張雪,黃雷,阮進(jìn)學(xué),劉志國,程英,馮書堂,牟玉蓮,李奎
?
PCSK9基因突變體轉(zhuǎn)基因豬的制備與分析
張雪,黃雷,阮進(jìn)學(xué),劉志國,程英,馮書堂,牟玉蓮,李奎
(中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京100193)
【】前蛋白轉(zhuǎn)化酶枯草溶菌素9(proprotein convertase subtilisin/Kexin type 9,)基因是人類高膽固醇血癥(autosomal dominant hypercholesterolemia, ADH)的主效基因之一,其獲得型突變與人類家族性高膽固醇血癥有直接的關(guān)系。PCSK9-D374Y突變體對低密度脂蛋白受體(low density lipoprotein receptor,LDLR)的降解能力比野生型蛋白強(qiáng)十倍,增加了患高膽固醇血癥的風(fēng)險,從而加速動脈粥樣硬化的進(jìn)程。豬心血管系統(tǒng)和血脂代謝方面與人類非常相近,成為研究動脈粥樣硬化疾病的理想模型之一。然而自然發(fā)病的豬缺乏,且誘導(dǎo)病征發(fā)生緩慢。因此擬利用體細(xì)胞克隆技術(shù)制備獲得型突變體轉(zhuǎn)基因豬,以模擬動脈血管的病理學(xué)變化,加速發(fā)病進(jìn)程,為動脈粥樣硬化的研究提供理想的動物模型?!尽垦芯渴褂萌薖CSK9基因突變體載體,用電轉(zhuǎn)染的方法將其整合到五指山小型豬近交系胎兒成纖維細(xì)胞中,并通過體細(xì)胞核移植技術(shù)獲得了人PCSK9基因突變體轉(zhuǎn)基因豬個體。通過Southern-blot、實(shí)時熒光定量PCR、Western-blot等方法,分別從DNA、RNA、蛋白的水平檢測了人PCSK9基因在轉(zhuǎn)基因豬肝臟中的整合表達(dá)情況。同時,通過組織化學(xué)染色與H.E.染色的方法對轉(zhuǎn)基因豬進(jìn)行了組織學(xué)檢測?!尽哭D(zhuǎn)基因陽性細(xì)胞集落在藥篩的第3天開始出現(xiàn),至第7天形成較大的單克隆點(diǎn),且PCR檢測結(jié)果顯示擴(kuò)增產(chǎn)物可以拼接為完整片段,說明外源片段在基因組中具有完整性;將篩選得到的陽性細(xì)胞作為體細(xì)胞克隆的供體細(xì)胞,通過體細(xì)胞核移植技術(shù)獲得了轉(zhuǎn)基因豬個體。PCR及Southern-blot 檢測結(jié)果顯示,D374Y-PCSK9基因可以完整的插入豬的基因組中,且有串聯(lián)重復(fù)現(xiàn)象;RT-PCR和QPCR檢測結(jié)果表明,人PCSK9基因能在豬肝臟內(nèi)正常轉(zhuǎn)錄且不影響豬內(nèi)源性PCSK9基因的轉(zhuǎn)錄,且在其它內(nèi)臟器官,如心、脾、肺、腎也能檢測人PCSK9基因的表達(dá),而豬內(nèi)源性PCSK9基因在這些組織中表達(dá)量很低;Western-blot檢測結(jié)果與RNA水平的檢測類似。這些結(jié)果說明人D374Y-PCSK9基因成功整合到豬基因豬中,且能夠正常轉(zhuǎn)錄與翻譯。通過組織化學(xué)染色發(fā)現(xiàn),與野生型豬肝臟相比,克隆豬肝臟中LDLR蛋白水平極顯著低于野生型。另外,對克隆豬進(jìn)行H.E.染色后發(fā)現(xiàn)其肝臟組織有明顯的病理學(xué)變化,該結(jié)果說明,LDLR水平的急劇下降有可能是導(dǎo)致肝臟病變的原因?!尽砍晒Λ@得了人PCSK9基因突變體的克隆豬;與野生型豬肝臟相比,克隆豬肝臟中LDLR水平顯著降低,并且克隆豬肝臟發(fā)生了明顯病變。
突變體;體細(xì)胞核移植;五指山小型豬近交系;LDLR
