秦明陽,郭建華,黃儼然,3,焦 鵬,鄭振華,卿艷彬,吳詩情,3
(1.中南大學(xué) 地球科學(xué)與信息物理學(xué)院,湖南 長沙 410083; 2.湖南省煤炭地質(zhì)勘查院,湖南 長沙 410014;3.湖南科技大學(xué) 頁巖氣資源利用湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 湘潭 411201)
四川盆地東緣湘西北地區(qū)牛蹄塘組頁巖儲(chǔ)層特征及影響因素
秦明陽1,2,郭建華1,黃儼然1,3,焦 鵬1,鄭振華2,卿艷彬2,吳詩情1,3
(1.中南大學(xué) 地球科學(xué)與信息物理學(xué)院,湖南 長沙 410083; 2.湖南省煤炭地質(zhì)勘查院,湖南 長沙 410014;3.湖南科技大學(xué) 頁巖氣資源利用湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 湘潭 411201)
四川盆地東緣湘西北地區(qū)牛蹄塘組具有分布廣、厚度大、埋藏適中、有機(jī)質(zhì)豐度高以及熱演化程度高等特點(diǎn),資源前景廣闊,是近年來南方頁巖氣勘探重點(diǎn)。文章以該區(qū)參數(shù)井——花頁1井為研究對(duì)象,通過巖心、巖屑觀察,采用薄片鑒定、X-衍射礦物分析、物性測試、掃描電鏡、低溫氮?dú)馕?脫附實(shí)驗(yàn)等系統(tǒng)手段,研究儲(chǔ)層特征,綜合分析儲(chǔ)層的影響因素。在深水陸棚相,牛蹄塘組發(fā)育黑色炭質(zhì)頁巖、硅質(zhì)頁巖,以富含炭質(zhì)、硅質(zhì)及黃鐵礦,低黏土礦物(伊利石為主)含量為特征,頁巖屬特低孔、特低滲類型儲(chǔ)層。SEM和低溫氮?dú)馕?脫附實(shí)驗(yàn)表明,儲(chǔ)層主要發(fā)育圓筒孔(有機(jī)質(zhì)孔)、狹窄平行板孔(粘土礦物層間孔)、四面開口的錐形管孔(粘土礦物粒間孔)以及錐形平板孔(微裂縫);中孔(2~50 nm)提供了平均60.3%的BJH體積。多種因素共同影響微觀孔隙發(fā)育:深水泥質(zhì)陸棚控制了孔隙發(fā)育物質(zhì)基礎(chǔ);豐富TOC促進(jìn)有機(jī)質(zhì)孔(尤其是大孔)發(fā)育;礦物組成及含量控制了孔隙發(fā)育類型及程度;有機(jī)質(zhì)熱演化作用促進(jìn)有機(jī)質(zhì)孔、微裂縫發(fā)育。
頁巖;儲(chǔ)層;牛蹄塘組;湘西北地區(qū);四川盆地
頁巖氣是一種新型清潔、高效非常規(guī)天然氣資源,2012年被列為獨(dú)立礦種,成為非常規(guī)天然氣勘探重要新領(lǐng)域。四川盆地東緣湘西北牛蹄塘組頁巖具有區(qū)域分布廣、厚度大、埋藏適中、有機(jī)質(zhì)豐度高、熱演化程度高以及資源前景廣闊等特點(diǎn),成為近年來南方頁巖氣勘探重點(diǎn)[1-3],桑植-石門復(fù)向斜為勘探遠(yuǎn)景區(qū)[4-6]。2012年湘西北地區(qū)針對(duì)牛蹄塘組設(shè)置桑植、永順、保靖、龍山和花垣等5個(gè)區(qū)塊,頁巖氣地質(zhì)評(píng)價(jià)尤其是儲(chǔ)層評(píng)價(jià)成為勘探突破關(guān)鍵,受到國內(nèi)學(xué)者重視。
南方頁巖氣勘探已在四川盆地涪陵等地志留系龍馬溪組率先實(shí)現(xiàn)工業(yè)生產(chǎn),而寒武系牛蹄塘組勘探成果卻乏善可述。周慶華等認(rèn)為花垣區(qū)塊牛蹄塘組硅質(zhì)含量高、碳酸鹽含量低、粘土礦物以伊利石為主,儲(chǔ)層具有低孔-超低滲等特征[7-8]。林拓、Gareth等認(rèn)為牛蹄塘組儲(chǔ)層中、小孔及裂縫發(fā)育,且中孔、微孔提供了大部分孔隙體積和比表面積[9-12]。
與砂巖相比,頁巖儲(chǔ)層孔徑更加細(xì)小,幾何形態(tài)、分布、成因及控制因素更加復(fù)雜[13-15],前人從不同角度分析各種因素對(duì)儲(chǔ)層各類孔隙發(fā)育的影響。梁峰等提出湘西北牛蹄塘組頁巖孔隙受有機(jī)碳含量(TOC)、粘土礦物和黃鐵礦等影響,頁巖較強(qiáng)吸附能力主要受TOC控制[16]。唐書恒等從TOC、礦物成分、成熟度等因素分析下古生界頁巖微觀孔隙發(fā)育的控制因素[10-11,17];張世萬等從沉積、成巖、異常壓力、構(gòu)造等角度分析儲(chǔ)層孔隙-微裂縫發(fā)育主控因素[18-21]。前人關(guān)于有機(jī)質(zhì)對(duì)微觀孔隙的影響已基本獲得共識(shí),但關(guān)于無機(jī)礦物以及有機(jī)質(zhì)成熟度對(duì)孔隙的影響、不同尺寸孔隙對(duì)孔隙體積的貢獻(xiàn)等還存在一定分歧[22-26],張琴等指出需要加強(qiáng)微觀孔隙發(fā)育控制因素定量研究[27]。
湘西北主體隸屬于揚(yáng)子地臺(tái)與江南地軸結(jié)合部位的武陵褶斷帶內(nèi),以保靖-慈利斷裂為界與江南地軸相隔。早寒武世初期,區(qū)域構(gòu)造沉降加劇,相對(duì)海平面迅速升高,加之受到全球大洋缺氧事件影響,發(fā)育了深水陸棚相,以低能、缺氧、還原環(huán)境為主,最有利于富有機(jī)質(zhì)頁巖發(fā)育,沉積了大范圍黑色巖系,底部發(fā)育1~3層石煤。武陵期—燕山期多期次構(gòu)造運(yùn)動(dòng),形成了如今NNE或NE走向?yàn)橹鞯膹?fù)向斜構(gòu)造格局。
