing. It means that the construction of flood control projects should not only meet the requirements of urban construction, but also meet the requirements of water and shore two-way landscape viewing and residents’ and tourists’ visiting. Recently, more and more mobile protection schemes are on the market promising to fit both requirements: protection in case of flooding and open access to the floodplain in the remaining time. The protection systems differ in material, construction, height, and permanent facilities. They can be divided in structures made of sandbags, plates, concrete elements, flaps, trestles, geomembrane containers, and so on. However, the application of mobile flood control wall in China is not much, and the lack of research on its technical performance is one reason to the constraints. Based on the actual engineering project, the seepage characteristics of the mobile flood control system, and force condition on the foundation of column and embedded parts are studied through the experiment of water storage and column loading test. The testing results show that: Firstly, the direct installation method and the reserved slot method of the mobile flood control wall can meet the requirements of construction technology and normal operation. The anchor plate and foundation are not integrated when using the reserved slot method, which is just like the anchor plate and concrete integrated into the component to insert the foundation. The stress conditions of reserved slot method of anchor plate are worse than direct installation method. So we recommend the direct installation method in construction practice. But the 2 installation methods run safely, because the actual stress values under normal impoundment have only small change, far from steel yield strength (335 MPa) and concrete ultimate tensile strain (100×10-6). Secondly, a water storage pool was constructed to test the leakage characteristics. The mobile flood protection wall leaks when the pool is filled with water and the leakage changes exponentially with the water level. The regression analysis of measured water level and observation time is performed. The leakage will accelerate when the water level exceeds 1.5 m, reaching 300 L/h at a level of 1.7 m. It indicates that the leakage problem is an important aspect that the mobile flood control system needs to solve in order to increase the water retaining height. Finally, the loading and unloading testing of single post (this load limit is 100 kN) shows that when loaded to 25 kN, the concrete around the embedded part has plastic deformation. When the loading reaches 97 kN, the tensile deformation born by the concrete is close to the ultimate tensile deformation. And in the whole loading and unloading process, post and steel are in the elastic phase, that is, the measured residual displacement of the post and the residual stress of the steel are caused by the plastic deformation of the concrete. In addition, the stress analysis of the loading and unloading process shows that the damage of the post- anchor plate - foundation system will start from the concrete around the anchor plate and gradually develops toward the surface of the water surface until the whole is destroyed. Therefore, the mobile flood control system engineering should pay full attention to the construction quality of concrete around anchor plate.

      stress; strain; mechanical properties; mobile flood protection system; installation technology of anchor plate; leakage characteristics; displacement

      10.11975/j.issn.1002-6819.2017.20.011

      TV315

      A

      1002-6819(2017)-20-0083-07

      2017-05-25

      2017-08-26

      國(guó)家自然科學(xué)青年基金項(xiàng)目(51309101) ; 國(guó)家自然科學(xué)基金面上項(xiàng)目(51679092)

      陳守開(kāi),男,浙江溫州人,副教授,研究方向:水工結(jié)構(gòu)設(shè)計(jì)。Email:man200177@163.com

      ※通信作者:李慧敏,男,山西長(zhǎng)治人,副教授,研究方向:水利工程建設(shè)管理。Email:lihuimin3646@163.com

      陳守開(kāi),李慧敏,王遠(yuǎn)明,郭 磊,丁澤霖,汪倫焰,孫 飚. 移動(dòng)式防洪系統(tǒng)力學(xué)性能及滲漏特性試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):83-89. doi:10.11975/j.issn.1002-6819.2017.20.011 http://www.tcsae.org

      Chen Shoukai, Li Huimin, Wang Yuanming, Guo Lei, Ding Zelin, Wang Lunyan, Sun Biao. Test on mechanical and leakage characteristics of mobile flood protection system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 83-89. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.20.011 http://www.tcsae.org

      猜你喜歡
      移動(dòng)式預(yù)埋件基座
      幕墻預(yù)埋件定位精度控制技術(shù)
      基于NXnastran的異步電動(dòng)機(jī)基座有限元強(qiáng)度分析
      心臟固定器基座注射模設(shè)計(jì)
      模具制造(2019年7期)2019-09-25 07:30:00
      超大型FPSO火炬塔及船體基座設(shè)計(jì)
      幕墻槽式預(yù)埋件現(xiàn)場(chǎng)監(jiān)理探討
      對(duì)工程預(yù)埋件施工工藝的探索
      對(duì)工程預(yù)埋件施工工藝的探索
      多功能移動(dòng)式護(hù)理桌的研制與應(yīng)用
      移動(dòng)式變電站之應(yīng)用
      基于新型移動(dòng)式VMS的應(yīng)急交通管制方案
      海林市| 龙里县| 汉阴县| 横山县| 区。| 凤凰县| 兴宁市| 蕲春县| 瑞安市| 郯城县| 洪雅县| 汨罗市| 杭州市| 缙云县| 桂平市| 红安县| 甘德县| 株洲市| 绥德县| 成安县| 合阳县| 丹凤县| 定襄县| 庄河市| 吐鲁番市| 峨边| 南阳市| 襄汾县| 平乡县| 舟山市| 临江市| 高州市| 沿河| 台江县| 仁化县| 聊城市| 大洼县| 萍乡市| 宜良县| 阜宁县| 肥乡县|