【研究意義】動脈粥樣硬化疾病模型在小鼠等模式動物中得到了廣泛深入的研究。然而,受到體型的限制,且小鼠血液獲取量小,血管的損傷表型和心血管系統(tǒng)也與人類相應(yīng)病征有一定的差異,因此需要在大動物中建立動脈粥樣硬化疾病模型,對人類疾病進(jìn)行更好的模擬。豬心血管解剖結(jié)構(gòu)、血流動力學(xué)、血脂代謝等方面與人類極其相似[1-2],因此是研究動脈粥樣硬化疾病模型的理想動物之一。【前人研究進(jìn)展】是繼、載脂蛋白B(apolipoprotein,)后被定位的第三個ADH主效基因[3-5]。SEIDAH等2003年首次克隆得到該基因[6]。血液中的PCSK9可以與低密度脂蛋白膽固醇(low-density lipoprotein Cholesterol,LDL-c)競爭性地結(jié)合肝臟細(xì)胞表面的LDLR,并誘導(dǎo)LDLR發(fā)生降解,使血液中LDL-c濃度升高,增加患高膽固醇血癥的風(fēng)險,從而加速動脈粥樣硬化病變的進(jìn)程[7-9]。研究發(fā)現(xiàn)的獲得型突變與人類家族性高膽固醇血癥有直接的關(guān)系,如突變體對LDLR降解的體外檢測結(jié)果顯示其對LDLR的降解能力比野生型蛋白強(qiáng)十倍,且突變體與LDLR的結(jié)合能力也有所增強(qiáng)[10-11]。目前敲除型和獲得型突變的小鼠,已經(jīng)作為動物模型廣泛地應(yīng)用于研究中。相關(guān)學(xué)者制備了人獲得型突變的轉(zhuǎn)基因小鼠,結(jié)果發(fā)現(xiàn)肝臟是的主要靶器官,分泌型蛋白對肝臟具有重要的作用[12-16]。另有研究制作了缺失型突變的小鼠模型[17]。JENSEN等利用載脂蛋白E(apo lipoprotein,)基因純合子的克隆杜洛克豬群成功制備了動脈粥樣硬化的飲食誘導(dǎo)動物模型[18]。該模型提高了實(shí)驗(yàn)動物遺傳背景的一致性,降低了動物個體水平的差異,因此能夠適當(dāng)減少實(shí)驗(yàn)動物的使用數(shù)量。但是商品豬種的飼養(yǎng)成本較高且體型大,使試驗(yàn)操作具有一定的難度。與之相比,小型豬具有體型小、易操作的優(yōu)勢[19],此外,小型豬近交系還具有遺傳穩(wěn)定的特點(diǎn)[20-21]。近年來有研究對尤卡坦小型豬(Yucatan miniature swine)進(jìn)行基因修飾,如人類突變體的過表達(dá)和敲除,促使動物較快的出現(xiàn)高膽固醇血癥,且在一定時期的飲食誘導(dǎo)后能夠清晰地觀察到動脈血管的嚴(yán)重病變[22-23]。但此類研究在近交系小型豬中未見相關(guān)報道?!颈狙芯壳腥朦c(diǎn)】五指山小型豬近交系是北京畜牧獸醫(yī)研究所培育的小型豬近交系,其全基因組序列分析結(jié)果于2012年發(fā)表在GigaScience上[24]。另有研究發(fā)現(xiàn)僅對青年豬進(jìn)行短期高脂高膽固醇飲食誘導(dǎo)能出現(xiàn)早期的血管重塑性病變[1, 25]。但如果對小型豬ADH基因進(jìn)行修飾,如過表達(dá)PCSK9基因或敲除LDLR基因;并在此基礎(chǔ)上再進(jìn)行飲食誘導(dǎo),將加速疾病的進(jìn)程,有望出現(xiàn)血管的不同程度的損傷,為臨床研究提供大動物疾病模型[26-27]。【擬解決的關(guān)鍵問題】本研究以五指山小型豬近交系作為研究對象,利用轉(zhuǎn)基因方法結(jié)合體細(xì)胞克隆技術(shù)制備了人PCSK9基因突變體轉(zhuǎn)基因豬,以模擬高膽固醇血癥的病理狀態(tài),為心血管疾病的研究提供有效的動物模型。
本研究于2013年1月至2015年5月在中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所豬基因工程與種質(zhì)創(chuàng)新團(tuán)隊實(shí)驗(yàn)室完成。
材料:五指山小型豬近交系胎兒成纖維細(xì)胞和人PCSK9基因突變體載體,均為中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所豬基因工程與種質(zhì)創(chuàng)新團(tuán)隊實(shí)驗(yàn)室保存。
主要試劑及配制:I限制性內(nèi)切酶(NEB);G418(Gibco);rabbit polyclonal anti-human(CircuLex),mouse monoclonal anti-human(Millipore);SYBR Green qPCR Master Mix(Life technology);ECL Plus Western Blotting Substrate (Pierce)。DMEM細(xì)胞培養(yǎng)液:DMEM(gibco)、20% FBS(gibico),2%PS(gibico)、NEAA(gibico)、Glutamine(gibico)。