花頁1井是位于桑植-石門復(fù)向斜西南緣的一口重要參數(shù)井(圖1),牛蹄塘組頁巖地質(zhì)特征可作為區(qū)域典型代表,研究花頁1井牛蹄塘組超低孔、超低滲、微觀超復(fù)雜儲(chǔ)層孔隙特征,多角度分析儲(chǔ)層發(fā)育影響因素,對(duì)未來頁巖氣勘探突破乃至生產(chǎn)開發(fā)具有重要理論和現(xiàn)實(shí)意義。
為了避免地表風(fēng)化對(duì)儲(chǔ)層影響,加強(qiáng)儲(chǔ)層各參數(shù)對(duì)比分析,實(shí)驗(yàn)樣品來自花頁1井2 375~2 618 m井段牛蹄塘組巖心、巖屑。有機(jī)地球化學(xué)樣品按照2 m間隔系統(tǒng)取巖心及巖屑,而巖石學(xué)、儲(chǔ)層物性、儲(chǔ)層微觀結(jié)構(gòu)觀察及滲流等實(shí)驗(yàn)樣品按照3 m間隔系統(tǒng)取巖心。此外,在烴源巖特征好的層段,適當(dāng)加大采樣密度。
本文采用光學(xué)顯微鏡、SEM與氬離子拋光樣品下場發(fā)射掃描電鏡觀察及能譜分析等直接觀察法與X-衍射、壓力脈沖滲透率測試等間接測試法相結(jié)合,研究湘西北牛蹄塘組儲(chǔ)層微觀孔隙特征。首先將巖心樣品在691型透射電鏡樣品前制備系統(tǒng)進(jìn)行離子束拋光、離子濺射噴渡鉑金導(dǎo)電膜預(yù)處理后,利用FEI Quanta 200F場發(fā)射掃描電子顯微鏡(分辨率小于1.2 nm)觀察孔隙結(jié)構(gòu)。其次,選擇上述平行樣品分別進(jìn)行孔隙度、滲透率測試,分析頁巖孔隙特征。滲透率采用PDP-200型壓力脈沖超低滲透率儀測試,測試范圍(0.000 01~0.1)×10-3μm2;低溫液氮吸附/脫附采用NOVA-2 000e比表面積和孔隙度吸附儀,比表面積分析范圍大于0.001 m2/g,孔徑范圍0.35~500 nm,涉及部分微孔(<2 nm)、中孔(2~50 nm)和部分大孔(>50 nm)。在測試前將頁巖樣品進(jìn)行烘干處理,完成后將樣品置于液氮中,調(diào)節(jié)儀器的不同試驗(yàn)壓力,分別測出頁巖對(duì)氮?dú)獾奈搅?,繪制吸附等溫線。
圖1 湘西北地區(qū)區(qū)域位置Fig.1 Location of northwestern Hunan province
根據(jù)滯后環(huán)形狀確定孔隙形狀,按BET、BJH等模型計(jì)算比表面積和孔隙體積。
牛蹄塘組下部為深水陸棚相,發(fā)育兩段不連續(xù)富有機(jī)質(zhì)頁巖(TOC>2%)(圖2,圖3a),巖性為黑色炭質(zhì)頁巖、硅質(zhì)頁巖、粉砂質(zhì)頁巖等,炭質(zhì)含量為2%~15%,硅質(zhì)含量40%~60%,黃鐵礦含量為5%~17%,局部見重晶石、磷結(jié)核。上部為半深水陸棚,發(fā)育深灰色粉砂質(zhì)頁巖、頁巖(TOC<2%)。巖石致密堅(jiān)硬,光學(xué)顯微鏡下泥質(zhì)呈鱗片狀,炭質(zhì)呈浸染狀、條帶狀。巖心局部發(fā)育高角度裂縫及碎裂角礫,充填或半充填方解石脈(圖3b—d)。
圖2 湘西北地區(qū)花頁1井牛蹄塘組儲(chǔ)層特征Fig.2 Characteristics of shale reservoirs of the Niutitang Formation in Well Huaye-1 in northwestern Hunan province
圖3 湘西北地區(qū)花頁1井巖心及顯微鏡下照片F(xiàn)ig.3 Core and microscopic photograph of Well Huaye 1 in northwestern Hunan provencea.埋深2 564.30 m,黑色炭質(zhì)頁巖,含條帶狀黃鐵礦、方解石脈;b.埋深2 599.02 m,高角度裂縫(>70°)及破碎角礫,裂縫寬2~4 cm,充填方解石脈;c.埋深2 450.89 m,含炭含粉砂頁巖,泥質(zhì)呈顯微鱗片狀,炭質(zhì)呈浸染狀,發(fā)育0.05 mm寬微裂縫;d.埋深2 455.56 m,含化石含炭粉砂質(zhì) 頁巖,泥質(zhì)呈顯微鱗片狀,炭質(zhì)呈浸染狀、條帶狀,化石呈圓形、橢圓形、紡錘形等
圖4 湘西北地區(qū)花頁1井礦物組成特征Fig.4 Composition of minerals of shale samples from well Huaye-1 in northwestern Hunan provincea.巖石礦物組成條形圖;b.巖石礦物組成三角圖
3.2.1 礦物組成
礦物成分組成是儲(chǔ)層評(píng)價(jià)的主要內(nèi)容之一。根據(jù)51塊巖心XRD礦物分析,礦物成分與北美Barnett頁巖類似[28]以石英、長石為主,粘土礦物、碳酸鹽次之,大部分含有黃鐵礦等。石英含量為21.4%~70.4%,平均為43.0%;長石含量為2.9%~16.9%,平均為8.9%;碳酸鹽含量為6.8%~58.8%,平均為20.4%;粘土礦物含量為8.9%~45.3%,平均為27.7%;黃鐵礦含量為0~17.0%,平均為5.7%。粘土礦物以伊利石為主,平均為86.9%,含少量綠泥石和伊/蒙混層。礦物成分與北美Barnett頁巖類似[28],將石英+長石+黃鐵礦、碳酸鹽以及粘土礦物含量做三角圖,牛蹄塘組頁巖主要為硅質(zhì)頁巖和粘土質(zhì)硅質(zhì)頁巖(圖4)。
總體上,牛蹄塘組頁巖硅質(zhì)含量高,脆性好,而粘土礦物含量低,有利于水力壓裂形成復(fù)雜網(wǎng)狀縫,大幅提高頁巖儲(chǔ)層性能。
