• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硼摻雜的NiO修飾玻碳電極電催化氧化甲醇

    2017-11-10 08:50:29郁清濤楊海棠楊敬賀
    化學研究 2017年5期
    關鍵詞:玻碳河南大學化工學院

    孫 倩,楊 朵,高 麗,郁清濤,楊海棠,楊敬賀

    (河南大學 化學化工學院,化工與清潔技術工程中心,河南 開封 475004)

    硼摻雜的NiO修飾玻碳電極電催化氧化甲醇

    孫 倩,楊 朵,高 麗*,郁清濤,楊海棠,楊敬賀

    (河南大學 化學化工學院,化工與清潔技術工程中心,河南 開封 475004)

    采用計時電流法,線性掃描伏安法和安培曲線來研究B-NiO的電催化氧化甲醇過程. 研究結果表明,該B-NiO電極具有良好的電催化作用,活性高,穩(wěn)定性好,在電極上對甲醇的氧化動力學過程為單擴散動力學控制過程. 與塊狀Ni(OH)2相比,硼摻雜的NiO納米花在堿性介質中電催化氧化甲醇的電流密度提高了50倍. 由于B-NiO納米花出色的電化學性能使其在電氧化甲醇上具有潛在的應用前景.

    NiO;電氧化;甲醇;硼摻雜

    Biography: SUN Qian(1991-), female, master, majoring in electrochemical catalysis.*Corresponding author, E-mail: gaoli@henu.edu.cn.

    Direct methanol fuel cells (DMFCs) have attracted considerable interest, due to their low operating temperatures, high power density[1-6]. Anode electro-catalyst is the most important part of DMFCs. The most common catalyst in DMFCs is platinum and the activity of platinum catalyst is vigorously dependent on particle shape, size and structure[7]. Therefore, to improve the catalytic activity, much effort has been dedicated to prepare various morphology of Pt catalysts, such as Pt nanowire[8-10], Pt nanotubes[11-12], Pt nanocubes[13-15], Pt nanoparticles[16-18]. However, as to the Pt-based catalyst, the high cost and the poisoning resulting from adsorbed intermediate such as COads-like poisoning species leading to significant over-potential and loss in DMFC efficiency[19-20]. Therefore, many researches have been paid attention to search for alternative low-cost transition metal oxides/hydroxides (such as NiO, Ni(OH)2, CoO, Co(OH)2) catalysts for methanol oxidation[21-25]. Particularly, NiO is potential electrode material applied as electro-catalyst of methanol, because of its lower toxicity, low lost, ease synthesis and electro-catalytic activity[21-22,26-28]. By the way, the kinetic feature would also affect the electrochemical properties of transition metal oxides/hydroxides. The nanostructure materials can promote the electrochemical redox reactions and alleviate diffusion resistance. The properties of NiO can be improved by providing special nanostructure. The doping other atoms modification is another important way to improve its properties.

    In this study, boron-doped porous nickel oxide (B-NiO) was fabricated through coprecipitation and thermal decomposition of nickel hydroxide. The activity of B-NiO was higher than the commercial bulk NiO.

    1 Experimental section

    1.1 Reagents and materials

    Nafion (5% ethanol solution, mass fraction) was purchased from Alfa Aesar, and diluted to 0.1% with doubly distilled water in use. The surfactant copolymer poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide), commercially known as Pluronic (P123 EO20-PO70-EO20) was purchased from Sigma-Aldrich. Sodium borohydride was obtained from Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). Methanol was purchased from Sinopharm Chemical Reagent Co. Ltd. The commercial Ni(OH)2and NiO were from Aladdin. All of these reagents were of analytical grade.

    1.2 Synthesis of boron-doped nickle oxide

    We got boron-doped NiO nanoflowers by calcination the Ni(OH)2at 873 K for 4 h with the heating rate 10 K·min-1in air. Ni(OH)2was based on a self-assembly between a triblock copolymer template P123 and two precursors (sodium borohydride and nickel species) in a flask as describe in reference we have reported[29]. Briefly, Ni(NO3)2·6H2O (8.6 g) solution was put into the 440 mL solution of P123(4 g), and then stirring at 313 K for more than 3 h. Then dropped sodium borohydride (1.5 g) solution into the mixture. After 3 h, the same quantity of sodium borohydride solution was added into the mixture too. After 12 h, light green sediments were formed. The mixture was filtered and washed with water and ethanol alternately until no foam of surfactant P123 in the filtrate, then we got Ni(OH)2with boron. The control material bulk-Ni(OH)2-773 K was prepared by calcination the commercial Ni(OH)2at 873 K for 4 h with the heating rate 10 K·min-1in air.

    1.3 Characterization

    The samples crystalline structure were examined by X-ray diffraction (XRD), which was carried out on X-ray D8 Advance (Bruker, Germany) instrument with Cu Kαradiation(λ= 0.154 18 nm). Samples microstructure was determined using a scanning electron microscope (SEM). The morphology and dispersion of the samples were observed using TEM, which was carried out with a FEI Tecnai G2T20. Fourier transform infrared (FT-IR) spectra were measured by transmission on a Bruker Vertex 80 FT-IR Spectrometer on KBr pellets with 2 cm-1resolution.

    1.4 Electrochemical measurements and preparation of modified GCE

    Electrochemical experiments were tested on a CHI660D electrochemical workstation (Shanghai, China) using three electrode system. The working electrode was glassy carbon electrode (GCE) (3 mm in diameter). B-NiO, commercial bulk-Ni(OH)2-773 K and commercial bulk-NiO were used as the working electrode. A Pt wire and Ag/AgCl electrode were used as the counter and reference electrodes, respectively. Cyclic Voltammetry (CV), linear sweep voltammetry were condusted at a rate of 50 mV·s-1in alkaline aqueous solution. The chronoamperometry was recorded in alkaline aqueous solution at 0.5 V for 1 000 s. The Amperometrici-tCurve was measured in alkaline aqueous solution at 0.5 V for 600 s. Electrochemical impedance spectroscopy (EIS) was measured in the same system at open circuit potential over a frequency range from 106 Hz to 0.01 Hz at the ampliture of the sinusoidal voltage of 0.005 V.

