• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于四元羧酸鈣配位聚合物的合成、結(jié)構(gòu)及其熒光性能

    2017-11-10 00:49:57楊樂樂韓宇陽(yáng)陸云霞邵彩云楊立榮
    化學(xué)研究 2017年5期
    關(guān)鍵詞:河南大學(xué)化工學(xué)院羧酸

    陳 一,杜 毅,蔡 婷,楊樂樂,韓宇陽(yáng),陸云霞,邵彩云,楊立榮*

    (1.河南大學(xué) 化學(xué)化工學(xué)院,河南省多酸化學(xué)重點(diǎn)實(shí)驗(yàn)室,河南 開封 475004; 2.河南大學(xué) 圖書館, 河南 開封 475001)

    基于四元羧酸鈣配位聚合物的合成、結(jié)構(gòu)及其熒光性能

    陳 一1,杜 毅1,蔡 婷1,楊樂樂1,韓宇陽(yáng)1,陸云霞2,邵彩云1,楊立榮1*

    (1.河南大學(xué) 化學(xué)化工學(xué)院,河南省多酸化學(xué)重點(diǎn)實(shí)驗(yàn)室,河南 開封 475004; 2.河南大學(xué) 圖書館, 河南 開封 475001)

    通過水熱法合成了一種結(jié)構(gòu)穩(wěn)定的金屬有機(jī)框架化合物{[Ca(atba)4·2H2O]·H2O}n(H4atba = 偶氮苯-3,3′,5,5′-四羧酸). 運(yùn)用X射線單晶衍射、紅外譜圖及X射線粉末衍射對(duì)其進(jìn)行了結(jié)構(gòu)表征. 晶體結(jié)構(gòu)測(cè)試表明該配合物通過{Ca2(CO2)2}結(jié)構(gòu)單元形成了一維鏈狀結(jié)構(gòu), 繼而通過配體之間的連接形成二維層狀結(jié)構(gòu), 進(jìn)一步通過共價(jià)鍵構(gòu)筑成三維結(jié)構(gòu). 熒光光譜分析表明, 標(biāo)題化合物對(duì)L-組氨酸具有選擇性識(shí)別作用.

    金屬-有機(jī)框架物;水熱合成;結(jié)構(gòu)表征;熒光識(shí)別

    Biography: CHEN Yi (1996-), male, majoring in coordination chemistry.*Corresponding author, E-mail: lirongyang@henu.edu.cn.

    1 Experimental section

    1.1 Materials and physical measurements

    All chemicals were commercially purchased and used without further purification. IR spectra in the range of 400-4 000 cm-1were obtained with an AVATAR 360 FT-IR spectrometer (KBr pellets were used). The crystal structure was determined with a Bruker Smart CCD X-ray single-crystal diffractometer. Excitation and emission spectra were recorded with an F-7000 FL spectrofluorometer at room temperature. Powder X-ray diffraction (PXRD) patterns were recorded on a Bruker D8.

    1.2 Synthesis of the coordination

    A mixture of calcium chloride (11.1 mg, 0.2 mmol), azobenzene-3,3,5,5-tetracarboxylic acid (37.4 mg, 0.1 mmol), 4′4 bipyridyl (13.6 mg, 0.1 mmol) and water (10 mL) was homogenized by stirring for 30 min, afterwards, the pH value of the mixture was tuned to 6, then transferred into 25 mL Teflon-linepd stainless steel autoclave under autogenous pressure at 125 ℃ for 3 days. After cooling the reaction system to room temperature at a rate of 5 ℃/h, and transparent block crystals suitable for X-ray diffraction analysis were obtained. IR data (KBr pellet, cm-1): 3 337(m), 3 117(w), 1 607(s), 1 563(s), 1 481(m), 1 439(s), 1 380(s), 1 208(m), 1 103(w), 1 006(w), 783(m), 670(w), 542(w), 484(w).

    1.3 Crystallographic data collection and refinement

    Single-crystal diffraction data were collected suitable single crystals of the coordination polymers on a Bruker Smart CCD X-ray single-crystal diffractometer with graphite monochromated Mo Kα-radiation (λ= 0.071 073 nm). All independent reections were collected in a range of 3.69°-26.37° for the coordination polymer. Multi-scan empirical absorption corrections were applied to the data using the SADABS. The crystal structure was solved by direct methods and Fourier synthesis. Positional and thermal parameters were refined by the full-matrix least-squares method onF2using the SHELXTL software package. The final least-square cycle of refinement gaveR1= 0.032 7,WR2= 0.087 9 for the coordination polymer, the weighting schemeW= 1/[δ2(F20)+(0.041 0P)2+0.139 9P] for the coordination polymer, whereP= (F20+2Fc2)/3. The crystallographic data, selected bond lengths and bond angles for coordination polymer {[Ca(atba)4·2H2O]·H2O}nare listed in Table 1 and Table 2, respectively.