3.2.2 孔隙度和滲透率
孔隙度和滲透率仍然是頁巖儲(chǔ)層研究中最重要的參數(shù)。埋藏較深的頁巖滲透率低,富含有機(jī)質(zhì)頁巖的滲透率介于(0.000 000 1~0.01)×10-3μm2?;?井36塊樣品孔隙度為0.008 4%~1.944 9%,平均為0.449%;滲透率剔除2個(gè)異常值,(0.000 159 1~0.004 011 8)×10-3μm2,平均為0.000 860 75×10-3μm2,與常頁1井等[9]測試結(jié)果類似,屬于特低孔、特低滲類型(表1)。
有關(guān)頁巖孔隙體系或成因類型的劃分方案諸多,目前尚無統(tǒng)一方案[29-34]。目前普遍立足于巖石組成及其經(jīng)受的地質(zhì)作用,將頁巖孔隙成因類型劃分為無機(jī)質(zhì)孔、有機(jī)質(zhì)孔及微裂縫等三大類。
3.3.1 無機(jī)質(zhì)孔
無機(jī)質(zhì)孔產(chǎn)生于微米級(jí)無機(jī)礦物顆粒內(nèi)部及之間,包括礦物粒間孔、粒內(nèi)孔、黃鐵礦晶間孔以及少量碳酸鹽溶蝕孔和化石孔等??紫断鄬?duì)較大,納米-微米級(jí),連通性好。
表1 湘西北地區(qū)花頁1井壓力脈沖法孔隙度及滲透率Table 1 Porosity and permeability measured with transient pulse method for shale samples from Well Huaye-1 in northwestern Hunan province
1) 粒間孔多見于礦物顆粒之間(圖5a),是由沉積作用或后期成巖改造作用等多種因素而形成,孔隙形態(tài)多樣,通常連通性較好,為甲烷分子提供良好的滲流通道。
2) 粒內(nèi)孔主要發(fā)育于顆粒內(nèi)部(圖5b),尤其是伊利石礦物層間顆粒內(nèi)部最發(fā)育(圖5l),孔徑一般小于200 nm,可能是由于蒙脫石等不穩(wěn)定礦物在埋藏過程中轉(zhuǎn)化為穩(wěn)定的伊利石或其他礦物形成的。粒內(nèi)孔可以提供氣體儲(chǔ)集空間,也可與粒間孔一起構(gòu)成孔隙網(wǎng)絡(luò),提高頁巖滲流能力。
3) 晶間孔在牛蹄塘組黃鐵礦普遍發(fā)育,微球粒、霉簇狀晶體之間形成晶間孔,孔徑20~500 nm,內(nèi)部具有一定連通性(圖5c)。石英、長石及方解石等礦物也發(fā)育晶間孔(圖5d,e)。
4) 牛蹄塘組有機(jī)質(zhì)在過成熟熱演化過程中形成酸性物質(zhì)溶蝕不穩(wěn)定的碳酸鹽礦物形成了溶蝕孔(圖5f),由于碳酸鹽礦物含量較少,溶蝕孔整體發(fā)育較差。
5) 化石孔多呈圓形、橢圓形、紡錘形,保存較完整,化石骨架和體腔內(nèi)發(fā)育有孔隙,且孔徑較大,多微米級(jí),連通性較好,可以成為氣體賦存空間和運(yùn)移通道(圖3d)。當(dāng)化石孔被石英、方解石等充填,將失去上述能力。
3.3.2 有機(jī)質(zhì)孔
有機(jī)質(zhì)孔是有機(jī)質(zhì)熱演化過程中,干酪根生烴消耗有機(jī)組分產(chǎn)生的孔隙或者生烴消耗水分而產(chǎn)生的收縮孔,孔隙一般為納米級(jí),多5~300 nm,屬于中孔-大孔,鏡下呈近球形、橢圓形、彎月形等(圖5g,h,j)。有機(jī)質(zhì)常與無機(jī)礦物以吸附、包裹或充填形式出現(xiàn),有利于有機(jī)質(zhì)孔發(fā)育,且與無機(jī)質(zhì)孔形成一定連通性,為氣體運(yùn)移提供了微觀滲流通道。前人認(rèn)為有機(jī)質(zhì)孔比無機(jī)質(zhì)孔對(duì)賦存頁巖氣更重要[23,35]。
3.3.3 微裂縫
微裂隙是在成巖、構(gòu)造應(yīng)力等作用下形成的開放型裂隙,裂隙寬度從幾納米至幾十微米。微裂縫不僅提供了儲(chǔ)集空間,而且溝通了無機(jī)質(zhì)孔、有機(jī)質(zhì)孔,極大提高儲(chǔ)層滲流能力(圖5i,k)。
低溫氮?dú)馕?脫附實(shí)驗(yàn)表征了頁巖孔隙結(jié)構(gòu),IUPAC推薦將低溫氮?dú)馕?脫附曲線劃分四類,分別代表了開放的圓柱狀或平板形孔隙形態(tài)、一端封閉的圓柱狀或平板形孔隙形態(tài)以及墨水瓶形縮頸孔隙形態(tài),頁巖儲(chǔ)層中實(shí)際孔隙形態(tài)遠(yuǎn)比上述孔隙形態(tài)復(fù)雜[11,16]。
氮?dú)馕?脫附曲線整體呈反S型,與典型諧式多層吸附曲線形態(tài)類似。吸/脫附曲線呈現(xiàn)出分離特征,說明頁巖存在大量中孔和大孔,造成毛細(xì)凝聚現(xiàn)象,并且在平衡壓力達(dá)到飽和蒸汽壓時(shí)未飽和吸附。根據(jù)不同樣品曲線形態(tài)上差別,將花頁1井牛蹄塘組吸/脫附曲線分為3類(圖6;表2),結(jié)合SEM觀察,頁巖孔隙以納米級(jí)圓筒孔和平行板孔等開放型孔隙為主。圓筒孔或錐形管孔主要為有機(jī)質(zhì)孔與粒間孔,平行板孔和錐形平板孔與粘土礦物層間粒內(nèi)孔或微裂縫有關(guān)。
采用BJH模型計(jì)算頁巖孔隙體積,不含微孔體積,中孔所占BJH體積較大,為39.6%~74.2%,平均為60.3%,大孔所占BJH體積次之,為25.8%~60.4%,平均為39.7%。