    The bare GCE was polished with 1.0, 0.3, and 0.05 μm alumina slurry, rinsed thoroughly with ethanol and deionized water, and dried by N2atmosphere. B-NiO, bulk-Ni(OH)2-773 K and bulk-NiO of 2.5 mg was added into 1 mL 0.1%(mass fraction) nafion solution to form different suspending mixtures. The mixture was then ultrasonicated to forge a homogeneous solution. Next, the various suspensions mixtures of 10 μL were drop in the surface of GCE. Finally, the as-prepared catalyst film was dried under the infrared lamp. For comparision, a bare GCE that had been polished and cleaned was also dried for electrochemical measurement.

    2 Results and discussion

    The structures and composition of the obtained B-NiO and NiO nano-catalyst were studied by XRD and FTIR spectrum. As shown in Fig.1 (A), all of the diffraction peaks of B-NiO could be perfectly showed to the JCPDS 4-0835 of the cubic phase. The peaks of B-NiO centered at 36.9° (111), 43.8° (200), 62.8° (220), 75.3° (311) and 78.5° (222) belong to the cubic structure of B-NiO. No other obvious diffraction peaks were monitored, demonstating the high quality of the sample. The XRD spectrum of bulk-NiO is similar to B-NiO.

    Fig.1 XRD patterns (A), FTIR patterns (B), SEM (C) and TEM (D) images of the synthesized B-NiO nanoparticle

    The FTIR spectrum of B-NiO and bulk-NiO are shown in Fig.1 (B). As shown in the B-NiO FTIR spectrum, the strong and broad band around 3 430 cm-1is assigned to the stretching vibration of the adsorbed water, another one around 1 635 cm-1is assigned to the bending vibration of the adsorbed water. The peak of B-NiO at 450 cm-1is due to the Ni-O stretching vibration. The peak at 1 349 cm-1is assigned to the symmetric vibration of NO2groups. The FTIR spectrum of bulk-NiO is similar to B-NiO, too.

    Fig.1 (C) showed the SEM micrograph of the B-NiO nanomaterial. It can be seen that the average particle size of the B-NiO spheres was 400 nm. As shown in the TEM images Fig.1(D) of the synthesized B-NiO nanomaterial, B-NiO was composed of approximately 30 nm nanoplates and the thickness of the nanosheets was approximately 3 nm.

    The electro-oxidation properties of B-NiO, bulk-Ni(OH)2-773 K and bulk-NiO catalysts toward methanol oxidation were investigated. Fig.2(A) shows the linear sweep voltammetry (LSV) curves of methanol oxidation on the bulk-NiO, bulk-Ni(OH)2-773 K and B-NiO electrodes in 0.1 mol·L-1NaOH containing 0.5 mol·L-1methanol solution, at a scan rate of 50 mV· s-1. The magnitude of the peak current density in the forward scan from negative potential to positive (jpf) indicates the electro-catalytic activity for fresh methanol oxidation. The electrochemical performance of methanol oxidation on the bulk-NiO, bulk-Ni(OH)2-773 K and B-NiO electrodes is given in Table 1. The lower value of onset potential (Es) shows more easily electrochemically oxidized for methanol. TheEsof methanol oxidation is 0.45 V on the B-NiO electrode and it shifts positively on the two other electrodes. The reduction value ofEsshows an improvement in the kinetics. The cur-rent on B-NiO modified GCE is higher than that on the bulk-Ni(OH)2-773 K/GCE and bulk-NiO/GCE. The order forjpfon the electrodes is B-NiO > bulk-Ni(OH)2-773 K > bulk-NiO. The results show that the B-NiO electro-catalysts have higher activity than bulk-Ni(OH)2-773 K and bulk-NiO for methanol electro-oxidation.

    Fig.2 LSV (A) and CV (B) curves of 0.5 mol·L-1methanol in 0.1 mol·L-1 NaOH solution at different catalyst electrodes with a sweep rate of 50 mV· s-1. CVs of 0.5 mol·L-1 methanol in 0.1 mol·L-1 NaOH solution at B-NiO catalyst modified electrode at different scan rates (C). Line relation between peak current density and the square root of the scan rate (D)

    Table 1 Electrochemical performance of methanol oxidation on the bulk-NiO, bulk-Ni(OH)2-773 K and B-NiO electrodes

    Fig.2(B) shows cyclic voltammograms (CVs) of methanol oxidation on the bulk-NiO, bulk-Ni(OH)2-773 K and B-NiO electrodes in 0.1 mol·L-1NaOH containing 0.5 mol·L-1methanol solution, at a scan rate of 50 mV· s-1, the potential was scanned positively from 0 to 1.0 V and then negatively to 0 V. The current at the potential range from 0.45 V to 0.9 V for methanol oxidation increases continuously in the forward sweep. This current is due to the electrochemical oxidation of fresh methanol. During this process, CO, CO2, HCOOH, HCOH and HCOOCH3form and CO molecules are absorbed on the surface of electrode, poisoning the electrocatalysts[30-31]. The current for methanol oxidation doesn’t drop from 0.7 V to 1.0 V in the forward sweep, indicating the poisoning resistance of these electro-catalysts is better[32]. The current of methanol oxidation on the catalysts didn’t drops from 0.7 V to 1.0 V in the forward sweep, indicating a poisoning-resistance happens on the catalysts. During the reverse sweep, the re-oxidation of CO and other adsorbed species occurs. The peak current density in the forward sweep (jpf) and the peak current density in the reverse sweep (jpr) are summarized in Table 1. The oxidation peak in the reverse sweep is according to the electrochemical oxidation CO and other adsorbed species. So the value ofjpr/jpfis smaller and the poisoning resistance of these electro-catalysts is better. The order for the value ofjpr/jpfon the Ni-oxide is bulk-NiO > bulk-Ni(OH)2-773 K > B-NiO. The value ofjPr/jpfon B-NiO is the smallest than that on the other catalysts, so the B-NiO will give the best stable performance of methanol oxidation.

