• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the hydrodynamics of hydraulic machinery and flow control *

    2017-11-02 09:09:15HongxunChen陳紅勛ZhengMa馬崢WeiZhang張偉BingZhu朱兵RuiZhang張睿QunWei魏群ZhengchuanZhang張正川ChaoLiu劉超JianwuHe何建武
    關(guān)鍵詞:建武張睿劉超

    Hong-xun Chen (陳紅勛), Zheng Ma (馬崢), Wei Zhang (張偉), Bing Zhu (朱兵), Rui Zhang (張睿),Qun Wei (魏群), Zheng-chuan Zhang (張正川), Chao Liu (劉超), Jian-wu He (何建武)

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China,

    E-mail: chenhx@shu.edu.cn

    2. Chinese Ship Scientific Research Center, Wuxi 214082, China

    On the hydrodynamics of hydraulic machinery and flow control*

    Hong-xun Chen (陳紅勛)1, Zheng Ma (馬崢)2, Wei Zhang (張偉)1, Bing Zhu (朱兵)1, Rui Zhang (張睿)1,Qun Wei (魏群)1, Zheng-chuan Zhang (張正川)1, Chao Liu (劉超)1, Jian-wu He (何建武)1

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China,

    E-mail: chenhx@shu.edu.cn

    2. Chinese Ship Scientific Research Center, Wuxi 214082, China

    Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry, mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering, etc.. The internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with the rotating dynamic boundary (rotor blade). Based on the analysis of the internal flow characteristics of hydraulic machinery, the author and his research team successively proposed a rotation correction model,a curvature corrected filter-based model, a scalable detached eddy simulation method, and a non-linear hybrid RANS/LES turbulence model to capture unsteady flow structures and then predict hydraulic performance and dynamic characteristics more accurately.According to the analysis on the internal flow, the corresponding flow control measures were put forward. It was verified by experiments that these methods could significantly improve the hydraulic performance, anti-cavitation performance and dynamic characteristics (pressure pulsation and vibration) of hydraulic machinery in a certain range of operating conditions. In addition, the mechanism how flow control measures influence internal flow was analyzed in depth, aiming at finding a feasible and effective way to improve hydraulic performance, anti-cavitation performance and dynamic characteristics of hydraulic machinery.

    Hydraulic machinery, unsteady flow, turbulence model, flow control method, dynamic characteristic

    Introduction

    Hydraulic machinery is a kind of mechanical equipment which takes water or other liquid as working mediums and energy conversion carrier to achieve the mutual transformation between liquid energy and mechanical energy. According to the way of working, it can be divided into positive displacement hydraulic machinery and blade type hydraulic machinery, of which the latter is a device to achieve energy conversion between the rotor with blades and the fluid medium flowing around blades. Blade type hydraulic machinery that mainly includes turbine,pump and hydraulic propulsion etc., has been applied widely in multiple fields which closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry,mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering , etc.. Though the blade type of hydraulic machinery need to be changed in different fields, the working principle and driving mode are actually the same.

    Many scholars[1-9]have studied in depth the internal flow of hydraulic machinery by experimental and numerical simulation methods, indicating that the internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with rotating dynamic boundary (rotor blade).The solution of complicated internal flow in hydraulic machinery has to proceed from the comprehensive Navier-Stokes equation. As is known to all, DNS and LES have enough capacity to resolve these unsteady turbulence problems, but there still exist many difficulties for requiring huge computing resources.Therefore, it is crucial to explore more effectivenumerical simulation methods which reflect complex flow characteristics in hydraulic machinery and enhance prediction precision with the efficiency being taken into account.

    1. Turbulence model

    In order to take both efficiency and accuracy into account, effective turbulence models which include rotation correction with extend intrinsic mean spin tensor (EIMST), curvature corrected filter-based turbulence model (FBM-CC), scalable detached eddy simulation (SDES) and non-linear hybrid RANS/LES were developed to enhance the accuracy of capturing unsteady flow structures inside hydraulic machinery,and then effectively predict the hydraulic performance and dynamic characteristics.

