• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Protective effects of Bushen Tiansui decoction on hippocampal synapses in a rat model of Alzheimer’s disease

    2017-11-08 11:49:17ShanJuiYuYangweijunPengChenxiaShengweiGongShuaiChenPanpanXuZhewang

    Shan Jui, Yu Yang, wei-jun Peng Chen-xia Sheng wei Gong Shuai Chen Pan-pan Xu Zhe wang

    1 Department of Integrated Chinese and Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China

    2 Department of Geriatric Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China

    How to cite this article: Hui S, Yang Y, Peng WJ, Sheng CX, Gong W, Chen S, Xu PP, Wang Z (2017) Protective effects of Bushen Tiansui decoction on hippocampal synapses in a rat model of Alzheimer’s disease. Neural Regen Res 12(10):1680-1686.

    Funding: is work was supported by the National Natural Science Foundation of China, No. 81373705; the Natural Science Foundation of Hunan Province in China, No. 13JJ3030.

    Protective effects of Bushen Tiansui decoction on hippocampal synapses in a rat model of Alzheimer’s disease

    Shan Jui1,2, Yu Yang2, wei-jun Peng1, Chen-xia Sheng1, wei Gong1, Shuai Chen1, Pan-pan Xu1, Zhe wang1,*

    1 Department of Integrated Chinese and Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China

    2 Department of Geriatric Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China

    How to cite this article: Hui S, Yang Y, Peng WJ, Sheng CX, Gong W, Chen S, Xu PP, Wang Z (2017) Protective effects of Bushen Tiansui decoction on hippocampal synapses in a rat model of Alzheimer’s disease. Neural Regen Res 12(10):1680-1686.

    Bushen Tiansui decoction is composed of six traditional Chinese medicines: Herba Epimedii, Radix Polygoni multiflori, Plastrum testudinis, Fossilia Ossis Mastodi, Radix Polygalae, and Rhizoma Acorus tatarinowii. Because Bushen Tiansui decoction is effective against amyloid beta (Aβ) toxicity, we hypothesized that it would reduce hippocampal synaptic damage and improve cognitive function in Alzheimer’s disease. To test this hypothesis, we used a previously established animal model of Alzheimer’s disease, that is, microinjection of aggregated Aβ25–35into the bilateral brain ventricles of Sprague-Dawley rats. We found that long-term (28 days) oral administration of Bushen Tiansui decoction (0.563, 1.688, and 3.375 g/mL; 4 mL/day) prevented synaptic loss in the hippocampus and increased the expression levels of synaptic proteins, including postsynaptic density protein 95, the N-methyl-D-aspartate receptor 2B subunit, and Shank1.ese results suggested that Bushen Tiansui decoction can protect synapses by maintaining the expression of these synaptic proteins. Bushen Tiansui decoction also ameliorated measures reflecting spatial learning and memory deficits that were observed in the Morris water maze (i.e., increased the number of platform crossings and the amount of time spent in the target quadrant and decreased escape latency) following intraventricular injections of aggregated Aβ25–35compared with those measures in untreated Aβ25–35-injected rats. Overall, these results provided evidence that further studies on the prevention and treatment of dementia with this traditional Chinese medicine are warranted.

    nerve regeneration; neurodegeneration; Bushen Tiansui decoction; Alzheimer’s disease; synaptic plasticity; amyloid β; synaptic proteins; Shank1; N-methyl-D-aspartate receptor 2B subunit; postsynaptic density protein 95; Morris water maze; neural regeneration

    Introduction

    Alzheimer’s disease (AD), the major cause of dementia among the elderly, is a neurodegenerative disease characterized by memory impairment, progressive cognitive function decline, and personality and behavioral changes. More than 25 million people worldwide have been diagnosed with AD,and that figure is expected to multiply in the next few decades (Wang et al., 2015). However, no effective treatments are available to prevent the onset or progression of AD.

    The hallmark neuropathological features of AD are neu-rofibrillary tangles composed of hyperphosphorylated tau protein, senile plaques composed of amyloid beta (Aβ)peptide, and the loss of synapses (Blennow et al., 2006; Gao et al., 2016). Synaptic proteins, including but not limit to Shank1, the N-methyl-D-aspartate receptor 2B (NR2B)subunit, and postsynaptic density 95 (PSD-95), are integrated at the postsynaptic density in dendritic spines (Miletic et al., 2010). Both PSD-95 and Shank1 are synaptic scaffolding proteins and play critical roles in regulating the strength of synaptic activity and dendritic spine formation(Hung et al., 2008; Tu et al., 2014).ey are thought to be correlated with levels of Aβ oligomers in patients with AD and in the brains of amyloid precursor protein transgenic mice (Sultana et al., 2010; Venigalla et al., 2015). The NR2B subunit is indispensable to synaptic transmission,synaptic plasticity, and neural development, and it plays a significant role among the N-methyl-D-aspartic acid receptor subunits (Kiraly et al., 2011). Upregulation of NR2B expression enhances long-term potentiation in the hippocampal CA1 subregion in slices obtained from transgenic mice, facilitates synaptic transmission, and improves memory (Wang et al., 2009; Plattner et al., 2014). Pathological changes of these proteins may directly or indirectly affect dendritic spine and synaptic functions. Therefore,targeting these synaptic proteins may provide a therapeutic potential for reducing Aβ-induced synaptic injury and cognitive impairment.

    Bushen Tiansui decoction (BTD) is a traditional Chinese medicine derived and modified from Kongsheng Zhen-zhongdan, which was included in the publication Qianjin Fang by the pharmacologist Simiao Sun. BTD is composed of six traditional Chinese medicines: Herba epi-medii, Radix Polygoni multiflori, Plastrum testudinis, Fossilia Ossis Mastodi,Radix Polygalae, and Rhizoma Acorus tatarinowii. Herba Epimedii is made from the dried aerial parts of Epimedium brevicornum Maxim (family Berberidaceae). Radix Polygoni multiflori is the root tuber of the perennial vine Polygonum multiflorumunb (family Knotweed). Plastrum testudinis is the back shell and plastron of the animal Chinemys reevesii (family Testudinidae). Fossilia Ossis Mastodi is the os-sature fossil of an ancient mammal. Radix Polygalae is the dry root of Polygala (family Polygalaceae). Rhizoma Acorus tatarinowii is the dried rhizomes of the plant Acorus tatarinowi(family Araceae).