    As shown in Fig.2(C), the electro-catalytic properties of B-NiO was evaluated by cyclic voltammetry (CV). The CV behavior of the B-NiO at different scan rates (10-200 mV· s-1). It can be seen that oxidation peak current density (Ip) for methanol oxidation become larger with the increase of the scan rate. The line relation between peak current density (Ip) and square root of the scan rate (v1/2) is shown in Fig.2(D). The anodic peak currents increase linearly with the square root of scan rate indicating the electrochemical reaction controlled by the semi-infinite linear diffusion from the electrolyte to the electrode.

    To evaluate the stability of nano-catalysts, amperometrici-tcurves of B-NiO, bulk-Ni(OH)2-773 K, bulk-NiO and bare GCE were measured in 0.1 mol·L-1NaOH containing 0.5 mol·L-1methanol solution (Fig.3(A)). The measurement under a constant potential of 0.5 V (vs. Ag/AgCl) is 600 s. As shown in Fig.3(A), the decay was slow and the current density finally reached a stable current density. Among the three nano-catalysts, B-NiO showed the higher activity and higher stability for methanol oxidation. This implies reasonable good mechanical and electro-catalytic stability of the above electrode towards MeOH at the prevailed experimental conditions.

    To evaluate the rate of surface poisoning and the stability of nanocatalysts, chronoamperometry (CA) curves of B-NiO, bulk-Ni(OH)2-773 K, bulk-NiO and bare GCE were measured in 0.1 mol·L-1NaOH containing 0.5 mol·L-1methanol solution (Fig.3(B)). CA curves (performed at 0.5 V for 1 000 s) exhibits that the B-NiO nanoflower has higher reaction current density and a slower current degradation over time compared with the other electrocatalyst for the entire time course, which further verified that the B-NiO nanoflower exhibited better electrocatalytic performance, the ability to tolerate CO ads-like species formed in the methanol oxidation process[33-34]and the best catalytic stability.

    Electrochemical impedance spectroscopy (EIS) is an effective method to investigate the parameters affecting the performance of an electrode, including its charge-transfer and diffusion properties. EIS spectra contain two portions, i.e. semicircle at higher frequencies correspond to the electron transfer limited process and linear line relatively at lower frequencies correspond to the diffusion process. Fig.3(C) shows the Nyquist plots of the B-NiO, bulk-Ni(OH)2-773 K and bulk-NiO measured at 0.049 43 V (vs. Ag/AgCl) in the frequency ranging from 100 kHz to 0.01Hz in 0.1 mol·L-1NaOH containing 0.5 mol·L-1CH3OH solution. From Figure 3(C), it is seen that there are no well-defined semicircle in the desired frequency range which indicates that they possess good electron transfer kinetics. The impedance of B-NiO is lower than that of the bulk-Ni(OH)2-773 K and bulk-NiO catalysts in the case of methanol oxidation indicating the layer of B-NiO could form on the electrode surface and alower electrochemical polarization impedance. Fig.3(D) shows CVs of B-NiO nanoflower modified nickel foam electrode obtained after different numbers of cycles. With further cycling, the above oxidation/reduction waves decreased a little in amplitude and approached a stable value after 800 cycles suggesting the activation of B-NiO and the electro-active species on the nickel foam electrode is relatively stable.

    Fig.3 Amperometric i-t (A) and Chronoamperometry (B) curves of 0.5 mol·L-1 methanol in 0.1 mol·L-1 NaOH solution at different catalyst electrodes at 0.5 V. Electrochemical impedance spectra of 0.5 mol·L-1 methanol in 0.1 mol·L-1 NaOH solution at different catalyst electrodes at open circuit potential of 0.049 43 V (C). Stability CVs for methanol electro-oxidation of 0.5 mol·L-1 methanol in 0.1 mol·L-1 NaOH solution at B-NiO catalyst modified nickel foam electrode (D)

    3 Conclusions

    Using a simple one-step thermal decomposition method, Boron-doped nickle oxide (B-NiO) nanocatalysts was fabricated by thermal decomposition of nickel hydroxide. The porous B-NiO/GCE exhibited better electro-oxidation activity and stability than those of commercial Ni(OH)2after calcination and commercial bulk-NiO. The methanol oxidation of B-NiO was a di-ffusion controlled behavior in the range of scan rate from 10 mV· s-1to 200 mV· s-1. The results indicated that the B-NiO nanocatalysts modified GCE showed good electro-catalytic performance (including high electro-catalytic current density, good poison, and low onset potential) in comparison with commercial NiO nanocatalysts modified GCE in methanol oxidation reaction.

    [1] LAMY C, BELGSIR E, LéGER J M. Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC) [J]. Journal of Applied Electrochemistry, 2001, 31: 799-809.

    [2] ACRES G J K. Recent advances in fuel cell technology and its applications [J]. Journal of Power Sources, 2001, 100(1/2): 60-66.

    [3] JUSYS Z, BEHM R J. Methanol oxidation on a carbon-supported Pt fuel cell catalyst-a kinetic and mechanistic study by differential electrochemical mass spectrometry [J]. The Journal of Physical Chemistry B, 2001, 105(44): 10874-10883.

    [4] VERMA L K. Studies on methanol fuel cell [J]. Journal of Power Sources, 2000, 86(1/2): 464-468.