1.2.1 人PCSK9基因突變體轉(zhuǎn)基因豬陽性胎兒成纖維細(xì)胞的篩選 用I限制性內(nèi)切酶對突變體過表達(dá)載體進(jìn)行線性化,利用電轉(zhuǎn)染方法將線性化的載體轉(zhuǎn)入五指山小型豬近交系胎兒成纖維細(xì)胞;經(jīng)G418篩選12 d后,挑選狀態(tài)良好的單克隆重新鋪板培養(yǎng),通過PCR的方法進(jìn)行基因型鑒定,所用引物為IPF2 / IPR2和2818 F / 2818 R,其序列見表1,以這兩對引物擴(kuò)增產(chǎn)物都出現(xiàn)目的條帶視為陽性克隆。將陽性的細(xì)胞克隆進(jìn)行傳代,待細(xì)胞匯合率達(dá)95%后,凍存以備后續(xù)研究使用。
1.2.2 人PCSK9基因突變體轉(zhuǎn)基因豬的制備 收集并挑選體外培養(yǎng)成熟的豬卵母細(xì)胞,利用豬體細(xì)胞核移植的方法進(jìn)行重構(gòu)胚胎的構(gòu)建。在豬體細(xì)胞核移植的顯微操作過程中,采用盲吸法去核,電融合法融合。將構(gòu)建好的重構(gòu)胚移植到代孕母豬體內(nèi),用超聲波檢查法確認(rèn)母豬的懷孕情況。
1.2.3 轉(zhuǎn)基因豬的鑒定和表達(dá)檢測 提取轉(zhuǎn)基因豬耳組織DNA,PCR擴(kuò)增,利用引物2054F/R和2818F/R進(jìn)行PCR擴(kuò)增。以人、豬特異性引物(HumanF/R,Porcine)進(jìn)行RT-PCR擴(kuò)增,并用這兩對引物和豬內(nèi)參(PorcineF)引物進(jìn)行熒光定量PCR檢測,所用引物序列見表1。
表1 試驗(yàn)所需引物序列
Southern blot:提取轉(zhuǎn)基因豬耳組織DNA,用I酶切過夜,陽性質(zhì)粒和陰性對照DNA以同樣的方法處理。酶切產(chǎn)物使用1%瓊脂糖凝膠電泳分離,然后利用虹吸法將其轉(zhuǎn)移到尼龍膜上。尼龍膜在65℃預(yù)雜交15min后用地高辛標(biāo)記的特異性識別Neo基因的探針進(jìn)行雜交。探針標(biāo)記引物如下:
neo-f 5'-CAAgATggATTgCACgCAgg-3',
neo-r 5'-ggTAgCCAACgCTATgTCCT-3'。
Western blot:取PCSK9轉(zhuǎn)基因豬的肝臟、心臟、脾臟、肺臟組織加入組織裂解液和蛋白酶抑制劑勻漿,冰上裂解30 min;4℃,12 000 r/min,離心10 min,收集上清液并用BCA法檢測蛋白濃度;變性后的蛋白用10% SDS-PAGE電泳進(jìn)行分離,然后轉(zhuǎn)移到NC膜上,并用5%脫脂奶粉封閉;選用兔抗人多克隆抗體作為一抗,作為內(nèi)參蛋白孵育;然后用辣根過氧化物標(biāo)記的抗兔二抗進(jìn)行孵育;最終目的條帶顯色反應(yīng)后,進(jìn)行x-射線膠片的壓片以及顯影和定影。
1.2.4 組織學(xué)分析 將轉(zhuǎn)基因豬的新鮮組織樣品用4%多聚甲醛進(jìn)行固定和保存,并分別將野生型五指山小型豬和轉(zhuǎn)基因豬的肝臟組織固定,進(jìn)行石蠟包埋和切片,然后對切片進(jìn)行H.E.染色或組織化學(xué)染色,最后進(jìn)行顯微圖片的采集,所使用的一抗為兔抗人多克隆抗體和小鼠抗人的抗體進(jìn)行孵育。
1.2.5 數(shù)據(jù)分析 利用Prism軟件對實(shí)驗(yàn)數(shù)據(jù)進(jìn)行分析(GraphPad Software),使用ANOVA方法進(jìn)行多重比較,顯著性水平設(shè)為<0.05。
轉(zhuǎn)基因細(xì)胞陽性細(xì)胞集落在藥篩的第3 天開始出現(xiàn),至第7 天形成較大的單克隆點(diǎn)(圖1 -A)。PCR檢測克隆點(diǎn)基因組中外源基因片段的整合情況,分段檢測目的片段5′和3′端的整合情況,以此判斷外源片段在基因組中完整性,引物2818 F / 2818 R 擴(kuò)增3′端,結(jié)果見圖1-B (a),片段大小2 818 bp,引物IPF2 / IPR2擴(kuò)增5′端,結(jié)果見圖1-B (b),片段大小2 978 bp。結(jié)果表明獲得陽性克隆細(xì)胞。
A:陽性克隆點(diǎn)形成過程。B:PCR檢測克隆點(diǎn)基因組中外源基因片段整合情況,(a)圖擴(kuò)增產(chǎn)物為2818 F / 2818 R,片段大小2 818 bp;(b)圖擴(kuò)增引物是IPF2 / IPR2,片段大小2 978 bp。泳道1、3、4為陽性克隆