    Traditional Chinese medicine asserts that the basic pathogenesis underlying AD includes kidney essence and brain marrow deficiencies and that the fundamental treatment is to administer Bushen Tiansui. In BTD, Herba Epimedii and Radix Polygoni multiflori are thought to be the main effective ingredients.ey nourish the kidney and replenish the blood and essence. We and others previously reported that icariin extracted from Herba Epimedii inhibits Aβ-induced cytotoxicity in SH-SY5Y cells by decreasing the production of peroxide hydrogen and in cortical neurons by modulating cocaine-regulated transcripts (Sha et al., 2009; Liu et al.,2015). A molecule isolated from Radix Polygoni multiflori promotes PC12 cell differentiation, increases intracellular calcium levels in hippocampal neurons, and facilitates high frequency stimulation-induced hippocampal long-term potentiation (Wang et al., 2011). The remaining active ingredients in BTD improve and play critical roles in learning,connecting the heart and kidney, and activating the nine orifices. For example, Plastrum Testudinis increases viability and reduces apoptosis in PC12 cells (Liu et al., 2011); Radix Polygalae induces autophagy via the mammalian target of rapamycin signaling pathway in PC12 cells (Wu et al., 2013);and Rhizoma Acorus tatarinowii serves as a preventive and regenerative therapeutic agent to promote neurogenesis in neurodegenerative disorders by activating extracellular signal-regulated kinase in aberrant neural progenitor cells (Mao et al., 2015). Therefore, we hypothesized that the myriad functions of BTD would antagonize Aβ neurotoxicity and inhibit neurodegenerative process and diseases, including AD.

    The goals of this study were to investigate whether BTD improved memory deficits in AD by maintaining the expression of synaptic proteins and to provide evidence for the need of further studies on the prevention and treatment of dementia by this traditional Chinese medicine.

    Materials and Methods

    Animals

    Male Sprague-Dawley rats (certificate No. 43004700010946;license No. SCXK [Xiang] 2014-0012), weighing 250–300 g,were obtained from Hunan SJA Laboratory Animal Co., Ltd.(Changsha, Hunan Province, China).e rats (n = 35) were individually housed in cages for 3 days at 23 ± 2°C with a 12-hour light/dark cycle and free access to standard rat chow and water. All rats were anesthetized by intraperitoneal administration of 10% chloral hydrate (4 mL/kg) and fixed on a stereotaxic apparatus (Kopf Co., Tujunga, CA, USA).e target areas were bilateral brain ventricles (1.1 mm posterior to bregma; 1.5 mm lateral to the midline bilaterally; 4 mm below the dura) (Paxinos et al., 2005).

    The study was approved by the Animal Care and Use Committee of Central South University of China (approval No. 2016-015). The experimental procedures followed the Guide for the Care and Use of Laboratory Animals (United States National Institutes of Health Publication No. 85-23,revised 1986).

    Rat model and intervention

    A rat model of AD was established by microinjecting with a microsyringe (5 μL per side, 1 μL/min) aggregated Aβ25–35(Sigma-Aldrich, St. Louis, MO, USA) into the bilateral brain ventricles of rats. Aer injections, the needle was lein place for 5 minutes before it was slowly extracted.e skin incision was disinfected with complex iodine and sutured. All operations were performed under sterile conditions.

    Rats in the sham-operated group (sham group) were treated with the same method and injected with the same amount of Aβ35–25(Sigma-Aldrich). Both Aβ25–35and Aβ35–25were dissolved in sterile distilled water at a concentration of 2 mg/mL and incubated at 37°C for 1 week to form aggregations (Teng et al., 2014).

    The rats were randomly divided into the five following groups (n = 7 per group): sham group (Aβ25–35intracerebroventricular injection + distilled water), AD model group(Aβ25–35intracerebroventricular injection + distilled water),low-dose BTD group (Aβ25–35intracerebroventricular injection + low-dose BTD), moderate-dose BTD group (Aβ25–35intracerebroventricular injection + moderate-dose BTD)and high-dose BTD group (Aβ25–35intracerebroventricular injection + high-dose BTD).

    BTD preparation

    BTD treatment

    Morris water maze test

    For the navigation test, each rat was placed in the water perpendicular to the pool wall from a specific point in each quadrant and trained four times each day for 60 seconds per trial for 5 days. The computer connected with the video-camera stopped recording as soon as the rat landed on the platform or when 60 seconds had lapsed. The rat was allowed to rest on the platform for 10 seconds.e amount of time spent finding the platform (escape latency) was calculated using Morris water maze soware (Panlab Company,Holliston, MA, USA).

    On day 6, a spatial probe test was conducted with the platform removed.e rat was placed in the water perpendicular to the wall from a selected position.e number of crossings over the location of the previously hidden platform and the time spent in that (target) quadrant were measured and recorded for 90 seconds by the Morris water maze soware(Panlab Company).e investigator conducting the Morris water maze test was blinded to the treatment groups.

    Golgi staining

    All rats (n = 7 per group) were killed after 28 days of intragastric BTD (or water) administration. The Golgi–Cox impregnation of brain tissue was performed by FD Neurotechnologies, Inc. (Columbia, SC, USA), using the FD Rapid GolgiStain Kit (#PK401; FD Neurotechnologies, Inc.). Brains were immersed in impregnation solution, which was prepared by mixing equal volumes of Solutions A and B, and stored at room temperature in the dark.e solution was replaced with fresh impregnation solution the next day. Aer 2 weeks, the brains were transferred to Solution C and stored at room temperature for 72 hours.e solution was replaced aer 24 hours.e brain tissue was sectioned into 100-μmthick sagittal slices using a cryostat and were mounted on gelatin-coated microscope slides with Solution C. Slides were rinsed twice in distilled water (4 minutes each), and then placed in a mixture of one part Solution D, one part Solution E, and two parts double-distilled water for 10 minutes.e slides were rinsed twice in distilled water (4 minutes each),dehydrated in 50%, 75%, and 95% ethanol (4 minutes each),and further dehydrated in absolute ethanol four times (4 minutes each). Sections were permeabilized in xylene three times (4 minutes each) and coverslipped with Permount mounting medium (Thermo Fisher Scientific, Waltham,MA, USA).e dendritic spines on secondary and tertiary apical dendrites of pyramidal neurons in the CA1 region of the hippocampus were selected for quantitative analysis and quantified by two different investigators.e dendritic spine density values are equaled to spine numbers/dendritic length and expressed as spines/10 μm (Li et al., 2013).

