• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the road towards the global analysis of human synapses

    2017-11-08 11:48:35AlephPrietoCarlCotman

    G. Aleph Prieto, Carl w. Cotman

    Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA

    How to cite this article: Prieto GA, Cotman CW (2017) On the road towards the global analysis of human synapses. Neural Regen Res 12(10):1586-1589.

    Funding: is study was supported by National Institutes of Health Grants R21-AG048506, P01-AG000538 and RO1-AG34667 (to CWC), UC MEXUS-CONACYT Grant CN-16-170 (to GAP and CWC).

    On the road towards the global analysis of human synapses

    G. Aleph Prieto*, Carl w. Cotman

    Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA

    How to cite this article: Prieto GA, Cotman CW (2017) On the road towards the global analysis of human synapses. Neural Regen Res 12(10):1586-1589.

    Synapses are essential units for the flow of information in the brain. Over the last 70 years, synapses have been widely studied in multiple animal models including worms, fruit flies, and rodents. In comparison,the study of human synapses has evolved significantly slower, mainly because of technical limitations. However, three novel methods allowing the analysis of molecular, morphological, and functional properties of human synapses may expand our knowledge of the human brain. Here, we briefly describe these methods,and evaluate how the information provided by each unique approach may contribute to the functional and anatomical analysis of the synaptic component of human brain circuitries. In particular, using tissue from cryopreserved human brains, synaptic plasticity can be studied in isolated synaptosomes by fluorescence analysis of single-synapse long-term potentiation (FASS-LTP), and subpopulations of synapses can be thoroughly assessed in the ribbons of brain tissue by array tomography (AT). Currently, it is also possible to quantify synaptic density in the living human brain by positron emission tomography (PET), using a novel synaptic radio-ligand. Overall, data provided by FASS-LTP, AT, and PET may significantly contribute to the global understanding of synaptic structure and function in both healthy and diseased human brains, thus directly impacting translational research.

    fluorescence analysis of single-synapse long-term potentiation; array tomography; positron emission tomography; synaptosomes; flow cytometry; microscopy; [11C]UCB-J[(R)-1-((3-(11C-methyl-11C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one]

    Introduction

    Processing, storage and retrieval of information in the brain rely on circuits of neurons connected by synapses, the “mode of nexus between neurons”. Over the last 70 years, structural and functional properties of synapses have been studied in invertebrate animal models such as C. elegans and D. melanogaster, as well as in vertebrate models including mice, rats,cats, and non-human primates. In comparison, the study of human synapses has evolved significantly slower, mainly because of technical limitations. A better understanding of structural and functional dynamics of human synapses is both timely and critical, as synapse dysfunction is a major cause of most brain diseases, which are increasingly in prevalence in the fast-growing aged population (Selkoe, 2002; Grant, 2012;Morrison and Baxter, 2012).

    Rapid technical progresses coupled with creative approaches developed by neuroscientists have opened up opportunities to study human synapses in vitro and in vivo. Here, we briefly describe three novel methods that allow the analysis of molecular, morphological, and functional properties of human synapses. First, we present a new method that allows the study of synaptic plasticity, specifically long term potentiation (LTP),from synaptosomes isolated from cryopreserved postmortem human brain tissue (Prieto et al., 2017). Second, we discuss how a detailed analysis of subpopulation of synapses can be derived by array tomography (AT), also in postmortem brains(Kay et al., 2013).ird, we discuss how in vivo quantification of synaptic density can now be studied by tracking a novel synaptic radio-ligand by positron emission tomography (PET)(Finnema et al., 2016). We conclude by evaluating of how the information provided by these methods may contribute to the global-functional and anatomical-analysis of synaptic populations in both healthy and diseased human brains.

    Fluorescence Analysis of Single-Synapse Long-Term Potentiation (FASS-LTP)

    A fundamental property of synapses is their ability to show long term change. In 1973, Bliss and Lomo first discovered that brief patterns of afferent activity can initiate a long lasting strengthening of synapse (Bliss and Lomo, 1973), a phenomena first called long-lasting potentiation and currently known as LTP (Bliss and Collingridge, 1993). LTP is commonly held to be a cellular mechanism serving learning and memory (Morris et al., 1986; Roman et al., 1987; Whitlock et al., 2006; Fedulov et al., 2007; Nabavi et al., 2014), and is a topic of intense study in many laboratories (Lynch et al., 2007).

    LTP has been studied for decades, both in vivo and in vitro,using electrophysiological methods which deliver trains of electrical stimulation bursts to initiate LTP in intact neural circuitries (Huganir and Nicoll, 2013). A method to study LTP in human brain would extend studies on LTP from animal models to the human brain. Recently, we developed a method to study LTP in isolated synaptosomes, including synaptosomes isolated from cryopreserved postmortem human brains,which we refer to as FASS-LTP (Prieto et al., 2017).