將篩選得到的陽性細(xì)胞克隆作為體細(xì)胞克隆的供體細(xì)胞,利用體細(xì)胞核移植技術(shù)構(gòu)建重構(gòu)胚, 利用胚胎移植技術(shù)移入代孕母豬子宮內(nèi),最終獲得克隆豬(圖2)。
轉(zhuǎn)基因豬DNA樣品的PCR及Southern-blot 檢測結(jié)果顯示,PCR擴(kuò)增產(chǎn)物5′端2 054 bp片段和3′端2 818 bp片段能夠拼接為完整的目的序列,說明D374Y-PCSK9基因完整的插入到豬的基因組中(圖3-A),且有串聯(lián)重復(fù)的現(xiàn)象(圖3-B);分別用特異性識別人和豬mRNA的引物進(jìn)行RT-PCR和QPCR檢測,結(jié)果表明,人PCSK9基因能在豬肝臟內(nèi)正常轉(zhuǎn)錄且不影響豬內(nèi)源性PCSK9基因的轉(zhuǎn)錄(圖3-C、E)。同時在心、脾、肺、腎組織中也能檢測人PCSK9基因的表達(dá),而豬內(nèi)源性PCSK9基因在這些組織中表達(dá)量很低(圖 3-F)。Western-blot檢測結(jié)果也說明,人PCSK9基因在肝臟中表達(dá),同時也在心、脾、肺、腎組織中表達(dá)(圖3-D)。由此可見,人D374Y-PCSK9基因完整整合到豬基因豬中,且能夠正常轉(zhuǎn)錄與翻譯。
分別對-轉(zhuǎn)基因豬和野生型對照豬的肝臟進(jìn)行了PCSK9和LDLR的免疫組織化學(xué)染色,陽性應(yīng)為黃褐色,細(xì)胞核應(yīng)為淡藍(lán)色。結(jié)果顯示,PCSK9的表達(dá)量在轉(zhuǎn)基因豬和野生型豬肝臟中無明顯的差異(圖4),而轉(zhuǎn)基因豬肝臟LDLR水平極顯著的低于野生型對照豬;同時肝臟石蠟切片的H.E.染色結(jié)果顯示,與野生型對照豬相比,轉(zhuǎn)基因豬肝臟有明顯病變,主要表現(xiàn)為肝竇擴(kuò)張,肝細(xì)胞脂肪變性,肝小葉上可見淋巴細(xì)胞浸潤(圖5)。由此可以推測,轉(zhuǎn)基因豬肝臟的病變可能與LDLR水平急劇下降有關(guān)。
圖2 克隆豬
A:PCSK9轉(zhuǎn)基因豬PCR檢測結(jié)果。泳道1—4所用引物為2 054F/R,擴(kuò)增片段長度為2 054 bp,依次為PCSK9克隆豬,陽性質(zhì)粒,陰性對照豬,空白對照;泳道5—8所用引物為2818F/R,擴(kuò)增片段長度為2818 bp,依次為PCSK9克隆豬,陽性質(zhì)粒,陰性對照豬,空白對照。B:Southern-blot檢測結(jié)果。泳道1—4依次為陰性對照組,PCSK9克隆豬,空白對照,陽性質(zhì)粒。C:PCSK9克隆豬肝臟RT-PCR檢測結(jié)果。泳道1—4所用引物為Human D374Y F/R,依次為PCSK9克隆豬,PCSK9克隆豬,陰性對照豬,陽性質(zhì)粒;泳道5—8所用引物為Porcine PCSK9 F/R特異性結(jié)合豬PCSK9基因,依次為PCSK9克隆豬,PCSK9克隆豬,陰性對照豬,陽性質(zhì)粒。D:PCSK9克隆豬Western-blot檢測結(jié)果。泳道1—6依次為PCSK9克隆豬組織,心臟、肝臟、脾臟、肺臟、腎臟,及陰性對照豬肝臟,以GAPDH為內(nèi)參。 E、F:PCSK9克隆豬定量PCR檢測結(jié)果。 E為人D374Y-PCSK9特異性引物Human D374Y F/R;F為豬PCSK9特異性引物Porcine PCSK9 F/R,順序依次為肝臟、心臟、脾臟、肺臟、腎臟,control表示陽性對照豬肝臟
A,B:豬肝臟組織LDLR免疫組化學(xué)染色圖。C,D:豬肝臟組織PCSK9免疫組化學(xué)染色圖。WT:野生型豬;Tg:轉(zhuǎn)基因豬
A, C:豬肝臟H.E.染色; B, D:局部放大圖。WT:野生型豬;Tg:轉(zhuǎn)基因豬