圖5 湘西北地區(qū)花頁1井鏡下孔隙特征Fig.5 Microscopic pore features of shale samples from well Huaye-1,northwestern Hunan provincea.埋深2 450.89 m,粒間孔;b.埋深2 456.04 m,粒內(nèi)孔;c.埋深2 499.25 m,黃鐵礦晶間孔;d.埋深2 456.04 m,晶間孔;e.埋深2 467.95 m,晶間縫;f.埋深2 515.5 m,碳酸鹽溶蝕孔;g.埋深2 463.0 m,有機(jī)質(zhì)瀝青球粒孔;h.埋深2 510.23 m,有機(jī)質(zhì)瀝青球???、氣孔;i.埋深2 510.23 m,微裂縫;j.埋深2 547.77 m, 有機(jī)質(zhì)內(nèi)部瀝青球粒孔;k.埋深2 547.77 m,黃鐵礦鑄???、順層裂縫;l.埋深2 558.17 m,片狀礦物片間縫隙(a—i為拋光面,j和k為自然斷面)
頁巖氣屬于典型“原地”成藏模式,主要以游離態(tài)富集在頁巖裂縫與孔隙中以及吸附態(tài)存在干酪根或粘土顆粒表面[35]。牛蹄塘組具有巖石致密、低孔隙度、低滲透率、高比表面積等特征,結(jié)合前人研究成果,認(rèn)為頁巖儲(chǔ)層微觀孔隙是多方面因素共同影響的綜合體,沉積相、礦物成分、TOC、有機(jī)質(zhì)演化程度等對(duì)微觀孔隙發(fā)育起了控制作用。
3.5.1 深水泥質(zhì)陸棚控制孔隙發(fā)育物質(zhì)基礎(chǔ)
深水(泥質(zhì))陸棚相發(fā)育大量有機(jī)質(zhì)、硅質(zhì)、粘土礦物和黃鐵礦,構(gòu)成了孔隙發(fā)育物質(zhì)基礎(chǔ),發(fā)育豐富各類孔隙,如有機(jī)質(zhì)孔,粘土礦物粒間孔以及黃鐵礦晶間孔等,導(dǎo)致BJH體積超過10.0 ×10-3cm3/g,同時(shí),硅質(zhì)含量高也有利于微裂縫發(fā)育。而半深水陸棚相中,由于有機(jī)質(zhì)、黃鐵礦、粘土礦物含量較低,硅質(zhì)含量高,總體上各類孔隙發(fā)育較差,BJH體積小于3.0×10-3cm3/g(表3)。
圖6 湘西北地區(qū)頁巖樣品典型吸/脫附及孔徑分布曲線Fig.6 Typical adsorption/desorption curves and pore size distribution of shale samples from northwestern Hunan provincea. A類,2 499.79 m;b. B類,2 547.77 m;c. C類,2 407.23 m
類型曲線特征孔隙特征SEMTOC/%BET比表面積/(m2·g-1)BJH體積/(10-3cm3·g-1)A類相對(duì)壓力大于0.6時(shí),吸/脫附曲線分離較大,在相對(duì)壓力為0.4~0.6時(shí),脫附曲線出現(xiàn)明顯拐點(diǎn);相對(duì)壓力小于0.4時(shí),吸/脫附曲線近乎重合規(guī)則的兩端開口圓筒孔和狹窄的平行板孔有機(jī)質(zhì)孔、粒間孔、粘土礦物層間裂縫2~84~156~20B類吸/脫附曲線始終出現(xiàn)分離特征狹窄的平行板孔、四面開口錐形平板孔和兩端開口的錐形管孔有機(jī)質(zhì)孔、粒間孔、粘土礦物層間裂縫>8>15>20C類脫附曲線拐點(diǎn)不明顯,吸/脫附曲線近平行,分離較小以四面開口的錐形平行板孔為主粒間孔、粘土礦物層間裂縫<2<4<6
表3 湘西北地區(qū)花頁1井牛蹄塘組不同沉積微相儲(chǔ)層差異統(tǒng)計(jì)Table 3 Statistical characteristics of disparities between reservoirs of different sedimentary microfacies in the Niuditang Formation in Well Huaye-1,northwestern Hunan province
3.5.2 豐富TOC促進(jìn)有機(jī)質(zhì)孔發(fā)育
早成巖階段,有機(jī)質(zhì)被擠壓賦存于石英等剛性顆粒格架內(nèi),進(jìn)入中成巖階段,有機(jī)質(zhì)熱演化形成內(nèi)部大量互相連通的納米級(jí)孔隙,如氣孔、瀝青球??椎?,對(duì)儲(chǔ)層孔隙有重要貢獻(xiàn)。BJH體積、滲透率隨TOC含量增加而增大(圖7a,圖8a)。
TOC小于2.0%,有機(jī)質(zhì)呈分散狀、浸染狀,BJH體積較小,有機(jī)質(zhì)孔以中孔最發(fā)育,對(duì)BJH體積貢獻(xiàn)54%~74%(平均為66%),而大孔對(duì)BJH體積貢獻(xiàn)次之。TOC大于2.0%,有機(jī)質(zhì)呈凝塊狀、填隙狀、條帶狀,有機(jī)質(zhì)孔數(shù)量及孔徑均隨有機(jī)質(zhì)體增大而增大,尤其是有機(jī)質(zhì)中心附近,有機(jī)質(zhì)孔孔徑較大,可達(dá)100 nm左右(圖6g,h),導(dǎo)致BJH體積大,雖然中孔發(fā)育好,絕對(duì)量有所增加,但對(duì)BJH體積貢獻(xiàn)下降至40%~51%(平均為45%),而大孔相對(duì)更發(fā)育,對(duì)BJH體積貢獻(xiàn)增大至49%~60%(平均為55%)(圖9)。
3.5.3 礦物組成及含量控制孔隙發(fā)育類型及程度
牛蹄塘組礦物主要是石英、粘土礦物(伊利石為主)、黃鐵礦及碳酸鹽,張琴認(rèn)為硅質(zhì)頁巖有機(jī)孔和礦物粒間孔較發(fā)育[27]。
1) 石英