    LTP reflects the insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors(AMPAR) into the post-synaptic surface (Muller et al., 1988),the essential event for the potentiation of synaptic transmission. FASS-LTP, first described using mouse hippocampus(Prieto et al., 2015), evaluates LTP in isolated synaptosomes by focusing on the insertion of AMPAR into the post-synaptic surface following chemically induced LTP (cLTP). Flow cytometry analysis identifies synaptosomes on the basis of size-related parameters, and evaluates the activity-dependent increase in levels of surface GluA1-containing AMPARs, using immunofluorescence labeling of extracellular epitopes (Figure 1A). Simultaneous labeling for the presynaptic marker neurexin-1β (Nrx1β), which is stabilized at the membrane surface by synaptic activity (Fu and Huang, 2010) and captures postsynaptic surface GluA1 via PSD95 (de Wit et al., 2009; Mondin et al., 2011), further allows to focus on “snowman-shaped”synaptosomes that contain both pre- and post-synaptic elements (GluA1 and Nrx1β double-labeling). FASS-LTP has several unique strengths: synapses are examined directly, multiple samples can be tested in parallel, and minimal amounts of tissue are needed for each assay (Table 1).

    A crucial advantage of FASS-LTP over the classical electrophysiological recordings relies on the possibility of study LTP in the human brain. Indeed, using synaptosomes of Alzheimer’s disease (AD) and control cases, FASS-LTP-derived data have provided the first direct evidence to support the idea that AD-diseased synapses are intrinsically defective in LTP (Prieto et al., 2017), thereby answering a long standing question in neuroscience. In addition, FASS-LTP have been also used to screen a drug library from over 40 hippocampal samples derived from AD cases in a single day, a novel and relevant application for identifying therapeutics.us, FASSLTP could provide the basis for protocols to study LTP in humans, a previously unattainable goal.

    AT

    For decades, synapse structure analysis has been mostly based on electron microscopy (EM). Although EM is a powerful technique to visualize synapses, this method is time-consuming and has technical limitations for immunolabeling synaptic proteins, mainly due to high levels of non-specific staining, and because only a restricted number of markers can be simultaneously visualized. A similar disadvantage accompanies Golgi silver staining, a common method to estimate synaptic density but not suited for immunolabeling of synaptic proteins. In recent years, labeling of pre- and postsynaptic structures for counting and determining size have been significantly improved by AT, a fluorescence-based imaging method allowing single-synapse imaging analysis of diverse synapse populations (Micheva and Smith, 2007; Micheva et al., 2010). Originally used to study synapses in rodent brain,AT has been extended to study synapses in serial sections of human brain tissue (Koffie et al., 2009). One key advantage of the AT technique relies on imaging serial ribbons sections of 70-nm, since the axial (z)-resolution is adequate at this width for imaging synapses by light microscopy (Figure 1B), which is perfectly suited for multi-parameter fluorescence analysis.

    Figure 1 Novel approaches to study human synapses.

    FASS-LTP and AT relies on availability and quality of human brain tissue. When using postmortem tissue, cryopreservation is crucial to the preservation of the functional response evaluated by FASS-LTP (Prieto et al., 2017). For AT,a detailed protocol for tissue collection has been described,where low temperatures and orientation of samples are crucial parameters (Kay et al., 2013). While there are a number of challenges with using postmortem human brain tissue in research, with one of the most significant being the postmortem interval (PMI), several reports indicate that basic biochemical reactions remain well-preserved in the postmortem human brain. For instance, protein-protein interactions in human PSD fractions (Hahn et al., 2009), glycine-dependent NMDAR activation (Hahn et al., 2006), and insulin signaling (Talbot et al., 2012) are relatively insensitive to variation in PMI (< 15 hours) or age (relatively constant from 70-90 years), suggesting that dynamic and anatomical properties evaluated by FASS-LTP and AT, respectively, are resistant to some variables associated with a postmortem approach.