    1.1 Rotation correction with extend intrinsic mean spin tensor

    Zhang et al.[10,11]proposed a method to modify the eddy viscosity coefficient of conventional turbulence model based on redefined Richardson number with extend intrinsic mean spin tensor (EIMST),which made turbulence models sensitive to the rotation.

    In rotating coordinate system, the rotation effect affects the distribution of turbulent kinetic energy, and the turbulent kinetic energy spectrum in inertial sub area should be k-3(negative third power) instead of k-5/3(negative three-fifths power). The results showed that the modified turbulence model could successfully capture the stall phenomenon of the interphase channel of centrifugal pumps under offdesign conditions, and obtain more abundant turbulent structure.

    1.2 Curvature corrected filter-based turbulence model

    Consideringthemulti-scaleand unsteady characteristics inside axial-flow pumps, as well as the effect of streamline curvature which caused by the curvy surface of flow passage components and the rotation of impellers, Zhang[12]proposed a curvature corrected filter-based turbulence model(FBM-CC). It was tested and verified that FBM-CC model could not only capture more abundant scales of turbulent structures, but also improve the sensitivity to the effect of streamline curvature and accuracy of computation. For the curvature correction of FBM model, it was considered that the generated itemskG in the k and ε transport equations could be corrected by referring to the method proposed in literature[13].

    1.3 Scalable detached eddy simulation method

    Zhu[14]modified the traditional DES method by introducing the von Karman scale based on local flow field. The newly developed scalable detached eddy simulation(SDES) method improved the shortage of direct dependence on grids for traditional DES method in identification simulation regions, which made RANS/LES method switched adaptively to solve the steady or unsteady area. The Strelets[15]two-equation DES model based on the SST turbulence model is

    where the hybrid-functionDESF is given by

    The von Karman length scale is redefined as Lvk= κ S/▽?duì)? so the hybrid-function is corrected as

    The newly-defined criteria for identification of simulation region is directly determined by local flow field, rather than the density and distribution of grids divided by users, so that the physical significance is expressed more correctly and the actual physical characteristics of flow field is reflected more clearly.

    1.4 Non-linear hybrid RANS/LES turbulence model

    In order to effectively simulate unsteady flow structures and pressure pulsation inside vane centrifugal pumps, Wei et al.[16,17]have proposed a new non-linear hybrid RANS/LES method.

    A non-linear eddy viscosity model has been developed based on data obtained from experiment[18,19]and DNS[20,21]to construct the coefficient of eddy viscosity, which well avoid imprecise predictions in the flows with a strong flow separation and adverse pressure gradients or streamline curvatures, and the expressions are as follows:

    In addition, a hybrid strategy was proposed to allow the adoption of the RANS in the near-wall region and the LES in the outer unstable flow region by introducing von Karman length scalevkLas the critical parameter to determine the transition instead of the local grid size in this hybrid RANS/LES frame system. The eddy viscosity and the smoothing function are as follows:

    2. The controlling of unsteady flow inside hydraulic machinery

    On the basis of the analysis on internal flow,corresponding flow control measures were put forward by the authors. It was proved that these methodscould improve hydraulic performance,anti-cavitation performance and dynamic characteristics of hydraulic machinery in a certain range of operating conditions.

    2.1Improvement on stall characteristics of a vane axial flow pump by applying the J-Groove flow control technology

    Under stall conditions, swirling flow appears at the inlet of the impeller, which is a main factor to promote the formation of “saddle zone”. When flow rate is lower, the swirling flow become stronger, and the performance and operation stability of the axial pump will be influenced more seriously. The feasibility was studied that the stall characteristics of a vane axial pump could be improved by setting a J-Groove in the inlet channel shown in Fig.1 and Fig.2,which was learned from Kurokawa's J-Groove flow control technology[22]that strip structures were distributed uniformly on the tube wall.