深水泥質(zhì)陸棚中,牛蹄塘組石英含量在45%~60%,但BJH體積與石英無相關(guān)性(圖7 b),這是因?yàn)閴簩?shí)過程中剛性石英顆粒形成粒間納米級(jí)空間格架,被進(jìn)一步充填塑性有機(jī)質(zhì)、粘土礦物及膠結(jié)物等,導(dǎo)致石英顆粒間孔隙損失嚴(yán)重,與滲透率相關(guān)性較差。黃磊等認(rèn)為石英含量增加時(shí),巖石脆性也增加,受到應(yīng)力時(shí)容易發(fā)育孔隙及微裂縫,提高儲(chǔ)層滲流能力(圖8b)[17]。
圖7 深水泥質(zhì)陸棚相中不同礦物對(duì)BJH體積的影響Fig.7 Analyses of effects of different minerals in deep water muddy shelf facies upon BJH volume
圖8 深水泥質(zhì)陸棚相滲透率與礦物成分相關(guān)性Fig.8 Correlation of permeability and mineral types in deep water muddy shelf facies
圖9 湘西北地區(qū)頁巖中大孔隙對(duì)BJH體積的貢獻(xiàn)與TOC含量的關(guān)系Fig.9 Contribution of marco pores to BJH volume and its correlation to TOC of shale samples from northwestern Hunan province
2) 粘土礦物
粘土礦物中伊利石顆粒較大,形成納米-微米級(jí)粒間孔和層間孔。伊利石含量與BJH體積呈負(fù)相關(guān)關(guān)系,但伊利石含量與有機(jī)質(zhì)含量也呈負(fù)相關(guān)關(guān)系。通過消除TOC含量影響,BJH體積、比表面積與伊利石呈弱正相關(guān)性(圖7c,d),隨著伊利石含量增加,BJH體積、比表面積增大。但粘土礦物增多,容易堵塞滲流通道,導(dǎo)致儲(chǔ)層滲流能力降低(圖8b)。
3) 黃鐵礦
牛蹄塘組黃鐵礦豐富,最高可達(dá)17%,在SEM下觀察到納米級(jí)黃鐵礦呈微球粒、霉簇狀,顆粒間形成了大量晶間孔,BJH體積、滲透性隨黃鐵礦增加而增大。但是黃鐵礦與TOC含量也呈正相關(guān)關(guān)系,因此,進(jìn)一步消除TOC影響,發(fā)現(xiàn)相反結(jié)論,即BJH體積與黃鐵礦呈負(fù)相關(guān)關(guān)系(圖7e,圖8d),這說明了隨著TOC、黃鐵礦增加,BJH體積增加主要是由TOC貢獻(xiàn),而非黃鐵礦。
4) 碳酸鹽
碳酸鹽具有很強(qiáng)化學(xué)膠結(jié)作用,抑制納米-微米級(jí)孔隙及微裂縫發(fā)育[16-17]。BJH體積與碳酸鹽含量呈顯著負(fù)相關(guān),即隨著碳酸鹽含量增加,BJH體積顯著減小(圖7f)。雖然溶蝕作用導(dǎo)致碳酸鹽形成溶蝕孔,但總體上溶蝕孔不發(fā)育,對(duì)BJH體積貢獻(xiàn)較小。碳酸鹽膠結(jié)作用大于溶蝕作用,抑制孔隙發(fā)育,降低儲(chǔ)層滲流能力(圖8e)。
3.5.4 有機(jī)質(zhì)熱演化作用促進(jìn)有機(jī)質(zhì)孔、微裂縫發(fā)育
有機(jī)質(zhì)熱演化作用對(duì)儲(chǔ)層孔隙的影響較為復(fù)雜,Curist 認(rèn)為鏡質(zhì)體反射率(Ro)小于0.9%頁巖很少發(fā)育有機(jī)質(zhì)孔,程鵬等認(rèn)為隨著Ro增加到3.5%,孔隙隨熱演化程度增加而增加,隨后微孔呈下降趨勢,而中孔仍然緩慢上升[36-38]。
花垣區(qū)塊牛蹄塘組晚成巖階段,有機(jī)質(zhì)進(jìn)入高成熟-過成熟期,有機(jī)質(zhì)熱演化發(fā)生脫氫、生氣活動(dòng),形成有機(jī)質(zhì)內(nèi)部納米級(jí)孔隙,有機(jī)質(zhì)孔對(duì)BJH體積貢獻(xiàn)超過50%,此外,有機(jī)質(zhì)過成熟度階段,生烴強(qiáng)度大,微裂縫發(fā)育好,更有利于氣體儲(chǔ)集和滲流[39-41]。
1) 深水泥質(zhì)陸棚相下,牛蹄塘組主要發(fā)育硅質(zhì)頁巖、炭質(zhì)頁巖,炭質(zhì)含量為2%~15%、硅質(zhì)含量為45%~60%、黃鐵礦含量4%~17%,粘土礦物以伊利石為主,整體含量低。儲(chǔ)層致密,孔隙度平均僅0.449%、滲透率平均為0.000 860 75×10-3μm2。
2) 牛蹄塘組發(fā)育大量納米級(jí)無機(jī)質(zhì)孔、有機(jī)質(zhì)孔和少量微米級(jí)微裂隙等,以有機(jī)質(zhì)孔最發(fā)育。儲(chǔ)層孔隙主要發(fā)育了圓筒孔(有機(jī)質(zhì)孔)、狹窄平行板孔(粘土礦物層間孔)、四面開口的錐形管孔(粘土礦物粒間孔)以及錐形平板孔(微裂縫)。儲(chǔ)層孔徑范圍較廣,中孔平均貢獻(xiàn)39.6%~74.2%(平均為60.3%)的BJH體積,大孔次之。
3) 深水泥質(zhì)陸棚最有利于發(fā)育各類孔隙;石英、粘土礦物及TOC等控制了各類孔隙的發(fā)育類型和程度,粘土礦物、碳酸鹽降低儲(chǔ)層滲流能力;有機(jī)質(zhì)熱演化作用促進(jìn)有機(jī)質(zhì)孔、微裂縫發(fā)育。
[1] 胡明毅,鄧慶杰,胡忠貴.上揚(yáng)子地區(qū)下寒武統(tǒng)牛蹄塘組頁巖氣成藏條件[J].石油與天然氣地質(zhì),2014,35(2):272-280.