    Synapse Density Analysis by PET

    FASS-LTP and AT are powerful techniques for dissecting plastic and structural properties of human synapses. However, these approaches cannot be used for early diagnosis or therapeutic monitoring, as these methods have only been validated in brain tissue obtained from autopsy. Recently,a first-in-human study showed that synaptic density can be monitored noninvasively by PET (Finnema et al., 2016), a well-established technique for detecting a wide range of brain molecules including receptors, transporters and enzymes.Quantification of human synaptic density by PET is based on the detection of the novel synaptic-specific radio-ligand[11C]UCB-J, (chemical name: [11C]UCB-J[(R)-1-((3-(11C-methyl-11C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one]), which labels the synaptic vesicle glycoprotein 2A (SV2A) (Finnema et al., 2016) (Figure 1C). The synaptic marker SV2A, ubiquitously present in synapses across the brain, is an integral membrane protein located in presynaptic vesicles membranes. PET studies on synaptic density were first validated in baboons. Validation of [11C]UCB-J as a synaptic radio-ligand included a PET analysis of putative SV2A regional densities relative to signal obtained with synaptophysin, a bona fide synaptic marker. Importantly,the authors confirmed that [11C]UCB-J binds specifically to SV2A by pharmacological and biochemical assays (Finnema et al., 2016). Using [11C]UCB-J, SV2A-PET imaging allowed the quantification of synaptic density in over 10 healthy humans and, remarkably, this method provided in vivo evidence of synaptic loss in patients with temporal lobe epilepsy (Finnema et al., 2016).us, SV2A-PET analysis may be used to monitor changes in synaptic density non-invasively in a living brain.

    Striving towards the Big Picture by Combining Functional and Anatomical Analysis of Human Synapses

    Based on classic methods, preparations and molecular tools in neuroscience (e.g., EM, synaptosomes, and radio-ligands),FASS-LTP, AT, and SV2A-PET offer a new scientific avenue for studying the human brain, in particular, for the detailed characterization of the synaptic component of brain circuitries. FASS-LTP, AT and SV2A-PET have been validated in animal models, and subsequently tested in the human brain.Also, all three novel approaches have proven useful for detecting synaptic changes in brains from patients, affected either by neurodegenerative (FASS-LTP and AT in AD cases)or neurological disorders (SV2A-PET in epilepsy).Table 1compares the advantages and capabilities of FASS-LTP, AT,and SV2A-PET. It is evident that SV2A-PET has the unique advantage of being an in vivo and minimally invasive method,but this approach is not suited for single-synapse or multi-parameter analysis. In contrast, via in vitro procedures in postmortem tissue, FASS-LTP and AT allow detailed multi-parametric analysis of subpopulation of synapses (e.g., excitatory vs. inhibitory), at the single-event level. It is noteworthy that dye development is undergoing exponential technological expansion (e.g., novel fluorescent dyes, quantum dots and metal tags) which in the future could increase the analytical power of both FASS-LTP and AT. In addition, FASS-LTP and AT can be scaled for high throughput analysis, and some steps on these methods could be automatized (e.g., automated flow cytometry). FASS-LTP is an unique approach as it tests a major functional response of the synapse: its plasticity. In contrast to the analysis of physically isolated synapses by FASS-LTP,AT analyzes molecular signatures of synapses in their native circuitry, thus preserving valuable anatomical information, at the 3D level.us, FASS-LTP and AT data from same tissue sample may provide an unprecedented set of functional and anatomical information at both cellular and molecular levels.Whether combining the information provided by FASS-LTP,AT and SV2A-PET will facilitate the global analysis of human synapses deserves further research.

    Table 1 Comparison of current approaches for the analysis of human synapses.

    We envision that new functional and anatomical data on human synapses, the essential building blocks of the brain,may significantly contribute to several ongoing projects for brain mapping (Glasser et al., 2016). Also, this new information of human synapses may set the basis to the human synaptome, and lead to detailed studies on the role of major age-related factors that compromise cognition such as amyloid-β, oxidative damage, and inflammation.e information provided by these studies may offer a global perspective of synaptic function in diseased human brains, thus directly impacting translational research.

    Acknowledgments:We appreciate N. Berchtold’s comments on our manuscript.

    Author contributions:GAP and CWC both contributed to manuscript preparation, editing and review.

    Conflicts of interest:None declared.

    Plagiarism check:Checked twice by ienticate.

    Peer review:Externally peer reviewed.

    Open access statement:is is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms.

    Open peer reviewers:Kentaro Hatano, University of Tsukuba, Japan; Noela Rodriguez-Losada, University of Malaga, Spain.

    Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331-356.

    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39.

    de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN, Yates JR, 3rd, Comoletti D, Taylor P, Ghosh A (2009) LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64:799-806.

    Fedulov V, Rex CS, Simmons DA, Palmer L, Gall CM, Lynch G (2007)Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. J Neurosci 27:8031-8039.

    Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, Dhaher R, Matuskey D, Baum E, Holden D, Spencer DD, Mercier J, Hannestad J, Huang Y, Carson RE (2016) Imaging synaptic density in the living human brain. Sci Transl Med 8:348ra396.

    Fu Y, Huang ZJ (2010) Differential dynamics and activity-dependent regulation of alpha- and beta-neurexins at developing GABAergic synapses.Proc Natl Acad Sci U S A 107:22699-22704.