    western blot assay

    All rats (n = 7 per group) were killed aer 28 days of BTD(or water) administration. Hippocampal tissues were collected and homogenized on ice. Cold phosphate-buffered saline (0.01 M, pH 7.2–7.3) was dropped onto the tissues.Aer gently shaking and washing, the solution was poured off. Western blot assays were conducted as previously de-scribed (Zhang et al., 2015). Briefly, hippocampal tissues were lysed in radioimmunoprecipitation assay buffer (Applygen, Beijing, China). The protein content, measured using a bicinchoninic acid protein assay kit (Thermo Scientific., Waltham, MA, USA), ranged from 2 to 4 μg/μL. All protein lysates were resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred onto polyvinylidene fluoride membranes.e membranes were blocked with 5% nonfat milk for 1 hour at room temperature and incubated with the following primary antibodies (all obtained from Proteintech, Chicago, IL,USA) overnight at 4°C: mouse β-actin antibody (1:4,000),rabbit Shank1 polyclonal antibody (1:200), rabbit NR2B polyclonal antibody (1:200), and rabbit PSD-95 polyclonal antibody (1:200). Subsequently, the membranes were incubated with secondary goat anti-mouse antibody or rabbit IgG conjugated to horseradish peroxidase (1:3,000; Proteintech) for 1 hour at room temperature. Bound antibodies were visualized using the enhanced chemiluminescence western blotting detection kit (Thermo pierce, Waltham,MA, USA). Proteins were visualized on X-ray film, and the grayscale values of the bands were analyzed using Quantity One soware (Bio-Rad, Hercules, CA, USA). Target protein expression was normalized to β-actin.

    Statistical analysis

    Results

    BTD ameliorated Aβ25–35-induced learning deficits

    The navigation test results indicated that the escape latency for all rats significantly decreased with time (P < 0.01;repeated measures ANOVA), suggesting that training was effective. However, the escape latency among the groups differed (P < 0.01). Compared with the sham group, the group administered Aβ25–35had a significantly longer escape latency(P < 0.01), indicating that administration of Aβ25–35induced learning deficits.is deficit was ameliorated by the administration of both moderate and high doses of BTD (P < 0.05 or P < 0.01;Figure 1A,D).

    BTD alleviated Aβ25–35-induced memory deficits

    Long-term oral administration of BTD inhibited hippocampal synaptic loss in a rat model of AD

    We assessed the density of dendritic spines on pyramidal neurons using Golgi-stained tissue.e density of the dendritic spines on pyramidal neurons was markedly decreased in the model group compared with that in the sham group,and this decrease was significantly blocked by moderate-dose BTD treatment (Figure 2).

    BTD increased PSD-95, Shank1, and NR2B hippocampal protein levels in a rat model of AD

    To determine the effect of BTD on synaptic plasticity-associated proteins, we performed western blot assays. As shown inFigure 3, PSD-95 (P < 0.05), Shank1 (P < 0.01) and NR2B (P < 0.05) protein expression levels were significantly decreased in the model group compared with those in the sham group. However, BTD administration for 28 days significantly increased protein expression levels in the treated rats compared with that for rats in the model group for PSD-95 (P < 0.05 or P < 0.01) and Shank1 (P < 0.05 or P < 0.01)at all three doses and for NR2B at both the moderate and high doses (P < 0.05 or P < 0.01;Figure 3).

    Discussion

    Our findings demonstrated that the abnormal deposition of Aβ in the brain is neurotoxic and is associated with synaptic damage in the hippocampus. Soluble Aβ oligomers, rather than Aβ plaque or neurofibrillary tangle volume, reportedly induces synaptic loss (Zhang et al., 2015). Previous studies have shown that both Aβ1–42and Aβ25–35peptides can induce synaptic injury and are implicated as playing a role in AD(Bate et al., 2008; Lazcano et al., 2014). However, many researchers have used the smaller 11-amino acid fragment,Aβ25–35, as a convenient alternative in AD investigations,rather than the parent Aβ1–42, as the smaller peptide mimics several of the toxicological and oxidative stress properties of the native full-length peptide (Frozza et al., 2009; Zhang et al., 2016). The methionine at the C-terminus in Aβ25–35appears to be the cause for the exaggerated effects of this peptide (Varadarajan et al., 2001). Aβ has been shown to decrease synaptic N-methyl-D-aspartic acid receptor-induced long-term potentiation and long-term depression (Minano-Molina et al., 2011).ese results are consistent with data in Wistar rats showing that spatial memory performance induced by flavonoid intervention significantly correlates with the hippocampal levels of the NR2B glutamate receptor subunit (Rendeiro et al., 2014). It was previously demonstrated using immunohistochemistry that Aβ interacts with PSD-95 at synaptic sites (Pham et al., 2010). Roselli et al. (2009)found that shank synaptic clusters, which are associated with the ribosomal s6 kinase signal pathway, markedly decrease in frontocortical neurons treated with soluble Aβ.erefore,soluble Aβ oligomers play a dominant role in the beginning of AD and can cause synaptic dysfunction and cognitive decline (Shankar et al., 2008).

    Figure 1 BTD ameliorates Aβ25–35-induced learning and memory deficits of rats.

    Figure 2 Effects of BTD on Aβ25–35-induced synaptic spine loss on hippocampal CA1 pyramidal neurons in a rat model of Alzheimer’s disease aer 28 days of intervention.

    Alzheimer’s disease, a complex and heterogeneous disorder, still lacks effective prevention and treatment methods.Traditional Chinese medicine may offer certain benefits in the prevention and treatment of AD, given that pathogenesis occurs with myriad symptoms and features damage to multiple systems that affect the entire person. Although BTD is composed of six traditional Chinese medicines, Herba Epimedii and Radix Polygonum multiflori are the main effectors.ey nourish the kidney, replenish the blood and essence, and antagonize the neurotoxicity of Aβ to improve learning and memory abilities (Zhang et al., 2014; Park et al.,2015), while the other ingredients in BTD provide additional favorable effects.