    [5] LIU H S, SONG C J, ZHANG L, et al. A review of anode catalysis in the direct methanol fuel cell [J]. Journal of Power Sources, 2006, 155(2): 95-110.

    [6] ZAINOODIM A M, KAMARUDIN S K, DAUD W R W. Electrode in direct methanol fuel cells [J]. International Journal of Hydrogen Energy, 2010, 35(10): 4606-4621.

    [7] TIWARI J N, TIWARI R N, SINGH G, et al. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells [J]. Nano Energy, 2013, 2(5): 553-578.

    [8] WANG S Y, JIANG S P, WANG X, et al. Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells [J]. Electrochimica Acta, 2011, 56 (3): 1563-1569.

    [9] RUAN D J, GAO F, GU Z Y. Enhanced electrochemical properties of surface roughed Pt nanowire electrocatalyst for methanol oxidation [J]. Electrochimica Acta, 2014, 147 (20): 225-231.

    [10] LI B, YAN Z Y, HIGGINS D C, et al. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells [J]. Journal of Power Sources, 2014, 262(15): 488-493.

    [11] ALIA S M, ZHANG G, KISAILUS D, et al. Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions [J]. Advanced Functional Materials, 2010, 20: 3742-3746.

    [12] BI Y P, LU G X. Control growth of uniform platinum nanotubes and their catalytic properties for methanol electrooxidation [J]. Electrochemistry Communications, 2009, 11(1): 45-49.

    [13] HAN S B, SONG Y J, LEE J M, et al. Platinum nanocube catalysts for methanol and ethanol electrooxidation [J]. Electrochemistry Communications, 2008, 10(7): 1044-1047.

    [14] LEE Y W, HAN S B, KIM D Y, et al. Monodispersed platinum nanocubes for enhanced electrocatalytic properties in alcohol electrooxidation [J]. Chemical Communications, 2011,47: 6296-6298.

    [15] NOGAMI M, KOIKE R, JALEM R, et al. Synthesis of porous single-crystalline platinum nanocubes composed of nanoparticles [J]. The Journal of Physical Chemistry Letters, 2010, 1(2): 568-571.

    [16] ENSAFI A A, JAFARI-ASL M, REZAEI B. A new strategy for the synthesis of 3-D Pt nanoparticles on reduced graphene oxide through surface functionalization, Application for methanol oxidation and oxygen reduction [J]. Electrochimica Acta, 2014, 130: 397-405.

    [17] RAUBER M, ALBER I, MULLER S, et al. Highly-ordered supportless three-dimensional nanowire networks with tunable complexity and interwire connectivity for device integration [J]. Nano Letters, 2011, 11(6): 2304-2310.

    [18] SUN S H, YANG D Q, VILLERS D, et al. Template-and surfactant-free room temperature synthesis of self-assembled 3d Pt nanoflowers from single-crystal nanowires [J]. Advanced Materials, 2008, 20(3): 571-574.

    [19] CARAM J A, GUTIERREZ C. Cyclic voltammetric and potential-modulated reflectance spectroscopic study of the electroadsorption of methanol and ethanol on a platinum electrode in acid and alkaline media [J]. Journal of Electroanalytical Chemistry, 1992, 323(1/2): 213-230.

    [20] KIM Y, SOUNDARARAJAN D, PARK C,et al. Electrocatalytic properties of carbon nanofiber web-supported nanocrystalline pt catalyst as applied to direct methanol fuel cell [J]. International Journal of Electrochemical Science, 2009, 4: 1548-1559.

    [21] SPINNER N, MUSTAIN W E. Effect of nickel oxide synthesis conditions on its physical properties and electrocatalytic oxidation of methanol [J]. Electrochimica Acta, 2011, 56 (16): 5656-5666.

    [22] GU C D, HUANG M L, GE X, et al. NiO electrode for methanol electro-oxidation: Mesoporous vs. nanoparticulate [J]. International Journal of Hydrogen Energy, 2014, 39(21): 10892-10901.

    [23] EL-SHAFEI A A. Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium [J]. Journal of Electroanalytical Chemistry, 1999, 471(2): 89-95.

    [24] XIA Y S, DAI H X, JIANG H Y, et al. Three-dimensional ordered mesoporous cobalt oxides: Highly active catalysts for the oxidation of toluene and methanol [J]. Catalysis Communications, 2010, 11(15): 1171-1175.

    [25] ZAFEIRATOS S, DINTZER T, TESCHNER D, et al. Methanol oxidation over model cobalt catalysts: Influence of the cobalt oxidation state on the reactivity [J]. Journal of Catalysis, 2010, 269(2): 309-317.

    [26] ASGARI M, MARAGHEH M G, DAVARKHAH R, et al. Methanol electrooxidation on the nickel oxide nanoparticles/multi-walled carbon nanotubes modified glassy carbon electrode prepared using pulsed electrode position [J]. Journal of the Electrochemical Society, 2011, 158(12): K225-K229.

    [27] SHAMSIPUR M, NAJAFI M, MILANI HOSSEINI M R. Electrooxidation of alcohols at a nickel oxide/multi-walled carbon nanotube-modified glassy carbon electrode [J]. Journal of Applied Electrochemistry, 2013, 43(10): 1027-1033.

    [28] LI S J, XIA N, Lü X L, et al. A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol [J]. Sensors and Actuators B: Chemical, 2014, 190: 809-817.

    [29] YANG J H, YU Q T, LI Y M, et al. Batch fabrication of mesoporous boron-doped nickel oxide nanoflowers for electrochemical capacitors [J]. The Journal of Physical Chemistry Materials Research Bulletin, 2014, 59: 382-386.

    [30] IWASITA T. Electrocatalysis of methanol oxidation [J]. Electrochimica Acta, 2002, 47(22/23): 3663-3674.