    2 Results and discussion

    2.1 FT-IR spectroscopy and X-ray powder diffraction

    The complex is stable at room temperature and insoluble in common solvents; such as CH3COCH3,CH3CH2OH and CH3CN, but they are slight soluble in H2O and soluble in CH3OH and DMF. The powder XRD patterns of the coordination polymer have been investigated. As shown in Fig.1, the experimental powder XRD patterns are consistent with the simulated ones on the basis of the single-crystal structure, which indicated that the corresponding samples are pure. Meanwhile, the structure of the coordination polymer was revealed by FT-IR (Fig.2). The strong and broad absorption bands within the scope of 3 496-3 342 cm-1are assigned to the water molecules in coordination and lattice forms. Some other strong absorption bands can be seen in the region of 1 610-1 606 cm-1and 1 383-1 375 cm-1, which may be ascribed to the asymmetric (COO-) and symmetric (COO-) stretching of carboxyl groups of atbt4-ligands in the coordination polymer. The values ofΔ[vas-vs] are about 223-235 cm-1, which indicate that the carboxyl groups are coordinated with the metal ions via bidentate-bridging mode. The absence of the characteristic bands around 1 700 cm-1demonstrate that the H4atba ligands are completely deprotonated in the form of atba4-anions upon reaction with the metal ions[24-27]. The same conclusions are also supported by the results obtained from X-ray diffraction measurements.

    Table 1 Summary of crystallographic data for the complex

    Table 2 Bond lengths and angles for the complex

    Fig.1 Simulated and experimental powder XRD patterns

    Fig.2 IR of coordination polymer

    2.2 Structural description of the coordination polymer

    The crystallographic data, selected bond lengths and bond angles for coordination polymer {[Ca(atba)4·2H2O]·H2O}nare listed in Table 1 and Table 2. The Single crystal X-ray diffraction analysis reveals that the complex crystallizes in the triclinic crystal system of theP-1 space group. The coordination geometry of center Ca (Ⅱ) is a contorted six-oxygen-coordinated octahedron (Fig.3d), and four of them are from four atba4-ligand, respectively, as well as another two oxygen atoms are from two water molecules (Fig.3a,b). The Ca-O bond distances range from 0.229 16(16) nm to 0.239 38(19) nm, and the angles of O-Ca-O are within the scopes of 7.753(6)°-17.405(6)°, which are consistent with the bond length data and angles in previous work covering the corresponding coordination polymers[28-29]. Two adjoining crystallographic equivalent Ca(Ⅱ) are bridged by two carboxyl groups from atba4-ligands to form the building unit of {Ca2(CO2)2}. Afterwards, based on such units, the complex is generated into a 1D infinite linear metallic chains (Fig.3c). The 1D chains are connected into 2D layers (Fig.3e) through atba4-ligands, which are further interlinked to a 3D porous framework (Fig.3f). Meanwhile, the stabilization are strengthen owing to the covalent bonding interactions between adjacent layers which contribute to the formation of 3D structure[30-31].

    Fig.3 a) Coordination environment of Ca (Ⅱ) ion; b) Coordination mode of the ligand; c) the 1D chain in the complex; d) Diagram showing the coordination environment for Ca(Ⅱ) center; e) view of 2D layer in the complex ; f) The 3D structure of the complex

    2.3 Luminescent properties

    As mentioned above, metal ions or SBUs and organic ligands constitute the MOFs, in which, the part of organic ligands often contain aromatic or conjugated moieties that are subject to excitation, giving rise to optical emission or photoluminescence (PL) upon irradiation. Furthermore, the metal components can also contribute to photoluminescence, in which case lanthanides or various inorganic clusters are often involved.

    Fig.4 Emission spectra of the coordination polymer and amino acids at room temperature (Black, coordination polymer; Red, amino acids; Blue, mixture of coordination polymer and amino acids). a) L-Aspartic, b) L-Threonine, c) L-Glutamate, d) L-Arginin, e) L-Histidine, f) L-Glitamine, g) L-Phenylalanine

    Luminescent properties of alkaline-earth metal coordination polymers are not well-studied up to now, although there are reports on the luminescent properties of alkaline earth metal-containing inorganic materials[32-34]. In this study, the original as-synthesized complex was used to sense amino acids. The investigation of luminescent properties for sensing amino acids was determined in the liquid state at room temperature. The crystalline samples were immersed in deionized water containing various amino acids to give 10-4mol/L solutions. Emission spectra of the complex in water containingL-Asp,L-Threonine,L-Glutamic acid,L-Arginine,L-Histidine,L-Glutamine,L-Hydrocinnamamide (10-4mol/L) are graphically shown in Fig.4 and Fig.5, respectively. The results indicate that most of the tested amino acids just gave slight effect on the fluorescence intensity of the initial coordination polymer exceptL-Histidine (as illustrated in Fig.4e). Furthermore, red shift occurs in the emission spectra. Detailedly, at the presence ofL-Histidine, the emission intensity is declined sharply. The high selectivity forL-Histidine sensing probably results from the electrostatic interaction between -COO-anions (deriving from the free carboxyl groups of side chains in the polymeric backbone) and -NH3+cations (belonging to amino acids), which affords signal amplification[35].