    Figure 3 Effect of long-term BTD administration (28 days) on expression levels of synaptic plasticity-associated proteins in the hippocampus.

    In conclusion, BTD may block Aβ-induced neurotoxicity by regulating the protein expression levels of PSD-95 and Shank1 and the NR2B signaling pathway to maintain synaptic structure and transmission efficiency. Although the exact molecular targets of BTD that affect synaptic proteins and protect against cognitive decline are unknown, our study provided preliminary data to shed light on the underlying molecular mechanisms.

    Author contributions:ZW, CXS, and SH designed and supervised the whole experimental process. WG and SC performed experiments. SH and WJP provided technical assistance and statistical analysis and reviewed and edited the paper. All authors approved the final version of the paper.

    Conflicts of interest:None declared.

    Research ethics:e study was approved by the Animal Care and Use Committee of Central South University (approval No. 2016-015). The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1986).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by ienticate.

    Peer review:Externally peer reviewed.

    Open access statement:is is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms.

    Bate C, Tayebi M, Williams A (2008) Ginkgolides protect against amyloid-beta1-42-mediated synapse damage in vitro. Mol Neurodegener 3:1.

    Blennow K, de Leon M, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387-403.

    Frozza RL, Horn AP, Hoppe JB, Simao F, Gerhardt D, Comiran RA,Salbego CG (2009) A comparative study of beta-amyloid peptides Abeta1-42 and Abeta25-35 toxicity in organotypic hippocampal slice cultures. Neurochem Res 34:295-303.

    Gao ML, Zhang YD, Li N, Qiao J, Yu M (2016) Bone marrow mesenchymal stem cells transplanted into a rat model of Alzheimer’s disease: improvement in the learning and memory ability. Zhongguo Zuzhi Gongcheng Yanjiu 20:2059-2065.

    Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, Kidd FL, Sung CC, Miyakawa T, Bear MF, Weinberg RJ, Sheng M (2008)Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci 28:1697-1708.

    Kiraly DD, Lemtiri-Chlieh F, Levine ES, Mains RE, Eipper BA (2011)Kalirin binds the nr2b subunit of the nmda receptor, altering its synaptic localization and function. J Neurosci 31:12554-12565.

    Lazcano Z, Solis O, Bringas ME, Limon D, Diaz A, Espinosa B, Garcia-Pelaez I, Flores G, Guevara J (2014) Unilateral injection of Abeta25-35 in the hippocampus reduces the number of dendritic spines in hyperglycemic rats. Synapse doi: 10.1002/syn.21770.

    Li S, Kang L, Zhang C, Xie G, Li N, Zhang Y, Du J, Cui H (2013) Effects of dihydrotestosterone on synaptic plasticity of hippocampus in male SAMP8 mice. Exp Gerontol 48:778-785.

    Li Z, Tong Q, Xu H, Hu L, Zhao R, Zhou F, Pan W, Zhou L (2015)erapeutic effects of Tiandijingwan on the Aβ25–35-induced Alzheimer’s disease model rats. Evid-Based Compl Alt 2015:1-9.

    Liu J, Liu Z, Zhang Y, Yin F (2015) A novel antagonistic role of natural compound icariin on neurotoxicity of amyloid beta peptide. Indian J Med Res 142:190-195.

    Liu M, Guo H, Li C, Wang D, Wu J, Wang C, Xu J, Qin R (2015) Cognitive improvement of compound danshen in an Aβ25-35peptide-induced rat model of Alzheimer’s disease. BMC Complem Altern M 15:382.

    Liu Y, Wu YL, Cao JH, Chen DF, Zhou JH, Deng RD (2011) Effects and mechanism of Plastrum testudinis extracts on PC12 apoptosis.Zhong Yao Cai 34:400-403.

    Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853-862.

    Mao J, Huang S, Liu S, Feng XL, Yu M, Liu J, Sun YE, Chen G, Yu Y,Zhao J, Pei G (2015) A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation. Aging Cell 14:784-796.

    Miletic G, Dumitrascu CI, Honstad CE, Micic D, Miletic V (2010)Loose ligation of the rat sciatic nerve elicits early accumulation of Shank1 protein in the post-synaptic density of spinal dorsal horn neurons. Pain 149:152-159.

    Minano-Molina AJ, Espana J, Martin E, Barneda-Zahonero B, Fado R, Sole M, Trullas R, Saura CA, Rodriguez-Alvarez J (2011) Soluble oligomers of amyloid-beta peptide disrupt membrane trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor contributing to early synapse dysfunction. J Biol Chem 286:27311-27321.

    Parihar MS, Brewer GJ (2010) Amyloid-beta as a modulator of synaptic plasticity. J Alzheimers Dis 22:741-763.

    Park MY, Jung YS, Park JH, Choi YW, Lee J, Kim CM, Baek JU, Choi BT, Shin HK (2015) PMC-12, a prescription of traditional korean medicine, improves amyloid beta-induced cognitive deficits through modulation of neuroinflammation. Evid Based Complement Alternat Med 2015:768049.

    Pham E, Crews L, Ubhi K, Hansen L, Adame A, Cartier A, Salmon D,Galasko D, Michael S, Savas JN, Yates JR, Glabe C, Masliah E (2010)Progressive accumulation of amyloid-β oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 277:3051-3067.

    Plattner F, Hernández A, Kistler TM, Pozo K, Zhong P, Yuen EY, Tan C,Hawasli AH, Cooke SF, Nishi A, Guo A, Wiederhold T, Yan Z, Bibb JA (2014) Memory enhancement by targeting Cdk5 regulation of NR2B. Neuron 81:1070-1083.

    Rendeiro C, Foley A, Lau VC, Ring R, Rodriguez-Mateos A, Vauzour D,Williams CM, Regan C, Spencer JPE (2014) A role for hippocampal PSA-NCAM and NMDA-NR2B receptor function in flavonoid-induced spatial memory improvements in young rats. Neuropharmacology 79:335-344.