    [31] LEUNG L W H, WEAVER M J. Real-time FTIR spectro-scopy as a quantitative kinetic probe of competing electrooxidation pathways of small organic molecules [J]. The Journal of Physical Chemistry, 1998, 92(14): 4019-4022.

    [32] CORRIGAN D S, WEAVER M J. Mechanisms of formic acid, methanol, and carbon monoxide electrooxidation at platinum as examined by single potential alteration infrared spectroscopy [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 241(1/2): 143-162.

    [33] KATZ E, SHIPWAY A N, WILLNER I. Handbook of fuel cells-fundamentals, technology and applications [M]. John Wiley & Sons Ltd, 2003, 1: 1-27.

    [34] LONG N V, OHTAKI M, NOGAMI M, et al. Effects of heat treatment and poly(vinylpyrrolidone) (PVP) polymer on electrocatalytic activity of polyhedral Pt nanoparticles towards their methanol oxidation [J]. Colloid and Polymer Science, 2011, 289(12): 1373-1386.

    Electro-oxidationofmethanolonboron-dopednickleoxidemodifiedglassycarbonelectrode

    SUN Qian, YANG Duo, GAO Li*, YU Qingtao, YANG Haitang, YANG Jinghe

    (EngineeringCenterforCleanChemicalProcessandTechnology,CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China)

    The boron-doped nickle oxide (B-NiO) nanoflowers were developed as an electro-catalyst for methanol electro-oxidation in alkaline media which is more than 50 times enhancement in current density compared to bulk nickel hydroxide powers. The positive correlation between the scan rates and the anodic currents implies a single diffusion-controlled kinetic process. The chronoamperometry, linear-sweep voltammetric, and amperometrici-tcurves were also employed for investigated the B-NiO and the results are also positive. This remarkable electrochemical performance will make B-NiO nanoflowers a promising electrode material for high performance electro-oxidation of methanol.

    nickle oxide; electro-oxidation; methanol; boron-doped

    O622.3DocumentcodeA

    1008-1011(2017)05-0598-08

    date: 2017-05-03.

    Supported by the National Natural Science Foundation of China (21403053), the Joint Funds of the National Natural Science Foundation of China (U1404503) and Henan University Graduate Scientific Innovation Research Supporting Project (Y1427005).

    [責任編輯:吳文鵬]