    Fig.5 Luminescent intensities of the coordination polymer upon the addition of various amino acids at room temperature

    3 Conclusion

    In summary, we have successfully synthesized the complex based on alkaline earth metal under hydrothermal conditions, namely, {[Ca(atba)4·2H2O]·H2O}n. Structural analysis indicates that the complex presents a 1D uniform Ca-carboxylate chain based on the building unit of {Ca2(CO2)2}, thereafter, the 1D chains are connected to fabricate a 2D layered structure. Furthermore, these 2D layers are assembled into 3D network via covalent bonding. Luminescent properties of the complex have been studied at ambient temperature. Remarkably, the synthesized complex presents highly sensitive and selective towardL-Histidine and it may be acting as a promising sensor for its rapid detection.

    [1] PERRY IV J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chemical Society Reviews, 2009, 38(5): 1400-1417.

    [2] O’KEEFFE M, YAGHI O M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets[J]. Chemical Reviews, 2011, 112(2): 675-702.

    [3] HE Y, LI B, O’KEEFFE M, et al. Multifunctional metal-organic frameworks constructed from meta-benzenedicarbo-xylate units[J]. Chemical Society Reviews, 2014, 43(16): 5618-5656.

    [4] KITAGAWA S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews, 2014, 43(16): 5415-5418.

    [5] HU Z, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43(16): 5815-5840.

    [6] TRANCHEMONTAGNE D J, MENDOZA-CORTéS J L, O’KEEFFE M, et al. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1257-1283.

    [7] O’KEEFFE M. Design of MOFs and intellectual content in reticular chemistry: a personal view[J]. Chemical Society Reviews, 2009, 38(5): 1215-1217.

    [8] PERRY IV J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chemical Society Reviews, 2009, 38(5): 1400-1417.

    [9] BROZEK C K, DINCM. Cation exchange at the secondary building units of metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5456-5467.

    [10] JASUJA H, PETERSON G W, DECOSTE J B, et al. Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air[J]. Chemical Engineering Science, 2015, 124: 118-124.

    [11] HASEGAWA S, HORIKE S, MATSUDA R, et al. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis[J]. Journal of the American Chemical Society, 2007, 129(9): 2607-2614.

    [12] ROSI N L, ECKERT J, EDDAOUDI M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129.

    [13] ZHAO X, XIAO B, FLETCHER A J, et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks[J]. Science, 2004, 306(5698): 1012-1015.

    [14] LEE J Y, FARHA O K, ROBERTS J, et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5): 1450-1459.

    [15] STAVILA V, TALIN A A, ALLENDORF M D. MOF-based electronic and opto-electronic devices[J]. Chemical Society Reviews, 2014, 43(16): 5994-6010.

    [16] LOERA-SERNA S, OLIVER-TOLENTINO M A, DE LOURDES LPEZ-NU′EZ M, et al. Electrochemical behavior of [Cu3(BTC)2] metal-organic framework: the effect of the method of synthesis[J]. Journal of Alloys and Compounds, 2012, 540: 113-120.

    [17] KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2011, 112(2): 1105-1125.

    [18] ACHMANN S, HAGEN G, KITA J, et al. Metal-organic frameworks for sensing applications in the gas phase[J]. Sensors, 2009, 9(3): 1574-1589.

    [19] LIU J, CHEN L, CUI H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chemical Society Reviews, 2014, 43(16): 6011-6061.

    [20] HU Z, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43(16): 5815-5840.

    [21] PERRIER M, KENOUCHE S, LONG J, et al. Investigation on NMR relaxivity of nano-sized cyano-bridged coordination polymers[J]. Inorganic Chemistry, 2013, 52(23): 13402-13414.

    [22] ROESKY H W, ANDRUH M. The interplay of coordinative, hydrogen bonding and π-π stacking interactions in sustaining supramolecular solid-state architectures: A study case of bis (4-pyridyl)-and bis (4-pyridyl-N-oxide) tectons[J]. Coordination Chemistry Reviews, 2003, 236(1): 91-119.

    [23] LI X F, HAN Z B, CHENG X N, et al. Studies on the radii dependent lanthanide self-assembly coordination behaviors of a flexible dicarboxylate ligand[J]. Inorganic Chemistry Communications, 2006, 9(11): 1091-1095.

    [24] LI J R, YU Q, TAO Y, et al. Magnetic canting or not? two isomorphous 3D Co II and Ni II coordination polymers with the rare non-interpenetrated (10, 3)-d topological network, showing spin-canted antiferromagnetism only in the Co II system[J]. Chemical Communications, 2007(22): 2290-2292.

    [25] DANESHFAR R, KLASSEN J S. Arrhenius activation parameters for the loss of neutral nucleobases from deprotonated oligonucleotide anions in the gas phase[J]. Journal of the American Society for Mass Spectrometry, 2004, 15(1): 55-64.

    [26] TANCREZ N, FEUVRIE C, LEDOUX I, et al. Lanthanide complexes for second order nonlinear optics: evidence for the direct contribution of electrons to the quadratic hyperpolarizability 1[J]. Journal of the American Chemical Society, 2005, 127(39): 13474-13475.

    [27] HUGHES C E, REDDY G N M, MASIERO S, et al. Determination of a complex crystal structure in the absence of single crystals: analysis of powder X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new 2′-deoxyguanosine structural motif[J]. Chemical Science, 2017, 8(5): 3971-3979.

    [28] ZHANG D, ZHANG R, LI J, et al. Two new 2D coordination polymers constructed from 2, 6-dimethylpyridine-3, 5-dicarboxylic acid ligands and alkaline earth metals (Sr and Ba)[J]. Inorganic Chemistry Communications, 2013, 35: 307-310.