    Roselli F, Hutzler P, Wegerich Y, Livrea P, Almeida OF (2009) Disassembly of shank and homer synaptic clusters is driven by soluble beta-amyloid (1-40) through divergent NMDAR-dependent signalling pathways. PLoS One 4:e6011.

    Sha D, Li L, Ye L, Liu R, Xu Y (2009) Icariin inhibits neurotoxicity of beta-amyloid by upregulating cocaine-regulated and amphetamine-regulated transcripts. Neuroreport 20:1564-1567.

    Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837-842.

    Sultana R, Banks WA, Butterfield DA (2010) Decreased levels of PSD95 and two associated proteins and increased levels of BCl2 and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: Insights into their potential roles for loss of synapses and memory, accumulation of Abeta, and neurodegeneration in a prodromal stage of Alzheimer’s disease. J Neurosci Res 88:469-477.

    Teng Y, Zhang MQ, Wang W, Liu LT, Zhou LM, Miao SK, Wan LH(2014) Compound danshen tablet ameliorated Abeta25-35-induced spatial memory impairment in mice via rescuing imbalance between cytokines and neurotrophins. BMC Complement Altern Med 14:23.

    Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Abeta-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9:48.

    Varadarajan S, Kanski J, Aksenova M, Lauderback C, Butterfield DA(2001) Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s Abeta(1-42) and A beta (25-35). J Am Chem Soc 123:5625-5631.

    Venigalla M, Gyengesi E, Münch G (2015) Curcumin and Apigenin- novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regen Res 10:1181-1105.

    Wang D, Cui Z, Zeng Q, Kuang H, Wang LP, Tsien JZ, Cao X (2009)Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS One 4:e7486.

    Wang T, Yang YJ, Wu PF, Wang W, Hu ZL, Long LH, Xie N, Fu H,Wang F, Chen JG (2011) Tetrahydroxystilbene glucoside, a plant-derived cognitive enhancer, promotes hippocampal synaptic plasticity.Eur J Pharmacol 650:206-214.

    Wang Z, Peng W, Zhang C, Sheng C, Huang W, Wang Y, Fan R (2015)Effects of stem cell transplantation on cognitive decline in animal models of Alzheimer’s disease: A systematic review and meta-analysis. Sci Rep 5:12134.

    Wu AG, Wong VK, Xu SW, Chan WK, Ng CI, Liu L, Law BY (2013)Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant alpha-synuclein and huntingtin in PC-12 cells. Int J Mol Sci 14:22618-22641.

    Xia Z, Peng W, Cheng S, Zhong B, Sheng C, Zhang C, Gong W, Cheng S,Li J, Wang Z (2017) Naoling decoction restores cognitive function by inhibiting the neuroinflammatory network in a rat model of Alzheimer’s disease. Oncotarget doi: 10.18632/oncotarget.17337.

    Zhang D, Wang Z, Sheng C, Peng W, Hui S, Gong W, Chen S (2015)Icariin prevents amyloid beta-induced apoptosis via the PI3K/Akt pathway in PC-12 cells. Evid-Based Compl Alt 2015:235265.

    Zhang L, Shen C, Chu J, Zhang R, Li Y, Li L (2014) Icariin decreases the expression of APP and BACE-1 and reduces the beta-amyloid burden in an APP transgenic mouse model of Alzheimer’s disease. Int J Biol Sci 10:181-191.

    Zhang Y, Pan HY, Hu XM, Cao XL, Wang J, Min ZL, Xu SQ, Xiao W,Yuan Q, Li N, Cheng J, Zhao SQ, Hong X (2016)e role of myocardin-related transcription factor-A in Abeta25-35 induced neuron apoptosis and synapse injury. Brain Res 1648:27-34.

    Graphical Abstract

    Bushen Tiansui decoction (BTD) improves cognitive function in Alzheimer’s disease rats

    *Correspondence to:

    Zhe Wang, M.D.,ericwangzhe@csu.edu.cn.

    orcid:

    0000-0002-1118-9721

    (Zhe Wang)