    猜你喜歡
    玻碳河南大學化工學院
    使固態(tài)化學反應100%完成的方法
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    歸 去 兮
    新生代(2019年5期)2019-11-14 06:17:33
    詠 河 大
    新生代(2018年15期)2018-11-13 19:48:53
    姜黃素在玻碳電極上的電化學行為研究
    故 鄉(xiāng)
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    基于適配體的石墨烯修飾玻碳電極檢測卡那霉素
    欧美高清性xxxxhd video| 亚洲真实伦在线观看| 精品人妻视频免费看| 国产一区亚洲一区在线观看| 美女cb高潮喷水在线观看| 国产精品久久久久久精品古装| 亚洲第一av免费看| 国产女主播在线喷水免费视频网站| 亚洲国产av新网站| 嫩草影院入口| 狠狠精品人妻久久久久久综合| 尾随美女入室| 午夜福利高清视频| 免费av中文字幕在线| 亚洲国产最新在线播放| 丝袜喷水一区| 夜夜看夜夜爽夜夜摸| 精品久久久久久电影网| 国语对白做爰xxxⅹ性视频网站| 久久久久久久大尺度免费视频| a级一级毛片免费在线观看| 国产免费福利视频在线观看| av又黄又爽大尺度在线免费看| videossex国产| 男人狂女人下面高潮的视频| 免费大片黄手机在线观看| 国产精品偷伦视频观看了| 多毛熟女@视频| 中文乱码字字幕精品一区二区三区| 观看免费一级毛片| 国产免费一级a男人的天堂| www.色视频.com| 久久国产亚洲av麻豆专区| 亚洲精品456在线播放app| 欧美高清成人免费视频www| 久久热精品热| 少妇裸体淫交视频免费看高清| 麻豆精品久久久久久蜜桃| 成人午夜精彩视频在线观看| 免费高清在线观看视频在线观看| 男女国产视频网站| 亚洲精品中文字幕在线视频 | 久久精品国产亚洲av天美| 免费看光身美女| 国产精品无大码| 天堂8中文在线网| 麻豆精品久久久久久蜜桃| 亚洲欧美成人精品一区二区| 国产一区二区三区av在线| 99热全是精品| 欧美+日韩+精品| 91aial.com中文字幕在线观看| 一级二级三级毛片免费看| 久久精品国产亚洲网站| 欧美日本视频| 久久99精品国语久久久| 久久精品久久精品一区二区三区| 老熟女久久久| 亚洲av二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 男男h啪啪无遮挡| 亚洲人成网站在线播| 国产毛片在线视频| 国内揄拍国产精品人妻在线| 国产在视频线精品| 老女人水多毛片| 熟女电影av网| 国产精品免费大片| 久久精品久久久久久久性| 人妻 亚洲 视频| 人妻制服诱惑在线中文字幕| 熟女电影av网| 亚洲一级一片aⅴ在线观看| 最近手机中文字幕大全| 午夜视频国产福利| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 免费黄频网站在线观看国产| 中文字幕av成人在线电影| 黑人猛操日本美女一级片| 久久久久国产精品人妻一区二区| 99国产精品免费福利视频| 国产真实伦视频高清在线观看| 青青草视频在线视频观看| 欧美3d第一页| 黑丝袜美女国产一区| 亚洲av.av天堂| 毛片女人毛片| a级一级毛片免费在线观看| 亚洲精品视频女| 久久久久人妻精品一区果冻| 久久久久久久国产电影| 精品熟女少妇av免费看| 国产精品三级大全| 三级国产精品片| 91狼人影院| 精品久久久久久久久亚洲| 亚洲,一卡二卡三卡| 国产爽快片一区二区三区| 伦理电影大哥的女人| 草草在线视频免费看| 最近手机中文字幕大全| 日韩在线高清观看一区二区三区| 国产 一区精品| 高清不卡的av网站| 亚洲人成网站高清观看| 国产黄色免费在线视频| 久久综合国产亚洲精品| 午夜精品国产一区二区电影| 制服丝袜香蕉在线| 偷拍熟女少妇极品色| 91精品国产九色| 亚洲经典国产精华液单| 十分钟在线观看高清视频www | 欧美精品亚洲一区二区| 伊人久久精品亚洲午夜| 爱豆传媒免费全集在线观看| 韩国高清视频一区二区三区| 大陆偷拍与自拍| 97超视频在线观看视频| 在线免费十八禁| 国产精品国产av在线观看| 亚洲精品,欧美精品| 久久99热这里只频精品6学生| 久久久久久久国产电影| 免费观看av网站的网址| 久久影院123| 国产精品久久久久久久久免| 精品熟女少妇av免费看| 国产精品女同一区二区软件| 久久精品国产亚洲av天美| 亚洲电影在线观看av| 日韩av免费高清视频| 韩国av在线不卡| 日韩,欧美,国产一区二区三区| 一区二区av电影网| 日韩 亚洲 欧美在线| 在线播放无遮挡| 精华霜和精华液先用哪个| 亚洲高清免费不卡视频| 人妻 亚洲 视频| 亚洲欧美日韩无卡精品| 免费观看的影片在线观看| 久久精品熟女亚洲av麻豆精品| 婷婷色麻豆天堂久久| 啦啦啦中文免费视频观看日本| 久久精品国产a三级三级三级| 成年美女黄网站色视频大全免费 | 18禁裸乳无遮挡动漫免费视频| 人妻少妇偷人精品九色| 网址你懂的国产日韩在线| 亚洲精品乱久久久久久| 婷婷色av中文字幕| 人体艺术视频欧美日本| 久久影院123| 国产爽快片一区二区三区| 天堂中文最新版在线下载| a级毛片免费高清观看在线播放| 成人二区视频| 人妻夜夜爽99麻豆av| 在线观看国产h片| 中文字幕亚洲精品专区| 久久热精品热| 精品久久久久久久末码| 久久婷婷青草| 少妇人妻一区二区三区视频| 18禁裸乳无遮挡免费网站照片| av专区在线播放| av免费观看日本| 精品久久久精品久久久| 欧美+日韩+精品| 一级毛片 在线播放| 少妇人妻精品综合一区二区| 日本黄色日本黄色录像| 精品久久国产蜜桃| 又爽又黄a免费视频| 久久久亚洲精品成人影院| av国产精品久久久久影院| 又黄又爽又刺激的免费视频.