    Glasser MF, Smith SM, Marcus DS, Andersson JL, Auerbach EJ, Behrens TE, Coalson TS, Harms MP, Jenkinson M, Moeller S, Robinson EC,Sotiropoulos SN, Xu J, Yacoub E, Ugurbil K, Van Essen DC (2016)e Human Connectome Project’s neuroimaging approach. Nat Neurosci 19:1175-1187.

    Grant SG (2012) Synaptopathies: diseases of the synaptome. Curr Opin Neurobiol 22:522-529.

    Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K,Kamins J, Borgmann-Winter KE, Siegel SJ, Gallop RJ, Arnold SE (2006)Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12:824-828.

    Hahn CG, Banerjee A, Macdonald ML, Cho DS, Kamins J, Nie Z, Borgmann-Winter KE, Grosser T, Pizarro A, Ciccimaro E, Arnold SE, Wang HY, Blair IA (2009)e post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses. PLoS One 4:e5251.

    Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704-717.

    Kay KR, Smith C, Wright AK, Serrano-Pozo A, Pooler AM, Koffie R, Bastin ME, Bak TH, Abrahams S, Kopeikina KJ, McGuone D, Frosch MP,Gillingwater TH, Hyman BT, Spires-Jones TL (2013) Studying synapses in human brain with array tomography and electron microscopy. Nat Protoc 8:1366-1380.

    Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML,Garcia-Alloza M, Micheva KD, Smith SJ, Kim ML, Lee VM, Hyman BT, Spires-Jones TL (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci U S A 106:4012-4017.

    Lynch G, Rex CS, Gall CM (2007) LTP consolidation: substrates, explanatory power, and functional significance. Neuropharmacology 52:12-23.

    Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25-36.

    Micheva KD, Busse B, Weiler NC, O’Rourke N, Smith SJ (2010) Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68:639-653.

    Mondin M, Labrousse V, Hosy E, Heine M, Tessier B, Levet F, Poujol C, Blanchet C, Choquet D, Thoumine O (2011) Neurexin-neuroligin adhesions capture surface-diffusing AMPA receptors through PSD-95 scaffolds. J Neurosci 31:13500-13515.

    Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774-776.

    Morrison JH, Baxter MG (2012)e ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240-250.

    Muller D, Joly M, Lynch G (1988) Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242:1694-1697.

    Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511:348-352.

    Prieto GA, Trieu BH, Dang CT, Bilousova T, Gylys KH, Berchtold NC,Lynch G, Cotman CW (2017) Pharmacological rescue of long-term potentiation in Alzheimer diseased synapses. J Neurosci 37:1197-1212.

    Prieto GA, Snigdha S, Baglietto-Vargas D, Smith ED, Berchtold NC,Tong L, Ajami D, LaFerla FM, Rebek J, Jr., Cotman CW (2015) Synapse-specific IL-1 receptor subunit reconfiguration augments vulnerability to IL-1beta in the aged hippocampus. Proc Natl Acad Sci U S A 112:E5078-5087.

    Roman F, Staubli U, Lynch G (1987) Evidence for synaptic potentiation in a cortical network during learning. Brain Res 418:221-226.

    Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789-791.

    Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL,Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316-1338.

    Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093-1097.

    *Correspondence to:

    G. Aleph Prieto, Ph.D.,aleph.prieto@uci.edu.

    orcid:

    0000-0001-9517-6989

    (G. Aleph Prieto)