    [29] RUI-FEN D, FENG L, FU-WEI L, et al. Stabilization variation of organic conductor surfaces induced by π-π stacking interactions[J]. Chinese Physics B, 2012, 21(5): 056801.

    [30] POATER J, SWART M, BICKELHAUPT F M, et al. B-DNA structure and stability: the role of hydrogen bonding, π-π stacking interactions, twist-angle, and solvation[J]. Organic & Biomolecular Chemistry, 2014, 12(26): 4691-4700.

    [31] HU Z, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43(16): 5815-5840.

    [32] SHUSTOVA N B, COZZOLINO A F, REINEKE S, et al. Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites[J]. Journal of the American Chemical Society, 2013, 135(36): 13326-13329.

    [33] JAYARAMULU K, KANOO P, GEORGE S J, et al. Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive ligand[J]. Chemical Communications, 2010, 46(42): 7906-7908.

    [34] DOUVALI A, PAPAEFSTATHIOU G S, GULLO M P, et al. Alkaline earth metal ion/dihydroxy-terephthalate MOFs: Structural diversity and unusual luminescent pro-perties[J]. Inorganic Chemistry, 2015, 54(12): 5813-5826.

    [35] ZHOU Y, YOON J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids[J]. Chemical Society Reviews, 2012, 41(1): 52-67.

    date: 2017-06-26.

    Synthesis,structure,characterizationandfluorescencepropertiesofpolymersbasedoncalcium(Ⅱ)andazoxybenzene-3,3′,5,5′-tetracarboxyicacid

    CHEN Yi1, DU Yi1, CAI Ting1, YANG Lele1, HAN Yuyang1, LU Yunxia2, SHAO Caiyun1, YANG Lirong1*

    (1.HenanKeyLaboratoryofPolyoxometalateChemistry,CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China; 2.LibraryofHenanUniversity,Kaifeng475001,Henan,China)

    A sable metal-organic framework of Ca (Ⅱ), namely, {[Ca(atba)4·2H2O]·H2O}n(H4atba=azoxybenzene-3,3′,5,5′-tetracarboxyic acid) has been synthesized under solvothermal conditions. The complex was characterized by single crystal X-ray analysis, IR spectroscopy and X-ray powder diffraction. Structural determination shows that the complex presents a 1D (one-dimensional) uniform Ca-carboxylate chain based on the building unit of {Ca2(CO2)2}, thereafter, the 1D chains are connected to form a 2D (two-dimensional) layered structure by ligands. These 2D layers are further linked into 3D (three-dimensional) network via covalent bonding. Luminescent properties of the complex have been studied at ambient temperature. The complex shows selective response toL-Histidine, suggesting that it may be promising luminescent selective recognition sensor forL-Histidine.

    metal-organic framework; hydrothermal synthesis; structural characterization; luminescent property

    O627.1DocumentcodeA

    1008-1011(2017)05-0548-08

    This research is financially supported by the Natural Science Foundation of Henan Province of China (Nos. 162300410010 and 13A150056).

    Metal-organic frameworks (MOFs), also termed as porous coordination polymers (PCPs), are fascinating materials that are both fundamentally important and technologically relevant[1-5]. As indicated by the name, MOFs are consist of inorganic metal ions or metal-containing clusters (secondary building units or SBUs) and organic ligands via metal coordination bonds, and this mode formed the porous crystalline solid which possess the coordination mode of conjugate bridging ligands and the topological features the geometry of metal centers. Owing to the special structure, it’s significant to select suitable ligands with fixed geometry and variable bonding modes for designing and synthetizing coordination polymers with interesting geometric configurations[6-9]. Based on the intrinsic permanent porous interpenetration networks, various functionalities and potential applications in numerous areas can be accessed, such as gas storage and separation, heterogeneous catalysis, guest-exchange, molecular recognition, magnetic properties and selective luminescent probes[10-18]. Given the nearly limitless choices of metal and ligand combinations, MOFs can thrive on structural diversity, tunable chemical and physical properties[19-20]. Much effort has been focused on coordination polymers for decades, this filed has got enormous development, especially in lanthanide- and transition-metal-based coordination polymers. The assembly of the lanthanide ions and the transition metal ions in combination with organic linkers already could be systematically investigated. Nevertheless, the coordination polymers of the alkaline-earth metal ions still remain much less developed, and only several coordination polymers have been reported[21-23]. Following our longstanding research on the synthesis and separation of novel coordination polymers, in this work, we have successfully synthesized the complex {[Ca(atba)4·2H2O]·H2O}nbased on alkaline earth metal under hydrothermal conditions.