Hu Mingyi,Deng Qingjie,Hu Zhonggui.Shale gas accumulation conditions of the Lower Cambrian Niutitang Formation in Upper Yangtze region[J].Oil & Gas Geology,2014,35(2):272-280.
[2] 黃儼然,楊榮豐,肖正輝,等.湘西北下寒武統(tǒng)牛蹄塘組頁巖含氣性影響因素分析[J].巖性油氣藏,2015,27(4):11-16.
Huang Yanran,Yang Rongfeng,Xiao Zhenghui,et al.Influencing factors of shale gas-bearing property of Lower Cambrian Niutitang Formation in northwestern Hunan[J].Lithologic Reservoirs,2015,27(4):11-16.
[3] 王陽,朱炎銘,陳尚斌,等.湘西北下寒武統(tǒng)牛蹄塘組頁巖氣形成條件分析[J].中國礦業(yè)大學(xué)學(xué)報(bào),2013,42(4):586-594.
Wang Yang,Zhu Yanming,Chen Shangbin,et al.Formation conditions of shale gas in Lower Cambrian Niutitang Formation,northwes-tern Hunan[J].Journal of China University of Mining & Technology,2013,42(4):586-594.
[4] 張琳婷,郭建華,焦鵬,等.湘西北地區(qū)牛蹄塘組頁巖氣有利地質(zhì)條件及成藏區(qū)帶優(yōu)選[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,46(5):1715-1722.
Zhang Linting,Guo Jianhua,Jiao Peng,et al.Geological conditions and favorable exploration zones of shale gas in Niutitang Formation at northwest Hunan[J].Journal of Central South University(Science and Technology),2015,46(5):1715-1722.
[5] 張琳婷,郭建華,焦鵬,等.湘西北下寒武統(tǒng)牛蹄塘組頁巖氣藏形成條件與資源潛力[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,45(4):1163-1173.
Zhang Linting,Guo Jianhua,Jiao Peng,et al.Accumulation conditions and resource potential of shale gas in Lower Cambrian Niutitang formation,northwestern Hunan[J].Journal of Central South University(Science and Technology),2014,45(4):1163-1173.
[6] 肖正輝,寧博文,楊榮豐,等.多層次模糊數(shù)學(xué)法在湘西北頁巖氣有利區(qū)塊優(yōu)選中的應(yīng)用[J].煤田地質(zhì)與勘探,2015,43(3):33-37.
Xiao Zhenghui,Ning Bowen,Yang Rongfeng,et al.Application of multi-layered fuzzy mathematics in selecting the favorable areas of shale gas in northwestern Hunan[J].Coal Geology & Exploration,2015,43(3):33-37.
[7] 周慶華,宋寧,王成章,等.湖南花垣頁巖氣區(qū)塊地質(zhì)評(píng)價(jià)與勘探展望[J].天然氣地質(zhì)科學(xué),2014,25(1):130-140.
Zhou Qinghua,Song Ning,Wang Chengzhang,et al.Geological evaluation and exploration prospect of Huayuan shale gas block in Hunan Province[J].Natural Gas Geoscience,2014,25(1):130-140.
[8] 冷濟(jì)高,韓建輝,李飛,等.湘西北地區(qū)花垣頁巖氣區(qū)塊勘探潛力[J].天然氣地質(zhì)科學(xué),2014,25(4):624-631.
Leng Jigao,Han Jianhui,Li Fei,et al.Exploration potential of shale gas in Huayuan block,northwest Hunan province[J].Natural Gas Geoscience,2014,25(4):624-631.
[9] 林拓,張金川,李博,等.湘西北常頁1井下寒武統(tǒng)牛蹄塘組頁巖氣聚集條件及含氣特征[J].石油學(xué)報(bào),2014,35(6):839-846.
Lin Tuo,Zhang Jinchuan,Li Bo,et al.Shale gas accumulate conditions and gas-bearing properties of Lower Cambrian Niutitang Formation in Well Changye 1,northwestern Hunan[J].Acta Petrolei Sinica,2014,35(6):839-846.
[10] 唐書恒,范二平,張松航,等.湘西北下古生界海相頁巖儲(chǔ)層特征與含氣性分析[J].地學(xué)前緣,2016,23(2):135-146.
Tang Shuheng,Fan Erping,Hang Songhang,et al.Reservoir characteristics and gas bearing capacity of the Lower Palaeozoic marine shales in Northwestern Hunan[J].Earth Science Frontiers,2016,23(2):135-146.
[11] 薛冰,張金川,唐玄,等.黔西北龍馬溪組頁巖微觀孔隙結(jié)構(gòu)及儲(chǔ)氣特征[J].石油學(xué)報(bào),2015,36(2):138-149,173.
Xue Bing,Zhang Jinchuan,Tang Xuan,et al.Characteristics of microscopic pore and gas accumulation on shale in Longmaxi Formation,northwest Guizhou[J].Acta Petrolei Sinica,2015,36(2):138-149,173.
[12] Gareth R.Chalmers,R.Marc Bustin,Ian M.Power.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J].AAPG Bulletin,2012,96(6):1099-1119.
[13] 祝海華,鐘大康,張亞雄,等.川南地區(qū)三疊系須家河組致密砂巖孔隙類型及物性控制因素[J].石油與天然氣地質(zhì),2014,35(1):65-76.