本文對PCSK9轉(zhuǎn)基因豬的檢測分為三個方面:DNA整合、RNA轉(zhuǎn)錄、蛋白表達(dá)。人和豬的基因的DNA序列和蛋白序列相似性非常高,因此我們會面臨如何有效區(qū)分轉(zhuǎn)基因豬中人源和豬源PCSK9基因的問題。該研究在對PCSK9基因轉(zhuǎn)錄水平進(jìn)行檢測時,設(shè)計了10對檢測引物,希望能夠區(qū)分人源和豬源的RNA序列,結(jié)果都不理想(數(shù)據(jù)未發(fā)布)。AL-MASHHADI于2013年發(fā)表了轉(zhuǎn)基因豬的文章[22],通過參考其檢測引物的設(shè)計,發(fā)現(xiàn)了引物序列的5′和3′有部分堿基的改變使得特異性結(jié)合人PCSK9基因或豬PCSK9基因,得到了預(yù)期的結(jié)果。由于豬作為動物模型沒有小鼠的應(yīng)用廣泛,在進(jìn)行Western-blot檢測時,很多蛋白檢測所需的抗體不全面,筆者只能利用抗人PCSK9蛋白的抗體對轉(zhuǎn)基因豬的蛋白進(jìn)行檢測,期間嘗試了包括abcam、cayman、bioss、MBL等公司的產(chǎn)品,只有MBL的抗人多抗能夠很好區(qū)分人源和豬源的蛋白,即轉(zhuǎn)基因豬組織蛋白檢測出人源蛋白的表達(dá),而野生型對照豬幾乎檢測不到。蛋白水平的檢測結(jié)果說明,人-基因可以在克隆豬的心臟、肝臟、脾臟、肺、腎臟中正常翻譯。該研究在對克隆豬進(jìn)行組織化學(xué)染色時,也遇到了抗體選擇的問題。然而對PCSK9進(jìn)行組織化學(xué)染色時,野生型豬的肝臟出現(xiàn)了陽性染色區(qū)域,可能是由于多抗在組織中產(chǎn)生的非特異性結(jié)合而產(chǎn)生的假陽性結(jié)果。
可以調(diào)節(jié)血漿中LDL-c的濃度,參與機(jī)體內(nèi)血脂平衡和膽固醇代謝平衡的調(diào)控,從而影響動脈粥樣硬化的發(fā)病過程。對LDL-c濃度的調(diào)節(jié)主要通過誘導(dǎo)LDLR降解的方式,且PCSK9不僅可以降解細(xì)胞膜表面的LDLR,還可以介導(dǎo)細(xì)胞內(nèi)新合成的LDLR發(fā)生降解[15, 28]。由此可見,肝臟中LDLR的表達(dá)量與PCSK9的表達(dá)量密切相關(guān)。因此為了分析人在克隆豬體內(nèi)是否能夠正常發(fā)揮功能,通過組織化學(xué)染色的方法對突變體克隆豬肝臟中LDLR的表達(dá)進(jìn)行了檢測分析。結(jié)果發(fā)現(xiàn),LDLR蛋白在轉(zhuǎn)基因豬肝臟組織染色中幾乎檢測不到陽性區(qū)域,表明人在轉(zhuǎn)基因豬肝臟的高表達(dá)引起了肝臟中LDLR蛋白水平極顯著的降低。
有研究發(fā)現(xiàn),敲除的小鼠,肝再生的功能受到阻礙,表現(xiàn)為在肝再生過程中肝臟炎性因子表達(dá)量升高,肝臟脂肪變性,并且肝臟淋巴細(xì)胞的增多會加重動脈粥樣硬化病變[29-30]。該研究通過H.E.染色發(fā)現(xiàn),與野生型豬相比,轉(zhuǎn)基因豬肝臟有明顯病變,這可能與PCSK9過表達(dá)后引起LDLR水平下降有關(guān)。研究說明該克隆豬體內(nèi)人PCSK9蛋白可以正常發(fā)揮功能,有望成為研究人類動脈粥樣硬化的動物疾病模型。
本研究以五指山小型豬近交系胎兒成纖維細(xì)胞為材料,通過轉(zhuǎn)基因和體細(xì)胞克隆技術(shù),成功地制備出了人PCSK9基因突變體轉(zhuǎn)基因克隆豬。與野生型豬肝臟比較,轉(zhuǎn)基因克隆豬肝臟中LDLR水平顯著減少,并且轉(zhuǎn)基因克隆豬的肝臟發(fā)生了明顯病變。
[1] ARTINGER S D C, LODDENKEMPER C, SCHWIMMBECK P L, SCHULTHEISS H P, PELS K. Complex porcine model of atherosclerosis: induction of early coronary lesions after long-term hyperlipidemia without sustained hyperglycemia., 2009, 25(4): e109-114.
[2] WANG M D S. Human microbiota-associated swine: current progress and future opportunities., 2015, 56(1): 63-73.