    [責(zé)任編輯:劉紅玲]

    猜你喜歡
    河南大學(xué)化工學(xué)院羧酸
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    攪拌對(duì)聚羧酸減水劑分散性的影響
    歸 去 兮
    新生代(2019年5期)2019-11-14 06:17:33
    詠 河 大
    新生代(2018年15期)2018-11-13 19:48:53
    故 鄉(xiāng)
    《化工學(xué)報(bào)》贊助單位
    18禁在线无遮挡免费观看视频| 久久99一区二区三区| 99热这里只有是精品在线观看| 亚洲av福利一区| 欧美xxⅹ黑人| tube8黄色片| 亚洲婷婷狠狠爱综合网| 国产成人91sexporn| 国产白丝娇喘喷水9色精品| 国产在线一区二区三区精| 亚洲精品日本国产第一区| 丰满迷人的少妇在线观看| 国产熟女午夜一区二区三区| 女性生殖器流出的白浆| 又黄又爽又刺激的免费视频.| 午夜老司机福利剧场| www.熟女人妻精品国产 | 秋霞伦理黄片| 欧美精品av麻豆av| 久久久欧美国产精品| 久久久精品94久久精品| 国产成人精品福利久久| 亚洲成人手机| 成人毛片a级毛片在线播放| 秋霞在线观看毛片| 中文欧美无线码| 久久久久久久国产电影| 自拍欧美九色日韩亚洲蝌蚪91| 日韩在线高清观看一区二区三区| 尾随美女入室| 免费黄频网站在线观看国产| 少妇的逼水好多| 国产欧美亚洲国产| 伦理电影大哥的女人| 午夜免费男女啪啪视频观看| 亚洲精品一二三| 老熟女久久久| 亚洲三级黄色毛片| 大香蕉久久网| 国产在线免费精品| 边亲边吃奶的免费视频| av播播在线观看一区| 纵有疾风起免费观看全集完整版| 成人毛片a级毛片在线播放| 亚洲性久久影院| 日韩制服丝袜自拍偷拍| 亚洲国产精品成人久久小说| 精品第一国产精品| 中国三级夫妇交换| 亚洲av中文av极速乱| videosex国产| 成年女人在线观看亚洲视频| 国产一级毛片在线| 免费黄色在线免费观看| 久久精品久久精品一区二区三区| 国产男女内射视频| 国产精品偷伦视频观看了| 国产午夜精品一二区理论片| 免费黄色在线免费观看| 热99国产精品久久久久久7| 91精品国产国语对白视频| 成人影院久久| 18禁裸乳无遮挡动漫免费视频| 26uuu在线亚洲综合色| 亚洲精品视频女| 免费观看av网站的网址| 色94色欧美一区二区| 久久亚洲国产成人精品v| 成年女人在线观看亚洲视频| 久久久久久久亚洲中文字幕| 午夜精品国产一区二区电影| 亚洲精品日本国产第一区| 五月天丁香电影| 精品少妇内射三级| 国内精品宾馆在线| 国内精品宾馆在线| 国产亚洲精品久久久com| a级毛片黄视频| 日韩一区二区三区影片| 国产日韩欧美视频二区| 国产精品久久久久久精品电影小说| 性色avwww在线观看| 一本大道久久a久久精品| 91精品伊人久久大香线蕉| 亚洲欧美日韩卡通动漫| 免费观看无遮挡的男女| 亚洲精品av麻豆狂野| 亚洲综合精品二区| 日韩免费高清中文字幕av| 老司机影院成人| 亚洲人与动物交配视频| 狂野欧美激情性bbbbbb| 欧美日韩av久久| 午夜福利影视在线免费观看| 一级毛片我不卡| 日本爱情动作片www.在线观看| 国产精品一区二区在线不卡| 中国国产av一级| 日本猛色少妇xxxxx猛交久久| 国产一区二区三区av在线| 一级片免费观看大全| 亚洲欧美精品自产自拍| 亚洲国产精品一区二区三区在线| www.av在线官网国产| 90打野战视频偷拍视频| 99国产综合亚洲精品| 亚洲国产精品一区二区三区在线| 免费av不卡在线播放| 亚洲第一区二区三区不卡| 成人毛片a级毛片在线播放| 高清黄色对白视频在线免费看| 国产色婷婷99| 国产淫语在线视频| av黄色大香蕉| 少妇熟女欧美另类| 黄色毛片三级朝国网站| 国产一区二区在线观看av| 日韩精品有码人妻一区| 亚洲天堂av无毛| 婷婷色麻豆天堂久久| 满18在线观看网站| 欧美精品一区二区大全| 亚洲一码二码三码区别大吗| 欧美日韩一区二区视频在线观看视频在线| 人人妻人人爽人人添夜夜欢视频| 国产成人一区二区在线| 亚洲精品成人av观看孕妇| 美女福利国产在线| 丝袜美足系列| 久久国内精品自在自线图片| 在线观看三级黄色| 免费观看a级毛片全部| 99热国产这里只有精品6| 久久99蜜桃精品久久| 两性夫妻黄色片 | 999精品在线视频| 国产免费一区二区三区四区乱码| 欧美国产精品一级二级三级| 2018国产大陆天天弄谢| 日韩中文字幕视频在线看片| 国产极品粉嫩免费观看在线| 国产黄频视频在线观看| av网站免费在线观看视频| 精品人妻偷拍中文字幕| 天天操日日干夜夜撸| 国产女主播在线喷水免费视频网站| 中文字幕人妻丝袜制服| 国产精品久久久久久久电影| 日本-黄色视频高清免费观看| 成人毛片60女人毛片免费| av福利片在线| 91aial.com中文字幕在线观看| www.