Zhu Haihua,Zhong Dakang,Zhang Yaxionget al.Pore types and controlling factors on porosity and permeability of Upper Triassic Xujiahe tight sandstone reservoir in Southern Sichuan Basin[J].Oil & Gas Geology,2014,35(1):65-76.
[14] 陳尚斌,朱炎銘,王紅巖,等.川南龍馬溪組頁巖氣儲(chǔ)層納米孔隙結(jié)構(gòu)特征及其成藏意義[J].煤炭學(xué)報(bào),2012,37(3):438-444.
Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Structure chara-cteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J].Journal of China Coal Society,2012,37(3):438-444.
[15] 黃金亮,董大忠,李建忠,等.陸相頁巖儲(chǔ)層特征及其影響因素:以四川盆地上三疊統(tǒng)須家河組頁巖為例[J].地學(xué)前緣,2016,23(2):158-166.
Huang Jinliang,Dong Dazhong,Li Jianzhong,et al.An example from Triassic Xujiahe Formation shale,Reservoir characteristics and its influence on continental shale Sichuan Basin.Earth Science Frontiers,2016,23(2):158-166.
[16] 梁峰,朱炎銘,馬超,等.湘西北地區(qū)牛蹄塘組頁巖氣儲(chǔ)層沉積展布及儲(chǔ)集特征[J].煤炭學(xué)報(bào),2015,40(12):2284-2292.
Liang Feng,Zhu Yanming,Ma Chao,et al.Sedimentary distribution and reservoir characteristics of shale gas reservoir of Niutitang Formation in Northwestern Hunan[J].Journal of China Coal Society,2015,40(12):2884-2892.
[17] 黃磊,申維.頁巖氣儲(chǔ)層孔隙發(fā)育特征及主控因素分析-以上揚(yáng)子地區(qū)龍馬溪組為例[J].地學(xué)前緣2015,27(1):374-385.
Huang Lei,Shen Wei.Characteristics and controlling factors of the formation of pores of a shale gas reservoir:A case study from Longmaxi Formation of the Upper Yangtze region,China.[J].Earth Scie-nce Frontiers,2015,27(1):374-385.
[18] 張士萬,孟志勇,郭戰(zhàn)峰,等.涪陵地區(qū)龍馬溪組頁巖儲(chǔ)層特征及其發(fā)育主控因素[J].天然氣工業(yè),2014,34(12):16-24.
Zhang Shiwan,Meng Zhiyong,Guo Zhanfeng,et al.Characteristics and major controlling factors of shale reservoirs in the Longmaxi Formation,Fuling area,Sichuan Basin[J].Natural Gas Industry,2014,34(12):16-24.
[19] 孔令明,萬茂霞,嚴(yán)玉霞,等.四川盆地志留系龍馬溪組頁巖儲(chǔ)層成巖作用[J].天然氣地球科學(xué),2015,26(8):1547-1555.
Kong Lingming,Wan Maoxia,Yan Yuxia,et al.Reservoir diagenesis research of Silurian Longmaxi Formation in Sichuan Basin[J].Natural Gas Geoscience,2015,26(8):1547-1555.
[20] 王濡岳,丁文龍,龔大建,等.渝東南—黔北地區(qū)下寒武統(tǒng)牛蹄塘組頁巖裂縫發(fā)育特征與主控因素[J].石油學(xué)報(bào),2016,37(7):832-845,877.
Wang Ruyue,Ding Wenlong,Gong Dajian,et al.Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation,southeastern Chongqing northern-Guizhou area[J].Acta Petrolci Sinica,2016,37(7);832-845,877.
[21] 王玉滿,董大忠,楊樺,等.川南下志留統(tǒng)龍馬溪組頁巖儲(chǔ)集空間定量表征[J].中國科學(xué):地球科學(xué),2014,44(6):1348-1356.
Wang Yuman,Dong Dazhong,Yang Hua,et al.Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale,southern Sichuan,China[J].Science China:Earth Sciences,2014,44(6):1348-1356.
[22] 郭秋麟,陳曉明,宋煥琪,等.泥頁巖埋藏過程孔隙度演化與預(yù)測模型探討[J].天然氣地球科學(xué),2013,24(3):439-449.
Guo Qiulin,Chen Xiaoming,Song Huanqi,et al.Evolution and Models of Shale Porosity During Burial Process[J].Natural Gas Geoscience,2013,24(3):439-449.
[23] 李娟,于炳松,張金川,等.黔北地區(qū)下寒武統(tǒng)黑色頁巖儲(chǔ)層特征及其影響因素[J].石油與天然氣地質(zhì),2012,33(3):364-374.
Li Juan,Yu Bingsong,Zhang Jinchuan,et al.Reservoir characteristics and their influence factors of the Lower Cambrian dark shale in northern Guizhou[J].Oil & Gas Geology,2012,33(3):364-374.
[24] 郭旭升,李宇平,劉若冰等.四川盆地焦石壩地區(qū)龍馬溪組頁巖微觀孔隙結(jié)構(gòu)特征及其控制因素[J].天然氣工業(yè),2014,34(6):9-16.
Guo Xusheng,Li Yuping,Liu Ruobing,et al.Characteristics and controlling factors of micrcrpore structures of Longmaxi Shale Play in the Jiaoshiba area,Sichuan Basin[J].Natural Gas Industry,2014,34(6):9-16.
[25] 何建華,丁文龍,付景龍,等.頁巖微觀孔隙成因類型研究[J].巖性油氣藏,2014,26(5):30-35.
He Jianhua,Ding Wenlong,Fu Jinglong,et al.Study on genetic type of micropore in shale reservoir[J].Lithologic Reservoirs,2014,26(5):30-35.
[26] Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks in mudrocks and adescriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[27] 張琴,劉暢,梅嘯寒,等.頁巖氣儲(chǔ)層微觀儲(chǔ)集空間研究現(xiàn)狀及展望[J].石油與天然氣地質(zhì),2014,36(4):666-674.
Zhang Qin,Liu Chang ,Mei Xiaohan ,et al.Status and prospect of research on microscopic shale gas reservoir space[J].Oil & Gas Geology,2014,36(4):666-674.