    Fig.1 (Color online) Axial flow pump model with additional

    Fig.2 (Color online) Pressure monitoring points at the impeller

    As shown in Fig.3, the intensity of swirling flow could be effectively weakened, which improved the uniformity of flow at the inlet of the impeller. This not only improved the work capacity of blades and restrained the formation of “saddle zone”, but also made low frequency pressure pulsation at the inlet of impeller reduced and the stability of axial flow pumps enhanced.

    2.2Improvement on hydraulic performance of a vane axial pump by applying a guide impeller

    Fig.3 (Color online) Impact of J-Groove on the performance of axial flow pumps[12]

    In order to control the flow separation around blade surfaces and improve the performance of axial flow pumps under low flow rate conditions, a new type of guide impeller based on the idea of the “flap” flow control technology was put forward. By comparing the internal flow field of original impeller with the one of guide impeller, it could be found that the flow separation around blade surfaces were inhibited under low flow rate conditions as a result of the front vice blades' function of guiding flow, and thus the performance of axial flow pumps was improved as shown in Fig.4 and Fig.5.

    Fig.4 (Color online) Hydraulic performance of axial-flow pumps with different impellers[12]

    Fig.5 (Color online) The distribution of relative velocity limi- ting streamline on suction surfaces of blade

    Fig. 6 (Color online) A barrier strip at the suction side of a

    Fig.7 (Color online) The change trend of vapor volume in axial flow pumps under different cavitation stages[12]

    2.3Improvement on anti-cavitation performance of a vane axial flow pump by setting barriers

    The blade cavitation of axial pumps, which belongs to a type of hydrofoil cavitation, is located at the rear edge of blades. On this account, a barrier strip was set along the radial direction of at 90%cLof suction side wherecLis the length of airfoil chord of middle section (blade inlet edge is defined as reference position), shown in Fig.6. As illustrated in Fig.7, the anti-cavitation performance of axial flow pump was improved to a certain extent as a result of setting barrier strips.

    2.4Influence of gap drainage blades on internal flow of a vane centrifugal pump

    2.4.1 Improvement on the hydraulic performance of centrifugal pumps by applying two-dimensional gap drainage blades

    Fig.8 (Color online) Traditional impeller and gap impeller[14]

    Fig.9 (Color online) Velocity surface[14] distribution on central stream

    Gap drainage blade is a newly-designed blade structure based on flow control theory[23-25]. Compared with a traditional impeller, a gap impeller was added with a vice blade overlapped with main blade and hold a narrow gap at the suction side of the leading edge of main blade, shown in Fig.8. The essential reason that gap drainage blades improve the hydraulic performance of centrifugal pumps is its improving of the distribution of velocity fields in the flow channel, so that the velocity field become more smooth and uniform shown as Fig.9.Gap impeller was designed with the vice blade at the leading edge deviating from original position and overlapping partly with main blade. On one hand, this would increase flow area to avoid the blocking effect at the inlet zone. On the other hand, due to the guiding flow function of vice blade, some fluid on the pressure surface would pass through the gap into the suction surface which makes the velocity field distribution more uniform in the flow channel.

    2.4.2 Improvement on the anti-cavitation performance mensional gap drainage blades

    The anti-cavitation performance of centrifugal pumps could be improved by applying the gap drainage blades. Under the characteristic flow rate and large flow rate conditions, the centrifugal pump with gap impeller had better anti-cavitation characteristics than the one with traditional impeller, illustrated in Fig.10 and Fig.11. On one hand, the vice blade at the leading edge of gap drainage impeller played a role in guiding flow and changed the attack angle of main blades, so that the flow separation at the leading edge of main blades would be inhibited, especially near the pressure under the large flow rate condition. On the other hand, high pressure fluid on the pressure surface would be guided through the gap into the suction surface, which compensated pressure to low pressure zones to some extent. At the same time, the fluid ejected from the gap would isolate the cavitation zone between main blades and vice blades, and have a disturbance to the cavitation regions that have been formed, which accelerated the cavity shedding and suppressed the formation of the large cavitation area to improve the cavitation performance. Obviously, the single blades of the traditional impeller cut off the ties between the fluids on the pressure surfaces and suction surfaces, so that the anti-cavitation mechanism above could be achieved. of vane centrifugal pumps by applying two-di-