| 婷婷色麻豆天堂久久| 午夜福利视频精品| 亚洲精品一二三| 男女下面进入的视频免费午夜| 女性被躁到高潮视频| 91狼人影院| 高清日韩中文字幕在线| 久久99热6这里只有精品| 亚洲成人av在线免费| 一级毛片电影观看| 亚洲精品国产av蜜桃| 制服丝袜香蕉在线| 嫩草影院入口| 人人妻人人爽人人添夜夜欢视频 | 日韩强制内射视频| 国产亚洲av片在线观看秒播厂| 国产黄色免费在线视频| 男人和女人高潮做爰伦理| 赤兔流量卡办理| 精品国产三级普通话版| 国产成人aa在线观看| 国产精品一区二区三区四区免费观看| 免费av中文字幕在线| 久久久久久人妻| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲美女视频黄频| 成人二区视频| 午夜日本视频在线| 美女cb高潮喷水在线观看| 亚洲无线观看免费| 精品久久久久久久久av| 精品人妻一区二区三区麻豆| 精品久久久久久久久亚洲| 最近手机中文字幕大全| 亚洲中文av在线| 夫妻午夜视频| 18禁裸乳无遮挡动漫免费视频| 午夜福利高清视频| 国产在视频线精品| 性高湖久久久久久久久免费观看| 18禁在线播放成人免费| 久热这里只有精品99| 久久精品久久久久久噜噜老黄| 乱系列少妇在线播放| 网址你懂的国产日韩在线| 激情五月婷婷亚洲| 成人综合一区亚洲| 亚洲av.av天堂| 干丝袜人妻中文字幕| 亚洲第一区二区三区不卡| 黄色怎么调成土黄色| 欧美高清性xxxxhd video| 国产男女超爽视频在线观看| 精品一区二区免费观看| 欧美3d第一页| 纵有疾风起免费观看全集完整版| 一区二区三区免费毛片| 国产在线免费精品| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| 哪个播放器可以免费观看大片| 插阴视频在线观看视频| 美女中出高潮动态图| 国内少妇人妻偷人精品xxx网站| 亚洲精品乱久久久久久| 亚洲av免费高清在线观看| 成人一区二区视频在线观看| 精品人妻偷拍中文字幕| 伦理电影免费视频| 国产 精品1| 亚洲精品一二三| 成人黄色视频免费在线看| 一区二区三区四区激情视频| 中文字幕免费在线视频6| 网址你懂的国产日韩在线| 亚洲av.av天堂| 国产精品熟女久久久久浪| 日韩一区二区视频免费看| 男女边摸边吃奶| 久久人人爽av亚洲精品天堂 | 亚洲精品,欧美精品| 国产av国产精品国产| 蜜桃久久精品国产亚洲av| 免费观看在线日韩| 国产成人a∨麻豆精品| 午夜免费观看性视频| 亚洲精品日韩在线中文字幕| 视频中文字幕在线观看| 大又大粗又爽又黄少妇毛片口| 最新中文字幕久久久久| 成人二区视频| 自拍偷自拍亚洲精品老妇| 亚洲av免费高清在线观看| 成人免费观看视频高清| av在线播放精品| kizo精华| 激情五月婷婷亚洲| a级一级毛片免费在线观看| 中国三级夫妇交换| 精品人妻一区二区三区麻豆| 亚洲国产av新网站| 欧美高清性xxxxhd video| 免费人妻精品一区二区三区视频| 亚洲精品第二区| 日本黄大片高清| 欧美成人一区二区免费高清观看| 精品酒店卫生间| 舔av片在线| 欧美97在线视频| 日韩精品有码人妻一区| 美女视频免费永久观看网站| 国产黄频视频在线观看| 99热全是精品| 久久久午夜欧美精品| 五月天丁香电影| 国产精品一区二区在线观看99| 色视频在线一区二区三区| 亚洲人成网站在线观看播放| 国产男女内射视频| 日本欧美视频一区| 亚洲av福利一区| 直男gayav资源| 观看av在线不卡| 免费在线观看成人毛片| 亚洲精品aⅴ在线观看| 午夜福利影视在线免费观看| 久久国产精品大桥未久av | 嘟嘟电影网在线观看| 午夜福利在线在线| 久久精品国产亚洲网站| 国产极品天堂在线| 免费在线观看成人毛片| 国产亚洲5aaaaa淫片| 麻豆成人午夜福利视频| 国产高潮美女av| 一本久久精品| 精品国产一区二区三区久久久樱花 | 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 欧美国产精品一级二级三级 | 交换朋友夫妻互换小说| 国产精品一区www在线观看| 一级毛片黄色毛片免费观看视频| 天天躁日日操中文字幕| 成人免费观看视频高清| 嫩草影院入口| 最近中文字幕2019免费版| 国产免费视频播放在线视频| 大香蕉久久网| 亚洲成人手机| 免费av不卡在线播放| 啦啦啦中文免费视频观看日本| 国产毛片在线视频| 黄色怎么调成土黄色| 91精品一卡2卡3卡4卡| 97在线视频观看| 一级毛片aaaaaa免费看小| 久久久久视频综合| 男人添女人高潮全过程视频| 免费久久久久久久精品成人欧美视频 | 99精国产麻豆久久婷婷| 一区二区三区乱码不卡18| 国产黄片美女视频| 成人无遮挡网站| 免费观看性生交大片5| 欧美老熟妇乱子伦牲交| 欧美日韩视频高清一区二区三区二| 熟女av电影| 狂野欧美激情性xxxx在线观看| 80岁老熟妇乱子伦牲交| 久久久精品94久久精品| 亚洲精华国产精华液的使用体验| 美女xxoo啪啪120秒动态图| 97超碰精品成人国产| 97在线视频观看| a级一级毛片免费在线观看| 有码 亚洲区| 联通29元200g的流量卡| 久久久精品94久久精品| 中国美白少妇内射xxxbb| 在线观看国产h片| 亚洲精品一二三| 青春草亚洲视频在线观看| 日韩成人伦理影院| 黄色怎么调成土黄色| 99国产精品免费福利视频| 在线观看美女被高潮喷水网站| 91狼人影院| 在线观看美女被高潮喷水网站| 人人妻人人爽人人添夜夜欢视频 | 午夜老司机福利剧场| av福利片在线观看| 中文字幕精品免费在线观看视频 | 国产 精品1| 国内少妇人妻偷人精品xxx网站| 丝袜脚勾引网站| 成年美女黄网站色视频大全免费 | 国产免费一区二区三区四区乱码| 亚洲国产高清在线一区二区三| 亚洲欧美清纯卡通| 寂寞人妻少妇视频99o| 色婷婷久久久亚洲欧美| 亚洲激情五月婷婷啪啪| 日本黄色片子视频| 一区在线观看完整版| 国产v大片淫在线免费观看| 国产真实伦视频高清在线观看| 亚洲精品中文字幕在线视频 | 大码成人一级视频| 久久婷婷青草| 国产精品精品国产色婷婷| 伦精品一区二区三区| 校园人妻丝袜中文字幕| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久av不卡| 国产av码专区亚洲av| 插阴视频在线观看视频| 边亲边吃奶的免费视频| 丝袜脚勾引网站| 亚洲精品视频女| 天堂俺去俺来也www色官网| 少妇人妻一区二区三区视频| 欧美高清性xxxxhd video| 久久99热这里只有精品18| 国产日韩欧美亚洲二区| 国产国拍精品亚洲av在线观看| 久热这里只有精品99| 激情 狠狠 欧美| 欧美+日韩+精品| 国产av国产精品国产| .