    10.4103/1673-5374.217321

    Accepted: 2017-09-19

    欧美日韩视频高清一区二区三区二| av在线老鸭窝| 女人久久www免费人成看片| 人成视频在线观看免费观看| 亚洲免费av在线视频| 青青草视频在线视频观看| 男人爽女人下面视频在线观看| 女人高潮潮喷娇喘18禁视频| 日韩熟女老妇一区二区性免费视频| 一区二区三区精品91| www.熟女人妻精品国产| 国产精品免费视频内射| 亚洲视频免费观看视频| 久久久久久久久久久久大奶| 亚洲国产中文字幕在线视频| 在线免费观看不下载黄p国产| 久久国产精品男人的天堂亚洲| 99国产综合亚洲精品| av福利片在线| 精品卡一卡二卡四卡免费| 18禁动态无遮挡网站| 午夜福利,免费看| 男女下面插进去视频免费观看| 一区二区av电影网| 午夜91福利影院| 伊人久久大香线蕉亚洲五| 久久精品国产亚洲av涩爱| 国产极品天堂在线| 亚洲精品国产色婷婷电影| 久久久久精品性色| 亚洲视频免费观看视频| 日本色播在线视频| 在线观看免费高清a一片| 国产精品久久久久久久久免| 亚洲精品美女久久久久99蜜臀 | 亚洲一区二区三区欧美精品| 伦理电影免费视频| 久久久久久免费高清国产稀缺| 国产一卡二卡三卡精品 | 精品少妇内射三级| 观看美女的网站| 欧美日韩综合久久久久久| 欧美老熟妇乱子伦牲交| 男女床上黄色一级片免费看| 欧美黑人欧美精品刺激| 亚洲欧美成人精品一区二区| 精品酒店卫生间| 大陆偷拍与自拍| 大话2 男鬼变身卡| 国产 一区精品| 久久久久国产一级毛片高清牌| 亚洲国产欧美网| www.自偷自拍.com| av.在线天堂| 精品久久蜜臀av无| 侵犯人妻中文字幕一二三四区| 一区二区日韩欧美中文字幕| 亚洲av欧美aⅴ国产| 成人三级做爰电影| 一级黄片播放器| 少妇被粗大的猛进出69影院| 91国产中文字幕| 黑人欧美特级aaaaaa片| 国产日韩欧美视频二区| 亚洲精品美女久久av网站| 男人操女人黄网站| 王馨瑶露胸无遮挡在线观看| 日本欧美视频一区| 亚洲精品日韩在线中文字幕| 日本爱情动作片www.在线观看| 亚洲av综合色区一区| 欧美人与善性xxx| 香蕉国产在线看| 精品一区二区三区av网在线观看 | 国产极品天堂在线| 欧美精品av麻豆av| 18禁动态无遮挡网站| av有码第一页| 桃花免费在线播放| 97人妻天天添夜夜摸| 欧美黑人精品巨大| 青草久久国产| 精品少妇久久久久久888优播| 妹子高潮喷水视频| 亚洲成色77777| 99热网站在线观看| 欧美精品亚洲一区二区| 十八禁网站网址无遮挡| 国产成人91sexporn| 女人爽到高潮嗷嗷叫在线视频| 国产日韩欧美亚洲二区| 电影成人av| av一本久久久久| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 少妇人妻久久综合中文| 久久精品亚洲熟妇少妇任你| 另类亚洲欧美激情| 99热国产这里只有精品6| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| 午夜福利网站1000一区二区三区| 国产精品女同一区二区软件| 乱人伦中国视频| 国产精品av久久久久免费| 亚洲一级一片aⅴ在线观看| 欧美国产精品va在线观看不卡| 男人添女人高潮全过程视频| 久久精品亚洲av国产电影网| 大片免费播放器 马上看| 国产亚洲精品第一综合不卡| 丝袜人妻中文字幕| 午夜福利视频精品| 日韩电影二区| 欧美日韩视频精品一区| av电影中文网址| 男人添女人高潮全过程视频| 日本色播在线视频| 欧美国产精品va在线观看不卡| 精品人妻在线不人妻| 日韩一本色道免费dvd| 精品午夜福利在线看| 免费日韩欧美在线观看| 一本一本久久a久久精品综合妖精| 欧美人与性动交α欧美精品济南到| 精品少妇久久久久久888优播| 嫩草影视91久久| 国产免费现黄频在线看| 国产精品国产三级专区第一集| 91老司机精品| 亚洲国产毛片av蜜桃av| 在线观看免费日韩欧美大片| 亚洲综合精品二区| 一区福利在线观看| 国产精品一国产av| 我要看黄色一级片免费的| 秋霞伦理黄片| 亚洲欧洲国产日韩| 欧美国产精品va在线观看不卡| 热99久久久久精品小说推荐| 精品久久久久久电影网| 日本欧美国产在线视频| 在线精品无人区一区二区三| 精品久久蜜臀av无| 久久久久久人人人人人| 成人毛片60女人毛片免费| 久久午夜综合久久蜜桃| 国产亚洲av片在线观看秒播厂| 