    Fig.10 Comparison of the anti-cavitation between the two impellers[14]

    Fig.11 Vapor volume fraction distribution on the central plane[14]

    Fig.12 The layout of monitoring points of pressure pulsation

    Fig.13 The change curves of amplitude of pressure pulsation at different monitoring points along the circumferential di- rection of blades

    2.4.3 Improvement on dynamic characteristics of a vane centrifugal pump by applying two-dimen- sional gap drainage blades

    The author also carried out the researches about the pressure pulsation characteristics and related mechanism of centrifugal pumps with gap drainage blades. The gap drainage blades with the function of guiding flow improved the problem about the asymmetrical rate of inflow in different flow channels under characteristic to large flow rate conditions, which was leaded by non-uniform circumferential pressure in volute, and made the distribution of the flow and the relative velocity of the trailing edge of each pressure surface more uniform, so that the fundamental frequency pressure pulsation in the volute was radically improved. In addition, the unsteady flow problem caused by the excess flow rate of the individual flow channel was also weakened, and the amplitude of the fundamental frequency pressure pulsation was further reduced. Figures 12-14 respectively show the layout of monitoring points of pressure pulsation, amplitude of pressure pulsation at different positions, and the spectrum of pressure pulsation.

    Fig.14 Comparison of pressure pulsation spectrums in the volu- tes of two pumps

    Fig.15 (Color online) The three-dimensional model of two im- pellers

    2.4.4 Study on improving the performance of a vane centrifugal pump by applying three-dimensional gap drainage blades

    Based on the above researches, it was verified that the two-dimensional gap drainage blade structure could effectively improve the hydraulic performance and anti-cavitation performance of vane centrifugal pumps, and enhance the hydraulic dynamic characteristics to a certain extent. In order to introduce this technology into practical application, a new threedimensional gap drainage impeller was designed as shown in Fig.15.

    The experimental results showed that the new three-dimensional gap drainage impeller significantly improved the hydraulic performance, anti-cavitation performance and dynamic characteristics of the vane centrifugal pumps, which laid a solid foundation for introducing the gap drainage technology to the practical application.

    3. Conclusion

    (1) Based on the study of turbulence models,which is suitable for the internal flow characteristics of hydraulic machinery, the author effectively achieved the simulation of the internal flow and performance prediction of hydraulic machinery. This provides the basis for improving the performance of hydraulic machinery by applying flow control measures, and confirms that these methods are effective by a series of measures such as experiments, calculation and analysis.

    (2) In the aspect of controlling flow, the relationship between geometry and performance, anti- cavitation and pressure pulsation will be further studied and more effective flow control methods will be proposed to improve the performance of hydraulic machinery.

    (3) The relationship between pressure pulsation and vibration would be studied and the mechanism how internal flow induce the structure vibration,which provides the theoretical basis for restraining harmful vibration during the operation process of hydraulic machinery.

    [1] Paone N., Riethmuller M. L., Braembussche R. A. V. D.Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry [J]. Experiments in Fluids, 1989, 7(6):371-378.

    [2] Abramian M., Howard J. H. G. Experimental investigation of the steady and unsteady relative flow in a model centrifugal impeller passage [J]. Journal of Imaging Science and Technology, 1994, 116(2): 269-279.

    [3] Hasmatuchi V., Farhat M., Roth S. et al. Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode [J]. Journal of Fluids Engineering, 2011, 133(5): 051104.