色视频.com| av又黄又爽大尺度在线免费看| 日本wwww免费看| 超色免费av| 最新的欧美精品一区二区| 国产精品成人在线| 国产精品成人在线| 日本与韩国留学比较| 国产精品久久久久久久电影| 亚洲中文av在线| 亚洲成色77777| 男女免费视频国产| 最近最新中文字幕大全免费视频 | 精品人妻一区二区三区麻豆| 18禁观看日本| 国产精品久久久久久久久免| 99热6这里只有精品| 丰满饥渴人妻一区二区三| 欧美日韩亚洲高清精品| av卡一久久| 好男人视频免费观看在线| 在线 av 中文字幕| 咕卡用的链子| 最近的中文字幕免费完整| 久久精品久久久久久久性| 黄色 视频免费看| 久久人人97超碰香蕉20202| 熟妇人妻不卡中文字幕| 欧美 日韩 精品 国产| 久热这里只有精品99| 成年动漫av网址| 久久久久精品人妻al黑| 制服丝袜香蕉在线| 亚洲精品美女久久av网站| 99精国产麻豆久久婷婷| 国产男女超爽视频在线观看| 人体艺术视频欧美日本| 国产免费福利视频在线观看| 一级,二级,三级黄色视频| 亚洲av国产av综合av卡| 免费观看a级毛片全部| 一区在线观看完整版| 精品国产乱码久久久久久小说| 国产精品免费大片| 中文字幕最新亚洲高清| 午夜久久久在线观看| av一本久久久久| 91久久精品国产一区二区三区| 亚洲av福利一区| 一边亲一边摸免费视频| 啦啦啦在线观看免费高清www| 97在线视频观看| 久久99热这里只频精品6学生| 欧美人与性动交α欧美软件 | 久久av网站| 国产精品.久久久| 精品国产一区二区三区久久久樱花| 成年美女黄网站色视频大全免费| 视频在线观看一区二区三区| 午夜av观看不卡| 欧美bdsm另类| 国产亚洲欧美精品永久| 日本猛色少妇xxxxx猛交久久| 黄色毛片三级朝国网站| 国产精品久久久久久精品电影小说| 久久99热6这里只有精品| 韩国精品一区二区三区 | 草草在线视频免费看| 亚洲国产av影院在线观看| 一级片免费观看大全| 精品国产露脸久久av麻豆| 国产极品天堂在线| 亚洲美女视频黄频| 午夜久久久在线观看| 亚洲高清免费不卡视频| 秋霞在线观看毛片| 日韩制服丝袜自拍偷拍| 美女中出高潮动态图| 久久久久久久久久成人| 日韩熟女老妇一区二区性免费视频| 亚洲欧美一区二区三区黑人 | 天堂中文最新版在线下载| 亚洲av国产av综合av卡| 日韩不卡一区二区三区视频在线| 高清av免费在线| 免费大片18禁| 美女内射精品一级片tv| 国产成人aa在线观看| 久热久热在线精品观看| 亚洲国产看品久久| 亚洲激情五月婷婷啪啪| 午夜激情久久久久久久| 毛片一级片免费看久久久久| 久热久热在线精品观看| 另类亚洲欧美激情| 国产免费福利视频在线观看| 最黄视频免费看| 18禁在线无遮挡免费观看视频| 内地一区二区视频在线| 美女脱内裤让男人舔精品视频| 大码成人一级视频| 黄网站色视频无遮挡免费观看| h视频一区二区三区| 亚洲精品日韩在线中文字幕| 啦啦啦中文免费视频观看日本| 99热6这里只有精品| 国产亚洲av片在线观看秒播厂| 交换朋友夫妻互换小说| 色哟哟·www| 99热6这里只有精品| 精品一区二区三卡| 久久久国产精品麻豆| 国产麻豆69| 观看美女的网站| 欧美精品亚洲一区二区| 国产精品麻豆人妻色哟哟久久| 免费女性裸体啪啪无遮挡网站| 亚洲av国产av综合av卡| 人人妻人人添人人爽欧美一区卜| a 毛片基地| 在线观看一区二区三区激情| 日韩在线高清观看一区二区三区| 精品国产露脸久久av麻豆| 美女大奶头黄色视频| 欧美日韩成人在线一区二区| 交换朋友夫妻互换小说| 亚洲精品久久久久久婷婷小说| 亚洲一码二码三码区别大吗| 哪个播放器可以免费观看大片| 2018国产大陆天天弄谢| 两个人看的免费小视频| 国产精品久久久久成人av| 久热久热在线精品观看| 亚洲国产看品久久| 插逼视频在线观看| 亚洲色图 男人天堂 中文字幕 | 国产成人精品婷婷| 99久国产av精品国产电影| 久久久久久久亚洲中文字幕| 欧美激情极品国产一区二区三区 | 亚洲精品av麻豆狂野| 一边摸一边做爽爽视频免费| 免费人成在线观看视频色| 国产免费福利视频在线观看| 国产国语露脸激情在线看| 狂野欧美激情性xxxx在线观看| 欧美国产精品va在线观看不卡| 妹子高潮喷水视频| 