[28] Jarvie D M,Hill R J,Rubble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic:Shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[29] 張慧,焦淑靜,龐起發(fā),等.中國南方早古生代頁巖有機(jī)質(zhì)的掃描電鏡研究[J].石油與天然氣地質(zhì),2015,36(4):675-680.
Zhang Hui,Jiao Shujing,Pang Qifa,et al.SEM observation of organic matters in the Eopalezonic shale in South China[J].Oil & Gas Geology,2015,36(4):675-680.
[30] Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
[31] 楊峰,寧正福,胡昌蓬,等.頁巖儲(chǔ)層微觀孔隙結(jié)構(gòu)特征[J].石油學(xué)報(bào),2013,34(2):301-311.
Yang Feng.Ning Zhengfu.Hu Changpeng.et al.Characterization of microscopic porestructures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.
[32] Roger M.Slatt and Neal R.O’Brien.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.
[33] Mark E.Curtis,Brian J.Cardott,Carl H,et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103(6):26-31.
[34] 楊峰,寧正福,孔德濤,等.高壓壓汞法和氮?dú)馕椒ǚ治鲰搸r孔隙結(jié)構(gòu)[J].天然氣地球科學(xué),2013,24(3):450-455.
Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,24(3):450-455.
[35] Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[36] 程鵬,肖賢明.很高成熟度富有機(jī)質(zhì)頁巖的含氣性問題[J].煤炭學(xué)報(bào),2013,38(5):737-741.
Cheng Peng,Xiao Xianming.Gas content of organic-rich shales with very high maturities[J].Journal of China Coal Society,2013,38(5):737-741.
[37] Tongwei Zhang,Geoffrey S.Ellis ,Stephen C.Ruppel ,et al.Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J].Organic Geochemistry,2012,47:120-131.
[38] 胡宗全,杜偉,彭勇民等.頁巖微觀孔隙特征及源-儲(chǔ)關(guān)系—以川東南地區(qū)五峰組-龍馬溪組為例[J].石油與天然氣地質(zhì),2015,36(6):1001-1008.
Hu Zongquan,Du Wei,Peng Yongmin,et al.Microscopic pore chara-cteristics and the source-reservoir relationship of shale—A case study from the Wufeng and Longmaxi Formations in Southeast Sichuan Basin[J].Oil & Gas Geology,2015,36(6):1001-1008.
[39] Curtis M E,Sondergeld C H,Ambrose R J,et al.Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J].AAPG Bulletin,2012,96(4):665-677.
[40] Loucks R G,Ruppel S C.Mississippian Barnett Shale:Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas[J].AAPG Bulletin,2007,91(4):579-601.
[41] 王哲,李賢慶,周寶剛等.川南地區(qū)下古生界頁巖氣儲(chǔ)層微觀孔隙結(jié)構(gòu)表征及其對(duì)含氣性的影響[J].煤炭學(xué)報(bào),2016,41(9):2287-2297.
Wang Zhe,Li Xianqing,Zhou Baogang,et al.Characterization of microscopic pore structure and its influence on gas content of shale gas reservoirs from the Lower Paleozoic in southern Sichuan Basin[J].Journal of China Coal Society,2016,41(9):2287-2297.
Characteristics and influencing factors of shale reservoirs in the Niutitang Formation of northwestern Hunan Province,and east margin of Sichuan Basin
Qin Mingyang1,2,Guo Jianhua1,Huang Yanran1,3,Jiao Peng1,Zheng Zhenhua2,Qing Yanbin2,Wu Shiqing1,3
(1.SchoolofGeosciencesandInfo-PhysicsEngineering,CentralSouthUniversity,Changsha,Hunan410083,China;2.TheCoalGeologicalExplorationInstituteofHunanProvince,Changsha,Hunan410014,China;3.HunanProvincialKeyLaboratoryofShaleGasResourceUtilization,HunanUniversityofScienceandTechnology,Xiangtan,Hunan411201,China)
The Niutitang Formation in northwestern Hunan Province,eastern margin of Sichuan Basin is regarded as having great potential and one of the major shale gas exploration targets with its wide distribution,large thickness,favorable burial depth,high content of organic matter,high maturity and etc,in south China.An parameter well,the Huaye-1,in the Formation of the area,was chosen to be studied with systematic means including observation of thin sections,XRD mineral analyses,physical property tests,SEM imaging and low-temperature N2adsorption/desorption experiments with core and drilling cutting samples,to probe into the characteristics and influencing factors of the reservoirs.The deep shelf facies of the Niutitang Formation developed dark carbonaceous shale and siliceous shale rich in carbonaceous and siliceous material,as well as pyrite,but lean in clay minerals (mainly illites).The shale reservoirs are of ultra-low porosity and permeability.The SEM images and low-temperature N2adsorption/desorption experiments show that the reservoirs contain mostly cylindrical pores (organic pores),narrow parallel-plate pores (clay mineral interlayer pores),tapered tube pores with openings around (intergranular pores among clay minerals) and tapered plate pores (micro-crack).The mesopores (sized between 2 to 50 nm) contribute an average of 60.3% of BJH volume.The development of the micropores is found to be affected by multiple factors: the deep-water muddy continental shelf provided the material basis for the pores,the high content ofTOCfacilitated the growth of organic pores (especially organic macropores),the composition and content of minerals dominated the types and amounts of the pores,and the thermal evolution of organic matter promoted the development of organic pores and micro-cracks.
shale,reservoir,Niutitang Formation,northwestern Hunan province,Sichuan Basin
2017-05-04;
2017-08-13。
秦明陽(1988—),男,工程師,油氣地質(zhì)。E-mail:747558817@qq.com。
郭建華(1957—),男,教授、博士生導(dǎo)師,沉積學(xué)與石油地質(zhì)研究。E-mail:gjh796@cus.edu.cn。
國家自然科學(xué)基金項(xiàng)目(41603046);湖南省科學(xué)技術(shù)廳軟科學(xué)計(jì)劃項(xiàng)目(2014ZK3043);湖南省國土資源廳軟科學(xué)研究項(xiàng)目(2014-01);湖南科技大學(xué)頁巖氣資源利用湖南省重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(E21642)。
0253-9985(2017)05-0922-11
10.11743/ogg20170511
TE112.1
A
(編輯 董 立)