国产精品久久| 夜夜骑夜夜射夜夜干| 日本-黄色视频高清免费观看| 国产精品嫩草影院av在线观看| 日韩欧美 国产精品| 国产美女午夜福利| 精品人妻视频免费看| 午夜精品国产一区二区电影| 精品久久久久久电影网| 中文字幕久久专区| 舔av片在线| 日韩国内少妇激情av| 免费观看无遮挡的男女| 亚洲国产高清在线一区二区三| 男人爽女人下面视频在线观看| 91午夜精品亚洲一区二区三区| 天堂俺去俺来也www色官网| 五月伊人婷婷丁香| 伊人久久国产一区二区| 少妇的逼好多水| kizo精华| 少妇猛男粗大的猛烈进出视频| 最近中文字幕2019免费版| 国产精品嫩草影院av在线观看| 日韩人妻高清精品专区| 欧美3d第一页| 国产成人91sexporn| 日韩视频在线欧美| 我要看日韩黄色一级片| 黄色配什么色好看| 国语对白做爰xxxⅹ性视频网站| 午夜福利网站1000一区二区三区| 成年免费大片在线观看| 九九久久精品国产亚洲av麻豆| av在线老鸭窝| 伦理电影免费视频| 少妇高潮的动态图| 中文字幕精品免费在线观看视频 | 纯流量卡能插随身wifi吗| 久久久久久伊人网av| 精品久久久噜噜| 日韩强制内射视频| 亚洲色图av天堂| 春色校园在线视频观看| 国产黄色免费在线视频| 亚洲人成网站在线播| 国产精品一及| 另类亚洲欧美激情| 啦啦啦中文免费视频观看日本| 亚洲成人av在线免费| 男人爽女人下面视频在线观看| 久久99精品国语久久久| 天天躁日日操中文字幕| av.在线天堂| 亚洲人与动物交配视频| 国产一区二区在线观看日韩| 亚洲av成人精品一区久久| 多毛熟女@视频| 欧美激情国产日韩精品一区| 毛片一级片免费看久久久久| 日本黄大片高清| 久久久久性生活片| 亚洲怡红院男人天堂| 亚洲av成人精品一区久久| 国产亚洲最大av| 久久鲁丝午夜福利片| 亚洲欧美清纯卡通| 免费高清在线观看视频在线观看| 欧美成人午夜免费资源| 色哟哟·www| 精品少妇黑人巨大在线播放| 丰满少妇做爰视频| 国产黄色免费在线视频| 亚洲精品乱码久久久v下载方式| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩在线观看h| 亚洲精品一区蜜桃| 欧美国产精品一级二级三级 | 一区二区av电影网| 秋霞伦理黄片| 国产精品女同一区二区软件| 精品国产露脸久久av麻豆| 水蜜桃什么品种好| 五月伊人婷婷丁香| 欧美一级a爱片免费观看看| 欧美性感艳星| 熟女电影av网| 国产片特级美女逼逼视频| 男女免费视频国产| 亚洲国产精品成人久久小说| freevideosex欧美| 亚洲精品国产av蜜桃| 国产亚洲91精品色在线| 亚洲性久久影院| 性色avwww在线观看| 亚洲精品自拍成人| 国产在线一区二区三区精| 多毛熟女@视频| 国产精品一区二区三区四区免费观看| 女性被躁到高潮视频| 少妇人妻一区二区三区视频| 99热这里只有是精品50| 观看美女的网站| 欧美日韩一区二区视频在线观看视频在线| 麻豆精品久久久久久蜜桃| 色婷婷av一区二区三区视频| 赤兔流量卡办理| 毛片一级片免费看久久久久| 男女啪啪激烈高潮av片| 亚洲美女搞黄在线观看| 多毛熟女@视频| 五月开心婷婷网| 女性被躁到高潮视频| 欧美日韩视频精品一区| 亚洲国产毛片av蜜桃av| 黄色怎么调成土黄色| 亚洲欧美一区二区三区黑人 | 精品酒店卫生间| 下体分泌物呈黄色| 久久久久精品久久久久真实原创| 99久久精品一区二区三区| 一区二区三区四区激情视频| 交换朋友夫妻互换小说| 国产爽快片一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产成人freesex在线| 最近中文字幕高清免费大全6| 亚洲欧美一区二区三区黑人 | h日本视频在线播放| 亚洲人与动物交配视频| 亚洲伊人久久精品综合| 午夜免费男女啪啪视频观看| 能在线免费看毛片的网站| 蜜臀久久99精品久久宅男| 国产在线一区二区三区精| 成人影院久久| 国产高清不卡午夜福利| 韩国高清视频一区二区三区| 黑人高潮一二区| 国产精品99久久久久久久久| 日韩亚洲欧美综合| 少妇丰满av| 小蜜桃在线观看免费完整版高清| 成人无遮挡网站| 国产精品成人在线| 少妇精品久久久久久久| 色视频在线一区二区三区| 人妻夜夜爽99麻豆av| 午夜精品国产一区二区电影| 一级毛片电影观看| 欧美区成人在线视频| 成年免费大片在线观看| 国产男人的电影天堂91| 亚洲欧美日韩东京热| 熟女人妻精品中文字幕| 亚洲综合色惰| 亚洲久久久国产精品| 大香蕉97超碰在线| 亚洲成人中文字幕在线播放| 国产伦精品一区二区三区四那| 亚洲婷婷狠狠爱综合网| 午夜福利在线在线| 久久久久久久亚洲中文字幕| 亚洲欧美日韩卡通动漫| 久久热精品热| 国产日韩欧美亚洲二区| 午夜免费鲁丝| 久久热精品热| 在线观看人妻少妇| 国产高清有码在线观看视频| 交换朋友夫妻互换小说| 日日啪夜夜爽| 色视频在线一区二区三区| 国产免费一级a男人的天堂| 欧美高清性xxxxhd video| 伦理电影免费视频| av福利片在线观看| 天堂俺去俺来也www色官网| 亚洲av福利一区| 成人亚洲精品一区在线观看 | 欧美精品人与动牲交sv欧美| 熟妇人妻不卡中文字幕| 久久ye,这里只有精品| 永久网站在线| 熟妇人妻不卡中文字幕| 丰满迷人的少妇在线观看| 免费观看在线日韩| 国产爽快片一区二区三区| 中国国产av一级| 人妻夜夜爽99麻豆av| 久久久久久人妻| 欧美性感艳星| 男的添女的下面高潮视频| 中文字幕人妻熟人妻熟丝袜美| 天堂8中文在线网| 在线观看av片永久免费下载| 国产 一区 欧美 日韩| 免费观看性生交大片5| 天天躁夜夜躁狠狠久久av| 丝袜喷水一区| 美女福利国产在线 | 丝袜脚勾引网站| 久久久成人免费电影| 欧美+日韩+精品|