[3] HOPKINS PN D J, FOUCHIER SW, BRUCKERT E, LUC G, CARIOU B, SJOUKE B, LEREN TP, HARADA-SHIBA M, MABUCHI H, RABèS J P, CARRIé A, VAN HEYNINGEN C, CARREAU V, FARNIER M, TEOH Y P, BOURBON M, KAWASHIRI M A, NOHARA A, SORAN H, MARAIS A D, TADA H, ABIFADEL M, BOILEAU C, CHANU B, KATSUDA S, KISHIMOTO I, LAMBERT G, MAKINO H, MIYAMOTO Y, PICHELIN M, YAGI K, YAMAGISHI M, ZAIR Y, MELLIS S, YANCOPOULOS G D, STAHL N, MENDOZA J, DU Y, HAMON S, KREMPF M, SWERGOLD G D. Characterization of autosomal dominant hypercholesterolemia caused by PCSK9 gain of function mutations and its specific treatment with alirocumab, a PCSK9 monoclonal antibody., 2015, 8(6): 823-831.
[4] ETTCHETO M P D, PEDRóS I, DE LEMOS L, PALLàS M, ALEGRET M, LAGUNA J C, FOLCH J, CAMINS A. Hypercholesterolemia and neurodegeneration. Comparison of hippocampal phenotypes in LDLr knockout and APPswe/PS1dE9 mice., 2015, 65:69-78.
[5] ALVES A C E A, SOUTAR A K, MARTIN C, BOURBON M. Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia., 2014, 23(7): 1817-1828.
[6] ABIFADEL M V M, RABèS JP, ALLARD D, OUGUERRAM K, DEVILLERS M, CRUAUD C, BENJANNET S, WICKHAM L, ERLICH D, DERRé A, VILLéGER L, FARNIER M, BEUCLER I, BRUCKERT E, CHAMBAZ J, CHANU B, LECERF JM, LUC G, MOULIN P, WEISSENBACH J, PRAT A, KREMPF M, JUNIEN C, SEIDAH N G, BOILEAU C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia., 2003, 34(2): 154-156.
[7] MAXWELL K N, BRESLOW J L. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype., 2004, 101(18): 7100-7105.
[8] MAXWELL K N, FISHER E A, BRESLOW J L. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post- endoplasmic reticulum compartment., 2005, 102(6): 2069-2074.
[9] POIRIER S, HAMOUDA H A, VILLENEUVE L, DEMERS A, MAYER G. Trafficking dynamics of PCSK9-induced LDLR degradation: Focus on human PCSK9 mutations and C-terminal domain., 2016, 11(6): e0157230.
[10] HUMPHRIES S E, NEELY R D, WHITTALL R A, TROUTT J S, KONRAD R J, SCARTEZINI M, LI K W, COOPER J A, ACHARYA J, NEIL A. Healthy individuals carrying the PCSK9 p.R46L variant and familial hypercholesterolemia patients carrying PCSK9 p.D374Y exhibit lower plasma concentrations of PCSK9., 2009, 55(12): 2153-2161.