午夜福利网站1000一区二区三区| av在线播放精品| videos熟女内射| 人成视频在线观看免费观看| 午夜福利视频精品| kizo精华| 成人国产av品久久久| 制服丝袜香蕉在线| 久久99热这里只频精品6学生| 久久精品国产a三级三级三级| 亚洲欧美精品自产自拍| 久久久久人妻精品一区果冻| av在线老鸭窝| 欧美日韩一级在线毛片| 狂野欧美激情性bbbbbb| 99国产综合亚洲精品| 黑人猛操日本美女一级片| 亚洲国产欧美日韩在线播放| 亚洲国产欧美一区二区综合| 精品久久久精品久久久| 亚洲男人天堂网一区| 日韩制服骚丝袜av| 黄网站色视频无遮挡免费观看| 午夜福利免费观看在线| 亚洲av电影在线观看一区二区三区| 美女视频免费永久观看网站| 美女大奶头黄色视频| 天美传媒精品一区二区| 欧美97在线视频| 制服诱惑二区| 97人妻天天添夜夜摸| 国产欧美亚洲国产| 亚洲一级一片aⅴ在线观看| 麻豆乱淫一区二区| 黄频高清免费视频| 美女福利国产在线| 国产一卡二卡三卡精品 | 美女视频免费永久观看网站| 亚洲av欧美aⅴ国产| 国产av国产精品国产| 亚洲欧美色中文字幕在线| 免费高清在线观看视频在线观看| 美女福利国产在线| 韩国精品一区二区三区| 午夜福利免费观看在线| 91aial.com中文字幕在线观看| 日韩一卡2卡3卡4卡2021年| 一二三四中文在线观看免费高清| 久久天躁狠狠躁夜夜2o2o | 午夜av观看不卡| 天堂8中文在线网| 婷婷色av中文字幕| 尾随美女入室| 国产精品无大码| 丰满迷人的少妇在线观看| 一区二区三区激情视频| 欧美老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 中文字幕最新亚洲高清| 精品少妇一区二区三区视频日本电影 | 国产精品一区二区精品视频观看| 国产男女超爽视频在线观看| 成人三级做爰电影| 国产片特级美女逼逼视频| 亚洲少妇的诱惑av| 九草在线视频观看| 国产麻豆69| 亚洲精品第二区| 女性生殖器流出的白浆| 国产一区二区 视频在线| 日日啪夜夜爽| 中文字幕人妻熟女乱码| 亚洲五月色婷婷综合| 国产精品一区二区在线观看99| svipshipincom国产片| 18禁观看日本| 超色免费av| 国产在视频线精品| 五月开心婷婷网| www.熟女人妻精品国产| 97在线人人人人妻| 在线观看免费午夜福利视频| 国产日韩欧美视频二区| 人成视频在线观看免费观看| 中文字幕高清在线视频| 精品人妻熟女毛片av久久网站| 国产亚洲欧美精品永久| 三上悠亚av全集在线观看| a级毛片在线看网站| 王馨瑶露胸无遮挡在线观看| 欧美日本中文国产一区发布| 久久ye,这里只有精品| 丁香六月天网| 成人黄色视频免费在线看| 一边摸一边抽搐一进一出视频| 久久久久久久久久久免费av| 综合色丁香网| 蜜桃在线观看..| 中国三级夫妇交换| 亚洲美女搞黄在线观看| 男人操女人黄网站| 久久久精品区二区三区| 麻豆av在线久日| 夜夜骑夜夜射夜夜干| 不卡视频在线观看欧美| 国产精品欧美亚洲77777| 国产日韩欧美亚洲二区| 久久久精品国产亚洲av高清涩受| 欧美 日韩 精品 国产| 欧美精品人与动牲交sv欧美| 欧美国产精品va在线观看不卡| 国产精品.久久久| av天堂久久9| 天天影视国产精品| 女人精品久久久久毛片| 亚洲国产精品国产精品| 欧美日韩一级在线毛片| 老汉色∧v一级毛片| 欧美精品人与动牲交sv欧美| 欧美国产精品va在线观看不卡| 大香蕉久久网| 久久青草综合色| 久久久精品免费免费高清| 免费不卡黄色视频| 自线自在国产av| 超色免费av| 国产精品久久久久久精品电影小说| 午夜福利在线免费观看网站| 午夜福利视频精品| www.av在线官网国产| 国产高清国产精品国产三级| av视频免费观看在线观看| 99久久精品国产亚洲精品| 飞空精品影院首页| 香蕉国产在线看| 一二三四在线观看免费中文在| 人人妻人人澡人人爽人人夜夜| 啦啦啦在线观看免费高清www| 五月天丁香电影| 男女免费视频国产| 一级片'在线观看视频| 亚洲av综合色区一区| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲精品一区二区精品久久久 | 99热全是精品| 国产欧美亚洲国产| 亚洲免费av在线视频| 日韩中文字幕欧美一区二区 | 亚洲一码二码三码区别大吗| 亚洲精品久久午夜乱码| 男人添女人高潮全过程视频| 美女主播在线视频| www日本在线高清视频| 欧美黄色片欧美黄色片| 成人国语在线视频| 亚洲精品中文字幕在线视频| 