    10.4103/1673-5374.217347

    Accepted: 2017-08-20

    Copyedited by Smith T, Robens J, Wang J, Li CH, Qiu Y, Song LP, Zhao M

    99香蕉大伊视频| 日日摸夜夜添夜夜爱| 久久韩国三级中文字幕| 精品国产一区二区三区久久久樱花| 视频区图区小说| 高清黄色对白视频在线免费看| 有码 亚洲区| 九草在线视频观看| 两个人免费观看高清视频| 十八禁高潮呻吟视频| av黄色大香蕉| 少妇精品久久久久久久| 国产亚洲av片在线观看秒播厂| 久久精品熟女亚洲av麻豆精品| 中国美白少妇内射xxxbb| 80岁老熟妇乱子伦牲交| 日韩成人伦理影院| 亚洲,欧美,日韩| 国产一区二区激情短视频 | 黄色怎么调成土黄色| 高清不卡的av网站| 精品少妇内射三级| 日韩免费高清中文字幕av| 国产在视频线精品| 高清欧美精品videossex| 五月天丁香电影| 少妇人妻精品综合一区二区| 久久精品久久久久久久性| 国产精品蜜桃在线观看| 免费看av在线观看网站| 大香蕉97超碰在线| 久久久久国产精品人妻一区二区| 在线观看www视频免费| 韩国精品一区二区三区 | www.色视频.com| 亚洲欧洲日产国产| 最近中文字幕高清免费大全6| 一本大道久久a久久精品| 欧美xxxx性猛交bbbb| 成人二区视频| 亚洲国产精品国产精品| 国产精品麻豆人妻色哟哟久久| h视频一区二区三区| 高清视频免费观看一区二区| 国产一区二区激情短视频 | 国产一级毛片在线| 亚洲伊人色综图| 乱码一卡2卡4卡精品| 高清在线视频一区二区三区| 欧美97在线视频| 亚洲精华国产精华液的使用体验| 欧美激情 高清一区二区三区| 国产午夜精品一二区理论片| 亚洲在久久综合| 国产成人精品在线电影| 亚洲欧美一区二区三区黑人 | 一级,二级,三级黄色视频| 日韩中字成人| 一边亲一边摸免费视频| 国产片内射在线| 卡戴珊不雅视频在线播放| 国产老妇伦熟女老妇高清| 麻豆精品久久久久久蜜桃| 丁香六月天网| av视频免费观看在线观看| 国产探花极品一区二区| 99精国产麻豆久久婷婷| 寂寞人妻少妇视频99o| 男女啪啪激烈高潮av片| 国产精品无大码| 日本vs欧美在线观看视频| 国产亚洲午夜精品一区二区久久| 成人漫画全彩无遮挡| 精品少妇内射三级| 在线 av 中文字幕| 婷婷色av中文字幕| 国产色爽女视频免费观看| 少妇被粗大的猛进出69影院 | 2022亚洲国产成人精品| 69精品国产乱码久久久| 桃花免费在线播放| 免费久久久久久久精品成人欧美视频 | 国产精品一区二区在线观看99| 亚洲精品aⅴ在线观看| 午夜av观看不卡| 99热网站在线观看| 97在线视频观看| 黄片播放在线免费| 最后的刺客免费高清国语| 国产精品99久久99久久久不卡 | 国产欧美另类精品又又久久亚洲欧美| 亚洲av电影在线观看一区二区三区| 18禁在线无遮挡免费观看视频| 最近2019中文字幕mv第一页| 亚洲少妇的诱惑av| 蜜桃在线观看..| 日本免费在线观看一区| 亚洲色图 男人天堂 中文字幕 | 国产日韩欧美视频二区| 久久精品国产a三级三级三级| 精品国产露脸久久av麻豆| 天天操日日干夜夜撸| 91aial.com中文字幕在线观看| 欧美xxⅹ黑人| 成人毛片60女人毛片免费| av免费观看日本| 七月丁香在线播放| 国产欧美日韩综合在线一区二区| 少妇的丰满在线观看| 成人黄色视频免费在线看| 久久人人爽人人爽人人片va| 日本av手机在线免费观看| 中文字幕精品免费在线观看视频 | 一级,二级,三级黄色视频| 日本wwww免费看| 九色成人免费人妻av| 成人18禁高潮啪啪吃奶动态图| 亚洲高清免费不卡视频| 少妇人妻精品综合一区二区| 成年av动漫网址| 精品国产一区二区三区四区第35| 亚洲久久久国产精品| 亚洲一码二码三码区别大吗| 日韩不卡一区二区三区视频在线| 亚洲内射少妇av| 久久久久人妻精品一区果冻| 午夜老司机福利剧场| 欧美成人午夜精品| 99热全是精品| a级毛色黄片| 久久久国产欧美日韩av| 久久av网站| 久久免费观看电影| 久久精品国产自在天天线| 免费久久久久久久精品成人欧美视频 | 制服人妻中文乱码| 中文字幕精品免费在线观看视频 | 欧美bdsm另类| 国产高清国产精品国产三级| 大香蕉97超碰在线| 久久国产亚洲av麻豆专区| 我要看黄色一级片免费的| 熟女人妻精品中文字幕| 乱人伦中国视频| 亚洲精品美女久久久久99蜜臀 | 国产欧美日韩综合在线一区二区| 亚洲国产精品一区三区| 午夜激情av网站| 少妇精品久久久久久久| 成人免费观看视频高清| 高清黄色对白视频在线免费看| 欧美人与性动交α欧美精品济南到 | 99国产精品免费福利视频| a级毛片在线看网站| 成人国语在线视频| 啦啦啦中文免费视频观看日本| 最近2019中文字幕mv第一页| 伊人久久国产一区二区| 深夜精品福利| 1024视频免费在线观看| 一级毛片 在线播放| 久久久久人妻精品一区果冻| 免费日韩欧美在线观看| 亚洲精品一区蜜桃| 免费在线观看完整版高清| 22中文网久久字幕| 极品人妻少妇av视频| 在线观看免费高清a一片| 国产乱来视频区| 80岁老熟妇乱子伦牲交| 中文天堂在线官网| 欧美精品国产亚洲| 亚洲精品日本国产第一区| 亚洲精品一区蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩精品免费视频一区二区三区 | www.