[11] Nguyen M A K T, Lagace T A. Internalized PCSK9 dissociates from recycling LDL receptors in PCSK9-resistant SV-589 fibroblasts., 2014, 55(2): 266-275.
[12] Herbert B P D, Waddington S N, Eden E R, McAleenan A, Sun X M, Soutar A K. Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control., 2010, 30(7): 1333-1339.
[13] Liu M, Wu G, Baysarowich J, Kavana M, Addona G H, Bierilo K K, Mudgett J S, Pavlovic G, Sitlani A, Renger J J, Hubbard B K, Fisher T S, Zerbinatti C V. PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain., 2010, 51(9): 2611-2618.
[14] ROCHE-MOLINA M S-R D, CRUZ F M, GARCíA-PRIETO J, LóPEZ S, ABIA R, MURIANA F J, FUSTER V, IBá?EZ B, BERNAL J A. Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9., 2015, 35(1): 50-59.
[15] LAGACE T A C D, GARUTI R, MCNUTT M C, PARK S W, PRATHER H B, ANDERSON N N, HO Y K, HAMMER R E, HORTON J D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice., 2006, 116(11): 2995-3005.
[16] LUO Y W L, XIA D, JENSEN H, SAND T, PETRAS S, QIN W, MILLER K S, HAWKINS J. Function and distribution of circulating human PCSK9 expressed extrahepatically in transgenic mice., 2009, 50(8): 1581-1588.
[17] DING Q, STRONG A, PATEL K M, NG S L, GOSIS B S, REGAN S N, COWAN C A, RADER D J, MUSUNURU K. Permanent alteration of PCSK9 withCRISPR-Cas9 genome editing., 2014, 115(5): 488-492.
[18] JENSEN TW M M, PETTIGEW J E, PEREZ-MENDOZA V G, ZACHARY J, SCHOOK L B. A cloned pig model for examining atherosclerosis induced by high fat, high cholesterol diets.2010, 21(3): 179-187.
[19] SHIM J A-M R, S?RENSEN C B, BENTZON J F. Large animal models of atherosclerosis-new tools for persistent problems in cardiovascular medicine., 2016, 238(2): 257-266.
[20] Duran-Struuck R M A, Huang C A. Myeloid leukemias and virally induced lymphomas in miniature inbred Swine: Development of a large animal tumor model., 2015, 6:332.
[21] 馮書堂. 中國實(shí)驗(yàn)用小型豬. 北京: 中國農(nóng)業(yè)出版社, 2009.
FENG S T.. Beijing: China Agriculture Press, 2009.(in Chinese)
[22] AL-MASHHADI R H, SORENSEN C B, KRAGH P M, CHRISTOFFERSEN C, MORTENSEN M B, TOLBOD L P, THIM T, DU Y T, LI J, LIU Y, MOLDT B, SCHMIDT M, VAJTA G, LARSEN T, PURUP S, BOLUND L, NIELSEN L B, CALLESEN H, FALK E, MIKKELSEN J G, BENTZON J F. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant., 2013, 5(166): 166 rai.
[23] DAVIS B T, WANG X J, ROHRET J A, STRUZYNSKI J T, MERRICKS E P, BELLINGER D A, ROHRET F A, NICHOLS T C, ROGERS C S. Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs., 2014, 9(4): e93457.
[24] FANG X, M Y, HUANG Z, LI Y, HAN L, ZHANG Y, FENG Y, CHEN Y, JIANG X, ZHAO W, SUN X, XIONG Z, YANG L, LIU H, FAN D, MAO L, REN L, LIU C, WANG J, LI K, WANG G, YANG S, LAI L, ZHANG G, LI Y, WANG J, BOLUND L, YANG H, WANG J, FENG S, LI S, DU Y. The sequence and analysis of a Chinese pig genome., 2012, 1(1): 16.
[25] XIONG Y R Y, XU J, YANG D Y, HE X H, LUO J Y, RANA J S, ZHANG Y, ZHENG Z S, LIU D H, WU G F. Enhanced external counterpulsation inhibits endothelial apoptosis via modulation of BIRC2 and Apaf-1 genes in porcine hypercholesterolemia., 2014, 171(2): 161-168.
[26] OGITA M M K, ONISHI A, TSUBOI S, WADA H, KONISHI H, NAITO R, DOHI T, KASAI T, KOJIMA Y, SCHWARTZ R S, DAIDA H. Development of accelerated coronary atherosclerosis model using low density lipoprotein receptor knock-out swine with balloon injury.2016, 11(9): e0163055.