人体艺术视频欧美日本| 亚洲国产精品一区三区| 女人高潮潮喷娇喘18禁视频| 午夜福利免费观看在线| 国产高清国产精品国产三级| 涩涩av久久男人的天堂| 欧美精品一区二区免费开放| 精品少妇内射三级| 久久狼人影院| 亚洲一区二区三区欧美精品| 美女福利国产在线| 午夜免费男女啪啪视频观看| 免费不卡黄色视频| 精品一区在线观看国产| 精品少妇久久久久久888优播| 丁香六月天网| 色精品久久人妻99蜜桃| 高清不卡的av网站| 男人添女人高潮全过程视频| 国产精品无大码| 亚洲精品国产av成人精品| 国产淫语在线视频| 69精品国产乱码久久久| 亚洲欧美清纯卡通| 黄片小视频在线播放| 操美女的视频在线观看| 免费黄色在线免费观看| 亚洲av电影在线进入| 男女边吃奶边做爰视频| 18禁观看日本| 久久精品亚洲av国产电影网| 亚洲成人一二三区av| 日韩大码丰满熟妇| 激情视频va一区二区三区| 午夜日本视频在线| 一区二区三区激情视频| 这个男人来自地球电影免费观看 | 91aial.com中文字幕在线观看| 日韩一区二区三区影片| 久久99精品国语久久久| 蜜桃国产av成人99| 日韩人妻精品一区2区三区| 国产免费视频播放在线视频| 久热爱精品视频在线9| 99热全是精品| a级片在线免费高清观看视频| 中文字幕人妻丝袜制服| 日韩大片免费观看网站| 99热全是精品| 岛国毛片在线播放| 啦啦啦在线观看免费高清www| 黄色 视频免费看| 最近最新中文字幕大全免费视频 | av一本久久久久| 18禁观看日本| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| 人妻 亚洲 视频| 亚洲av成人精品一二三区| 一级a爱视频在线免费观看| 久久影院123| 新久久久久国产一级毛片| 久久99精品国语久久久| 久久久久网色| 亚洲激情五月婷婷啪啪| 日韩中文字幕欧美一区二区 | 黄片播放在线免费| 亚洲第一青青草原| 各种免费的搞黄视频| 久久久久久久大尺度免费视频| netflix在线观看网站| av线在线观看网站| 亚洲av日韩在线播放| 搡老乐熟女国产| 自线自在国产av| 亚洲av日韩精品久久久久久密 | 久久鲁丝午夜福利片| 最黄视频免费看| 欧美日韩精品网址| 国产男女超爽视频在线观看| 亚洲精品久久午夜乱码| 国产免费又黄又爽又色| 最黄视频免费看| 亚洲自偷自拍图片 自拍| 亚洲,欧美,日韩| 18禁裸乳无遮挡动漫免费视频| 韩国高清视频一区二区三区| 亚洲国产精品一区二区三区在线| 人妻人人澡人人爽人人| 日韩熟女老妇一区二区性免费视频| 日本猛色少妇xxxxx猛交久久| 亚洲精品一区蜜桃| 成人手机av| 国产老妇伦熟女老妇高清| 亚洲av日韩精品久久久久久密 | 日韩大片免费观看网站| 亚洲欧美激情在线| 久久国产精品大桥未久av| 午夜免费鲁丝| 丁香六月天网| 十八禁人妻一区二区| 高清欧美精品videossex| 久久鲁丝午夜福利片| 多毛熟女@视频| 国产亚洲av片在线观看秒播厂| 亚洲熟女精品中文字幕| 曰老女人黄片| 色网站视频免费| 观看美女的网站| 国产精品国产av在线观看| 日本av免费视频播放| xxxhd国产人妻xxx| 国产精品久久久人人做人人爽| 亚洲成人国产一区在线观看 | 夫妻午夜视频| 熟女av电影| 精品第一国产精品| av有码第一页| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩亚洲高清精品| 99精品久久久久人妻精品| 久久人人97超碰香蕉20202| 精品久久久久久电影网| 欧美97在线视频| 激情五月婷婷亚洲| 久久鲁丝午夜福利片| 亚洲婷婷狠狠爱综合网| 亚洲一码二码三码区别大吗| 国产日韩欧美视频二区| 美女大奶头黄色视频| 中文字幕精品免费在线观看视频| 亚洲 欧美一区二区三区| 成年人午夜在线观看视频| 久久久欧美国产精品| 亚洲一级一片aⅴ在线观看| 悠悠久久av| av免费观看日本| 国产一级毛片在线| 久久久亚洲精品成人影院| 好男人视频免费观看在线| 欧美黑人欧美精品刺激| 免费av中文字幕在线| 在线观看一区二区三区激情| 女人精品久久久久毛片| 久热爱精品视频在线9| 日韩av在线免费看完整版不卡| 美女国产高潮福利片在线看| 国产成人精品久久久久久| 91精品国产国语对白视频| 国产成人系列免费观看| 黄片无遮挡物在线观看| 免费黄色在线免费观看| 丝袜美腿诱惑在线| 精品国产国语对白av| 19禁男女啪啪无遮挡网站| 观看美女的网站| 