赤兔流量卡办理| 久久免费观看电影| 久久久久视频综合| 久久精品国产综合久久久 | 1024视频免费在线观看| 一级片'在线观看视频| 日韩免费高清中文字幕av| 日韩制服丝袜自拍偷拍| 久久精品国产亚洲av涩爱| 只有这里有精品99| 五月伊人婷婷丁香| 成人漫画全彩无遮挡| 9热在线视频观看99| 97在线人人人人妻| videosex国产| 人人妻人人澡人人看| 日韩成人av中文字幕在线观看| 秋霞在线观看毛片| 久久婷婷青草| 亚洲色图 男人天堂 中文字幕 | 久久久a久久爽久久v久久| 国产免费福利视频在线观看| 我的女老师完整版在线观看| 免费大片18禁| 国产黄色视频一区二区在线观看| av黄色大香蕉| 波野结衣二区三区在线| 亚洲天堂av无毛| 亚洲国产精品一区三区| 欧美精品亚洲一区二区| 国产日韩欧美亚洲二区| 欧美激情极品国产一区二区三区 | 精品久久久精品久久久| 欧美成人精品欧美一级黄| 欧美变态另类bdsm刘玥| 免费女性裸体啪啪无遮挡网站| 亚洲欧美精品自产自拍| 一区在线观看完整版| a级毛色黄片| 内地一区二区视频在线| 国产乱人偷精品视频| 黄色一级大片看看| 一本—道久久a久久精品蜜桃钙片| 亚洲精品日本国产第一区| 婷婷色av中文字幕| 另类亚洲欧美激情| 久久99一区二区三区| 97在线视频观看| 亚洲av免费高清在线观看| 国产乱人偷精品视频| 国产精品.久久久| 欧美bdsm另类| 日韩成人av中文字幕在线观看| 国产日韩欧美视频二区| 18+在线观看网站| 日韩一本色道免费dvd| 自拍欧美九色日韩亚洲蝌蚪91| 大片免费播放器 马上看| 内地一区二区视频在线| 捣出白浆h1v1| 日本午夜av视频| 国产成人av激情在线播放| 少妇 在线观看| 午夜福利乱码中文字幕| 天堂中文最新版在线下载| 各种免费的搞黄视频| 日韩免费高清中文字幕av| 伊人久久国产一区二区| 色94色欧美一区二区| 久久精品国产自在天天线| 青青草视频在线视频观看| 丰满饥渴人妻一区二区三| 97超碰精品成人国产| 久久免费观看电影| 午夜久久久在线观看| 久久久久网色| 国产免费又黄又爽又色| 插逼视频在线观看| 日本vs欧美在线观看视频| 黄色毛片三级朝国网站| 如何舔出高潮| 日本黄色日本黄色录像| 国产精品无大码| 搡老乐熟女国产| 久久久久国产精品人妻一区二区| 久久狼人影院| 国产精品 国内视频| 国国产精品蜜臀av免费| 精品一区二区三区视频在线| 巨乳人妻的诱惑在线观看| 久久人妻熟女aⅴ| 亚洲熟女精品中文字幕| 天堂8中文在线网| 蜜桃国产av成人99| 久久久久精品人妻al黑| 婷婷色综合大香蕉| 在线观看美女被高潮喷水网站| 天堂俺去俺来也www色官网| 中国美白少妇内射xxxbb| 亚洲精品久久久久久婷婷小说| 中文字幕最新亚洲高清| 秋霞在线观看毛片| 日韩在线高清观看一区二区三区| 丝袜人妻中文字幕| 亚洲av电影在线观看一区二区三区| 亚洲精品成人av观看孕妇| 国产精品人妻久久久久久| 欧美亚洲 丝袜 人妻 在线| 丰满迷人的少妇在线观看| 蜜桃国产av成人99| 大香蕉久久网| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美清纯卡通| 少妇精品久久久久久久| 永久免费av网站大全| 日本猛色少妇xxxxx猛交久久| 亚洲精品成人av观看孕妇| 人人妻人人爽人人添夜夜欢视频| 一区在线观看完整版| 美女福利国产在线| 亚洲少妇的诱惑av| 欧美xxⅹ黑人| 国产男女内射视频| 在线免费观看不下载黄p国产| 18+在线观看网站| 日本色播在线视频| 91精品伊人久久大香线蕉| 91成人精品电影| 伊人亚洲综合成人网| 成人18禁高潮啪啪吃奶动态图| 丝袜在线中文字幕| 亚洲中文av在线| 亚洲精品乱久久久久久| 97人妻天天添夜夜摸| 国产成人一区二区在线| 久久精品久久久久久噜噜老黄| 午夜老司机福利剧场| 国产高清三级在线| av网站免费在线观看视频| 午夜免费鲁丝| 国产乱人偷精品视频| 午夜福利网站1000一区二区三区| 夫妻午夜视频| 超碰97精品在线观看| 久久久久久久久久人人人人人人| 日韩大片免费观看网站| 欧美精品亚洲一区二区| 欧美+日韩+精品| 最新中文字幕久久久久| 亚洲av免费高清在线观看| 国产又色又爽无遮挡免| 看非洲黑人一级黄片| 亚洲精品国产av成人精品| 日韩欧美一区视频在线观看| 男女边摸边吃奶| 一二三四中文在线观看免费高清| 狂野欧美激情性bbbbbb| 热99久久久久精品小说推荐| 美女主播在线视频| 亚洲精品国产av成人精品| 国产精品国产av在线观看| 最新中文字幕久久久久| 亚洲欧美一区二区三区国产| 