[27] HAMAMDZIC D W R. Porcine models of accelerated coronary atherosclerosis: role of diabetes mellitus and hypercholesterolemia., 2013, 2013:c761415.
[28] POIRIER S, MAYER G, POUPON V, MCPHERSON P S, DESJARDINS R, LY K, ASSELIN M C, DAY R, DUCLOS F J, WITMER M, PARKER R, PRAT A, SEIDAH N G. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route., 2009, 284(42): 28856-28864.
[29] PAUTA M, ROTLLAN N, VALES F, FERNANDEZ-HERNANDO A, ALLEN R M, FORD D A, MARI M, JIMENEZ W, BALDAN A, MORALES-RUIZ M, FERNANDEZ-HERNANDO C. Impaired liver regeneration in Ldlr-/-mice is associated with an altered hepatic profile of cytokines, growth factors, and lipids., 2013, 59(4): 731-737.
[30] SUBRAMANIAN S, TURNER M S, DING Y, GOODSPEED L, WANG S, BUCKNER J H, O'BRIEN K, GETZ G S, REARDON C A, CHAIT A. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice., 2013, 54(10): 2831-2841.
(責(zé)任編輯 林鑒非)
Production of Transgenic Pigs Over-expressedMutant
ZHANG Xue, HUANG Lei, RUAN JinXue, LIU ZhiGuo, CHENG Ying, FENG ShuTang, MU YuLian, LI Kui
(Institute of Animal Sciences of Chinese Academy of Agricultural Sciences,Beijing 100193)
【】Proprotein convertase subtilisin/kexin type 9 () is the third major gene of autosomal dominant hypercholesterolemia (ADH). Gain-of-function mutations ofare directly associated with human familial hypercholesterolemia, such as themutant. In vitro detection experimental results on the degradation of LDLR by the PCSK9 D374Y mutant showed that its LDLR degradation ability is ten times stronger than that of the wild-type protein. This ability increases the risk of hypercholesterolemia, and promotes atherosclerotic lesions. The miniature pig is a useful animal model for biomedical research. However the utility of pigs for diseases model preparation is relatively infrequent because of their individual differences. Inbred lines increased the consistency of the genetic background of the experimental animals, thus consequently, would simplify disease progression of the animal model. This study used Wuzhishan minipig intending to make a transgenic pig with gain-of-functionmutation of human, and to contribute to the model of atherosclerosis. 【】 In this study,-over-expressing plasmids were transferred into Wuzhishan porcine embryonic fibroblasts by electroporation, and somatic cell nuclear transplantation and embryo transfer were used to make-over-expressing pig. Using transgenic pig liver, the humanexpression was assessed by PCR, Southern blot and Western blot in DNA, RNA and protein levels. At the same time, istochemical staining and hematoxylin-eosin (HE) staining were used to identify the pathological changes in liver betweentransgenic pigs and wild-type Wuzhishan pigs.【】the positive cloned cells appeared for 3 days, and colony point was formed for 7 days. The PCR results showed that the-fragments could be spliced into a complete fragment. That means the-over-expressing plasmids were successfully integrated into fibroblasts of Wuzhishan pig. The screened positive cloned cellswere used as donor cells for somatic cell nuclear transfer (SCNT) and transplanted into recipient sows, and finally, the transgenic pig was got. PCR and Southern blot detection results of the DNA samples demonstrated that the entire-gene was integrated into the genomes. RT-PCR and QPCR were performed using primers specifically recognizing human or pigmRNA. The results showed that the humangene could be normally transcribed in the pig liver and did not influence the transcription of the endogenous pig. Surprisingly, the expression of the humangene could be detected in other organs including the heart, spleen, lung, and kidney, whereas the expression levels of the endogenous pig-gene integrated into pig genomes was normally transcribed and translated. Besides, transgenic pig’s liver had pathological changes were detected by HE staining and histochemical staining and the results showed that the LDLR level in the transgenic pigs’ liver was significantly lower than wild-type controls’.【】 In conclusion, humanprotein was successfully over-expressed in Wuzhishan inbred miniature pigs. Compared with wild type pigs, transgenic pigs had a low LDLR level in liver. At the same time, there were obvious pathological changes in transgenic pigs’ liver.
; SCNT; Wuzhishan Minipig Inbred; LDLR
2017-03-10;接受日期:2017-05-19
國家自然科學(xué)基金(31572378)、國家高技術(shù)研究發(fā)展計劃(863 計劃,2012AA020603)
張雪,Tel:13161163940;E-mail:zhangxuecaas@163.com。通信作者牟玉蓮,E-mail:muyulian76@iascaas.net.cn