熟女人妻精品国产 | 成年美女黄网站色视频大全免费| 只有这里有精品99| 国产亚洲欧美精品永久| 夜夜骑夜夜射夜夜干| 国产在线一区二区三区精| 亚洲av电影在线进入| 亚洲天堂av无毛| 色视频在线一区二区三区| 99热这里只有是精品在线观看| 国产精品国产av在线观看| 日本黄大片高清| 久久久久久伊人网av| 久久精品久久精品一区二区三区| 妹子高潮喷水视频| 久久鲁丝午夜福利片| 在线观看免费日韩欧美大片| 高清av免费在线| a 毛片基地| 久久精品aⅴ一区二区三区四区 | 考比视频在线观看| 制服丝袜香蕉在线| 在线观看三级黄色| 色婷婷久久久亚洲欧美| videos熟女内射| 久久国产精品大桥未久av| 巨乳人妻的诱惑在线观看| 18禁国产床啪视频网站| 永久免费av网站大全| 色吧在线观看| 99久久综合免费| 丝瓜视频免费看黄片| 黄色配什么色好看| 久久久久精品久久久久真实原创| 人人澡人人妻人| 99热这里只有是精品在线观看| 97超碰精品成人国产| 国产女主播在线喷水免费视频网站| 又粗又硬又长又爽又黄的视频| 日本欧美国产在线视频| 午夜影院在线不卡| 欧美精品一区二区大全| av免费在线看不卡| 亚洲精品国产av成人精品| 日本欧美视频一区| 交换朋友夫妻互换小说| 中国三级夫妇交换| 咕卡用的链子| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 99香蕉大伊视频| 一区二区三区四区激情视频| 中文字幕制服av| 成人亚洲精品一区在线观看| 99热网站在线观看| 老司机影院成人| 日韩一区二区视频免费看| 最新的欧美精品一区二区| 国产精品女同一区二区软件| 欧美丝袜亚洲另类| 欧美人与善性xxx| 如日韩欧美国产精品一区二区三区| 搡女人真爽免费视频火全软件| 校园人妻丝袜中文字幕| 亚洲精品456在线播放app| 日韩,欧美,国产一区二区三区| 免费观看a级毛片全部| 成人18禁高潮啪啪吃奶动态图| 激情视频va一区二区三区| 午夜视频国产福利| 超色免费av| 看免费av毛片| 欧美成人精品欧美一级黄| 女性生殖器流出的白浆| 中文字幕人妻熟女乱码| 观看美女的网站| 18禁动态无遮挡网站| 欧美激情极品国产一区二区三区 | 秋霞在线观看毛片| 久久这里有精品视频免费| 午夜日本视频在线| 国产视频首页在线观看| 久久久精品区二区三区| 18禁国产床啪视频网站| 国产精品 国内视频| 大片电影免费在线观看免费| 在线 av 中文字幕| 巨乳人妻的诱惑在线观看| 成人毛片a级毛片在线播放| 国产亚洲午夜精品一区二区久久| 国产成人aa在线观看| 成年女人在线观看亚洲视频| 婷婷色麻豆天堂久久| 欧美精品av麻豆av| 国产成人aa在线观看| 少妇的逼水好多| 久久99精品国语久久久| 国产高清国产精品国产三级| 欧美xxxx性猛交bbbb| 免费看不卡的av| 国产精品偷伦视频观看了| 亚洲欧洲精品一区二区精品久久久 | 五月天丁香电影| 天天影视国产精品| 高清黄色对白视频在线免费看| 九色成人免费人妻av| 人妻人人澡人人爽人人| 午夜福利视频在线观看免费| 亚洲欧美精品自产自拍| 国产欧美另类精品又又久久亚洲欧美| 夜夜骑夜夜射夜夜干| 亚洲精品久久成人aⅴ小说| 一级片免费观看大全| 久久热在线av| 国产亚洲一区二区精品| 免费看光身美女| 视频区图区小说| 一本大道久久a久久精品| 久久这里有精品视频免费| 一级片免费观看大全| 国产精品久久久久久久久免| 亚洲在久久综合| 国产极品粉嫩免费观看在线| 国产亚洲精品久久久com| 亚洲精品久久成人aⅴ小说| 欧美日韩成人在线一区二区| 人人妻人人添人人爽欧美一区卜| 纯流量卡能插随身wifi吗| 一级毛片黄色毛片免费观看视频| 欧美少妇被猛烈插入视频| 久久久久久久大尺度免费视频| 亚洲第一区二区三区不卡| 9色porny在线观看| 亚洲国产精品国产精品| 国产成人精品无人区| 亚洲av电影在线观看一区二区三区| 久久久久久久国产电影| 90打野战视频偷拍视频| 一边亲一边摸免费视频| 少妇熟女欧美另类| 在线天堂中文资源库| 免费不卡的大黄色大毛片视频在线观看| 亚洲人与动物交配视频| 欧美激情 高清一区二区三区| 日韩不卡一区二区三区视频在线| 午夜福利影视在线免费观看| 亚洲三级黄色毛片| 久久99蜜桃精品久久| 久久韩国三级中文字幕| 天天影视国产精品| 这个男人来自地球电影免费观看 | 国产av码专区亚洲av| 又粗又硬又长又爽又黄的视频| 一级黄片播放器| 成人国语在线视频| 欧美 亚洲 国产 日韩一| 宅男免费午夜| 日本wwww免费看| 中文乱码字字幕精品一区二区三区| 日韩成人伦理影院| 人人妻人人澡人人看| 人妻少妇偷人精品九色| 捣出白浆h1v1| 久久久久视频综合| 久久久久精品性色| 99国产精品免费福利视频| 精品久久久久久电影网| 中文乱码字字幕精品一区二区三区| 免费在线观看完整版高清| 人人妻人人澡人人看| 在现免费观看毛片| 亚洲,欧美,日韩| 亚洲精品乱久久久久久| 少妇熟女欧美另类| 精品少妇黑人巨大在线播放| 亚洲欧美一区二区三区黑人 | 亚洲美女视频黄频| 亚洲精品国产av成人精品| 亚洲精华国产精华液的使用体验| 欧美人与性动交α欧美精品济南到 | 免费观看av网站的网址| 男女国产视频网站| 亚洲美女搞黄在线观看| 国产精品 国内视频| 国产综合精华液| 伊人久久国产一区二区| 91午夜精品亚洲一区二区三区| 久久精品久久精品一区二区三区| 丝袜喷水一区| 国产极品天堂在线| 男男h啪啪无遮挡| 午夜福利视频在线观看免费| 国产福利在线免费观看视频| 天美传媒精品一区二区| 亚洲av在线观看美女高潮| 免费观看av网站的网址| 亚洲av电影在线观看一区二区三区| 久久精品国产鲁丝片午夜精品| 亚洲精品aⅴ在线观看| 啦啦啦中文免费视频观看日本| 久久久久久久亚洲中文字幕| 免费高清在线观看视频在线观看| 热re99久久国产66热| 在线观看免费视频网站a站| 一区在线观看完整版| videossex国产| 考比视频在线观看| 亚洲av成人精品一二三区| 老司机亚洲免费影院| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 国产欧美日韩一区二区三区在线| 成年美女黄网站色视频大全免费| 人人妻人人添人人爽欧美一区卜| 国产一区有黄有色的免费视频| av免费观看日本| 国产片特级美女逼逼视频| 国产欧美亚洲国产| 男女边吃奶边做爰视频| 婷婷成人精品国产| 最近最新中文字幕大全免费视频 | 午夜激情av网站| 欧美最新免费一区二区三区| 