欧美日本中文国产一区发布| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩另类电影网站| 日韩,欧美,国产一区二区三区| 各种免费的搞黄视频| 婷婷色av中文字幕| 最近最新中文字幕大全免费视频 | 自拍欧美九色日韩亚洲蝌蚪91| 两个人看的免费小视频| 欧美激情极品国产一区二区三区 | 国产乱来视频区| 中国美白少妇内射xxxbb| 99热网站在线观看| 99热全是精品| 中文字幕人妻丝袜制服| 美女xxoo啪啪120秒动态图| 涩涩av久久男人的天堂| 只有这里有精品99| 国内精品宾馆在线| 99国产精品免费福利视频| 国产精品人妻久久久影院| 美女视频免费永久观看网站| 永久网站在线| 最近中文字幕高清免费大全6| 夜夜爽夜夜爽视频| 69精品国产乱码久久久| 99久久精品国产国产毛片| 人人妻人人爽人人添夜夜欢视频| 大码成人一级视频| 欧美成人精品欧美一级黄| 天天操日日干夜夜撸| av在线播放精品| 国产一区有黄有色的免费视频| 91国产中文字幕| 老司机影院成人| 看十八女毛片水多多多| 男女国产视频网站| 又黄又爽又刺激的免费视频.| 日韩中字成人| 97人妻天天添夜夜摸| 免费高清在线观看日韩| 在线观看美女被高潮喷水网站| 美女中出高潮动态图| 国产精品秋霞免费鲁丝片| 一边摸一边做爽爽视频免费| 日本免费在线观看一区| 久久97久久精品| 考比视频在线观看| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美日韩在线播放| 午夜日本视频在线| 热99国产精品久久久久久7| 成人亚洲精品一区在线观看| 狂野欧美激情性xxxx在线观看| 亚洲三级黄色毛片| 一区二区av电影网| 一二三四在线观看免费中文在 | 99香蕉大伊视频| 亚洲五月色婷婷综合| 男女免费视频国产| 亚洲高清免费不卡视频| 国产毛片在线视频| 一级毛片电影观看| 国产精品久久久av美女十八| 搡女人真爽免费视频火全软件| 三级国产精品片| 国产免费福利视频在线观看| 好男人视频免费观看在线| 亚洲精品美女久久久久99蜜臀 | 国产一区亚洲一区在线观看| 女人被躁到高潮嗷嗷叫费观| 日韩一本色道免费dvd| 春色校园在线视频观看| 国产一区二区激情短视频 | 亚洲久久久国产精品| 色哟哟·www| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 久久99热6这里只有精品| 成人毛片60女人毛片免费| 一本久久精品| 性高湖久久久久久久久免费观看| 中国国产av一级| 青春草视频在线免费观看| 国产一区二区在线观看av| 欧美亚洲日本最大视频资源| 亚洲精品日韩在线中文字幕| 免费日韩欧美在线观看| 日韩熟女老妇一区二区性免费视频| 国产高清国产精品国产三级| 国产色婷婷99| 99久久中文字幕三级久久日本| 国产精品久久久久久精品古装| 日韩一本色道免费dvd| 夜夜骑夜夜射夜夜干| 90打野战视频偷拍视频| av天堂久久9| 国产乱人偷精品视频| 亚洲美女黄色视频免费看| 中文字幕精品免费在线观看视频 | 波多野结衣一区麻豆| a级毛片黄视频| 亚洲人成77777在线视频| 男女高潮啪啪啪动态图| 老熟女久久久| 成人手机av| av不卡在线播放| 在线天堂中文资源库| 九色成人免费人妻av| 欧美成人午夜免费资源| 超色免费av| 亚洲精品日本国产第一区| 欧美变态另类bdsm刘玥| 视频区图区小说| 性色av一级| av网站免费在线观看视频| 欧美日韩国产mv在线观看视频| 深夜精品福利| 亚洲精品国产色婷婷电影| 免费黄频网站在线观看国产| 男人操女人黄网站| 国产精品一区www在线观看| 美女脱内裤让男人舔精品视频| 久久午夜综合久久蜜桃| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 久久久久网色| 色网站视频免费| 中文字幕av电影在线播放| 亚洲国产日韩一区二区| 欧美日韩一区二区视频在线观看视频在线| 久久午夜福利片| 成人亚洲欧美一区二区av| 久久 成人 亚洲| 女性生殖器流出的白浆| 久久韩国三级中文字幕| 久久国产精品大桥未久av| 午夜福利影视在线免费观看| 成人毛片60女人毛片免费| a级毛片黄视频| 欧美精品人与动牲交sv欧美| 国产 精品1| 人成视频在线观看免费观看| 老司机亚洲免费影院| 人成视频在线观看免费观看| 日韩 亚洲 欧美在线| 国产精品 国内视频| 秋霞在线观看毛片| 街头女战士在线观看网站| 亚洲精品中文字幕在线视频| 哪个播放器可以免费观看大片| 丝袜在线中文字幕|