99国产精品免费福利视频| 久久久久久久久免费视频了| 亚洲第一青青草原| 黑人欧美特级aaaaaa片| 精品少妇黑人巨大在线播放| 丰满迷人的少妇在线观看| 热99国产精品久久久久久7| 日韩一区二区视频免费看| 七月丁香在线播放| 99久久人妻综合| 国产麻豆69| 国产在线一区二区三区精| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲三区欧美一区| 亚洲av中文av极速乱| 侵犯人妻中文字幕一二三四区| 亚洲精品aⅴ在线观看| 美女国产高潮福利片在线看| 国产成人精品久久二区二区91 | 五月天丁香电影| 最近中文字幕2019免费版| 久久精品久久精品一区二区三区| 热99久久久久精品小说推荐| e午夜精品久久久久久久| 亚洲国产成人一精品久久久| 一区在线观看完整版| 在线免费观看不下载黄p国产| 黄频高清免费视频| 国产精品女同一区二区软件| 免费黄频网站在线观看国产| 观看av在线不卡| 五月天丁香电影| 欧美日韩国产mv在线观看视频| 宅男免费午夜| 国产成人91sexporn| 18禁观看日本| 国产成人91sexporn| 男女午夜视频在线观看| 一本色道久久久久久精品综合| 丝袜喷水一区| 亚洲综合色网址| 午夜影院在线不卡| 色综合欧美亚洲国产小说| 日韩制服丝袜自拍偷拍| 欧美人与性动交α欧美精品济南到| 国产精品蜜桃在线观看| 亚洲色图 男人天堂 中文字幕| av网站在线播放免费| 建设人人有责人人尽责人人享有的| 视频在线观看一区二区三区| 咕卡用的链子| 欧美xxⅹ黑人| 国产片特级美女逼逼视频| 久久久久久久久久久久大奶| 97精品久久久久久久久久精品| 久久免费观看电影| 国产黄色视频一区二区在线观看| 精品免费久久久久久久清纯 | 欧美日韩一级在线毛片| 飞空精品影院首页| 日本午夜av视频| 男人舔女人的私密视频| 99热网站在线观看| 欧美97在线视频| 国产激情久久老熟女| 欧美亚洲日本最大视频资源| 国产精品一国产av| 三上悠亚av全集在线观看| 欧美人与性动交α欧美精品济南到| 中文字幕亚洲精品专区| 日韩伦理黄色片| 纯流量卡能插随身wifi吗| 免费观看a级毛片全部| 男女午夜视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲精品一二三| 天堂8中文在线网| 国产精品一区二区在线观看99| 咕卡用的链子| 免费观看人在逋| av不卡在线播放| 亚洲av日韩在线播放| 国产精品一区二区精品视频观看| 国产极品天堂在线| 最近2019中文字幕mv第一页| 老鸭窝网址在线观看| 精品久久久精品久久久| 人人妻人人澡人人爽人人夜夜| 国产成人免费无遮挡视频| 国产有黄有色有爽视频| 热re99久久精品国产66热6| 各种免费的搞黄视频| 亚洲精品美女久久久久99蜜臀 | 国产亚洲av片在线观看秒播厂| 精品第一国产精品| 精品免费久久久久久久清纯 | 90打野战视频偷拍视频| 少妇人妻精品综合一区二区| 日韩制服骚丝袜av| 黄片小视频在线播放| 欧美 亚洲 国产 日韩一| 亚洲天堂av无毛| 精品视频人人做人人爽| 久久韩国三级中文字幕| 日韩一本色道免费dvd| 亚洲国产精品国产精品| 两个人看的免费小视频| 久久精品国产亚洲av高清一级| 国产一级毛片在线| www.精华液| 老司机影院毛片| 黄网站色视频无遮挡免费观看| 免费不卡黄色视频| 在线精品无人区一区二区三| 亚洲国产精品成人久久小说| 日本wwww免费看| 天天影视国产精品| 在线观看国产h片| 久久鲁丝午夜福利片| 国产黄色视频一区二区在线观看| 性少妇av在线| 国产精品二区激情视频| 国产精品久久久久久精品电影小说| 亚洲美女视频黄频| 尾随美女入室| a级毛片黄视频| 如日韩欧美国产精品一区二区三区| 成年av动漫网址| av福利片在线| 国产成人啪精品午夜网站| avwww免费| 久久久久人妻精品一区果冻| 国产一区二区三区综合在线观看| 超碰成人久久| 老鸭窝网址在线观看| 热re99久久精品国产66热6| av福利片在线| 搡老岳熟女国产| 亚洲国产精品一区三区| 亚洲欧美精品自产自拍| 亚洲美女搞黄在线观看| 9色porny在线观看| 高清黄色对白视频在线免费看| 99久久人妻综合| 校园人妻丝袜中文字幕| 日韩av在线免费看完整版不卡| 天天躁狠狠躁夜夜躁狠狠躁| 久久97久久精品| 这个男人来自地球电影免费观看 | 日日撸夜夜添| 久久鲁丝午夜福利片| 一级黄片播放器| 亚洲综合色网址| 大陆偷拍与自拍| 国产精品蜜桃在线观看|