免费av中文字幕在线| 熟妇人妻不卡中文字幕| 亚洲精品乱码久久久久久按摩| 国产1区2区3区精品| 男女无遮挡免费网站观看| 日韩伦理黄色片| 亚洲人与动物交配视频| 大陆偷拍与自拍| 国产成人av激情在线播放| 国产色爽女视频免费观看| 国产精品一国产av| 丝袜脚勾引网站| 夫妻性生交免费视频一级片| 欧美国产精品一级二级三级| 乱人伦中国视频| 久久99蜜桃精品久久| 曰老女人黄片| 黄色配什么色好看| 久久ye,这里只有精品| 国产乱人偷精品视频| 只有这里有精品99| 五月天丁香电影| 久久精品人人爽人人爽视色| 久久影院123| 在线观看人妻少妇| 最黄视频免费看| 免费看av在线观看网站| 亚洲国产精品一区二区三区在线| 久久韩国三级中文字幕| 18禁国产床啪视频网站| av又黄又爽大尺度在线免费看| 久久久久久久国产电影| 国产极品天堂在线| 欧美国产精品va在线观看不卡| 性高湖久久久久久久久免费观看| 国产片内射在线| 精品一区二区三卡| 精品国产乱码久久久久久小说| 亚洲欧美一区二区三区国产| 精品国产露脸久久av麻豆| 日日摸夜夜添夜夜爱| kizo精华| av又黄又爽大尺度在线免费看| 久久韩国三级中文字幕| 大香蕉97超碰在线| 国产成人精品在线电影| 人人澡人人妻人| 80岁老熟妇乱子伦牲交| 亚洲一级一片aⅴ在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲av中文av极速乱| 精品久久久精品久久久| 99re6热这里在线精品视频| 国产片内射在线| 久久久久久久亚洲中文字幕| 日韩精品有码人妻一区| 韩国av在线不卡| 满18在线观看网站| 亚洲国产最新在线播放| 国产在线视频一区二区| 男女国产视频网站| 街头女战士在线观看网站| 国产成人aa在线观看| 国产免费福利视频在线观看| 丝袜美足系列| 91精品三级在线观看| 国产日韩一区二区三区精品不卡| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品古装| 婷婷色麻豆天堂久久| 又黄又粗又硬又大视频| av有码第一页| 两个人看的免费小视频| 久久精品国产亚洲av天美| 在线天堂最新版资源| 卡戴珊不雅视频在线播放| 免费看光身美女| 免费大片18禁| 少妇被粗大的猛进出69影院 | 久久久久久久精品精品| a级片在线免费高清观看视频| 夫妻午夜视频| 亚洲三级黄色毛片| 精品久久蜜臀av无| 极品少妇高潮喷水抽搐| av福利片在线| 婷婷成人精品国产| 香蕉国产在线看| 激情视频va一区二区三区| 久久久亚洲精品成人影院| 亚洲国产精品成人久久小说| 免费观看在线日韩| 最后的刺客免费高清国语| 久久久久久久久久人人人人人人| 在线观看免费高清a一片| av有码第一页| 91精品国产国语对白视频| 免费在线观看完整版高清| 丰满迷人的少妇在线观看| 熟女av电影| 久久久精品94久久精品| 国产又爽黄色视频| 日韩大片免费观看网站| 99久久人妻综合| 日韩制服骚丝袜av| 亚洲伊人色综图| 亚洲综合色惰| 九九爱精品视频在线观看| 最黄视频免费看| 亚洲av综合色区一区| 1024视频免费在线观看| 亚洲五月色婷婷综合| 亚洲精品久久久久久婷婷小说| 少妇 在线观看| 婷婷色麻豆天堂久久| 欧美成人午夜精品| freevideosex欧美| 久久精品久久久久久久性| 在线观看免费日韩欧美大片| 青春草国产在线视频| 亚洲精品久久久久久婷婷小说| 秋霞在线观看毛片| 视频在线观看一区二区三区| 少妇人妻精品综合一区二区| 中文天堂在线官网| 亚洲国产精品成人久久小说| 满18在线观看网站| 国产老妇伦熟女老妇高清| av.在线天堂| 老司机影院成人| 纵有疾风起免费观看全集完整版| a级毛片黄视频| 母亲3免费完整高清在线观看 | 亚洲 欧美一区二区三区| 日韩,欧美,国产一区二区三区| 久久97久久精品| 国产精品.久久久| 嫩草影院入口| av有码第一页| 成人无遮挡网站| 国产熟女欧美一区二区| 久久精品国产综合久久久 | 99久久综合免费| 黄色一级大片看看| 亚洲婷婷狠狠爱综合网| 黑丝袜美女国产一区| 99九九在线精品视频| 中文字幕人妻丝袜制服| 又黄又粗又硬又大视频| 精品熟女少妇av免费看| 下体分泌物呈黄色| 成人毛片60女人毛片免费| 日韩 亚洲 欧美在线| 丝袜人妻中文字幕| 久久精品久久久久久久性| 美女主播在线视频| 九九爱精品视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美亚洲二区| 亚洲精品色激情综合| 午夜福利乱码中文字幕| 男女高潮啪啪啪动态图| 欧美+日韩+精品| 免费观看无遮挡的男女| 亚洲人成77777在线视频| 亚洲精品国产av成人精品| 亚洲第一区二区三区不卡| 最近的中文字幕免费完整| 亚洲美女黄色视频免费看| 韩国精品一区二区三区 | 国产一区有黄有色的免费视频| 一级片'在线观看视频| 秋霞伦理黄片| 成人影院久久| 久久久久精品人妻al黑| 嫩草影院入口| 在线看a的网站| 最近2019中文字幕mv第一页| 2022亚洲国产成人精品| 国产精品久久久久久精品古装| 草草在线视频免费看| av黄色大香蕉| 亚洲欧洲日产国产| 亚洲,欧美精品.| 卡戴珊不雅视频在线播放| 亚洲成色77777| 日韩免费高清中文字幕av| 边亲边吃奶的免费视频| 99热6这里只有精品| 免费观看a级毛片全部| 精品人妻一区二区三区麻豆| 啦啦啦在线观看免费高清www| 久久久欧美国产精品| 黄色怎么调成土黄色| 色网站视频免费| 美女国产高潮福利片在线看| 国产黄色免费在线视频| 国产爽快片一区二区三区| 最近最新中文字幕免费大全7| 久久这里有精品视频免费| 观看美女的网站| 久久精品人人爽人人爽视色| 日韩欧美精品免费久久| 国产精品 国内视频| 在线观看www视频免费| 日日撸夜夜添| 亚洲精品久久成人aⅴ小说| 色视频在线一区二区三区| 国产av精品麻豆| a级毛片黄视频| 日本色播在线视频| 亚洲少妇的诱惑av| 黑人高潮一二区|