    [4] Medvitz R. B., Kunz R. F., Boger D. A. et al. Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD [J]. Journal of Fluids Engineering,2002, 124(2): 377-383.

    [5] Huang B., Wang G. Y. Partially averaged Navier-Stokes method for time-dependent turbulent cavitating flows [J].Journal of Hydrodynamics, 2011, 23(1): 26-33.

    [6] Byskov R. K., Jacobsen C. B., Pedersen N. Flow in a centrifugal pump impeller at design and off-design conditions-Part II: Large eddy simulations [J]. Journal of Fluids Engineering, 2003, 125(1): 73-83.

    [7] Luo X., Zhang Y., Peng J. et al. Impeller inlet geometry effect on performance improvement for centrifugal pumps[J]. Journal of Mechanical Science and Technology, 2008,22(10): 1971-1976.

    [8] Shi Y., Xiao Z., Chen S. Constrained subgrid-scale stress model for large eddy simulation [J]. Physics of Fluids,2008, 20(1): 011701.

    [9] Zhang R., Mao F., Wu J. Z. et al. Characteristics and control of the draft-tube flow in part-load Francis turbine[J]. Journal of Fluids Engineering, 2009, 131(2): 021101.

    [10] Zhang W., Ma Z., Yu Y. C. et al. Validation and verification study of RANS simulation in centrifugal pump impeller: Design and off-design condition [J]. Chinese Journal of Hydrodynamics,2011, 28(1):73-74(in Chinese).

    [11] Zhang W. Analysis and prediction of the internal flow in the vane pump impeller at off-design condition [D].Doctoral Thesis, Shanghai, China: Shanghai University,2010(in Chinese).

    [12] Zhang R. Research on the stall and cavitation flow characteristics and the performance improvement of axial-flow pump [D]. Doctoral Thesis, Shanghai, China: Shanghai University, 2014(in Chinese).

    [13] Smirnov P. E., Menter F. R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term [J]. Journal of Turbomachinery, 2009, 131(4): 1-8.

    [14] Zhu B. Research on the mechanism of performance improving in low specific speed centrifugal pump with gap drainage blades [D]. Doctoral Thesis, Shanghai, China:Shanghai University, 2014(in Chinese).

    [15] Strelets M. Detached eddy simulation of massively separated flows [R]. AIAA paper 2001-0879, 2001.

    [16] Wei Q. Chen H. X., Ma Z. A hybrid RANS/LES model for simulation of complex turbulent flow [J]. Journal of Hydrodynamics, 2016, 28(5): 811-820.

    [17] Wei Q. Chen H. X., Ma Z. Numerical simulation of flow around airfoil with non-linear RANS model [C].ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. Seoul, Korea, 2015.

    [18] Champagne F. H., Harris V. G., Corrsin S. Experiments on nearly homogeneous turbulent shear flow [J]. Journal of Fluid Mechanics, 1970, 41(1): 81-139.

    [19] Tavoularis S., Corrsin S. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1 [J]. Journal of Fluid Mechanics, 1981, 178: 459-475.

    [20] Lee M. J., Kim J., Moin P. Structure of turbulence at high shear rate [J]. Journal of Fluid Mechanics, 2006, 216(4):561-583.

    [21] Rogers M. M., Moin P. The structure of the vorticity field in homogeneous turbulent shear flow [J]. Journal of Fluid Mechanics, 1987, 176: 33-66.

    [22] Kurokawa J., Imamura H., Choi Y. D. et al. Effect of J-Groove on the suppression of swirl flow in a conical diffuser [J]. Journal of Fluids Engineering, 2010, 132(7):1773-1780.

    [23] Chen H. X., Liu W. W., Jian W. et al. Development of low specific-speed centrifugal pump impellers based on flow control technique [J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(6): 466-470(in Chinese).

    [24] Chen H. X., Huo C. C., Liu W. M. Study on control of multi-element airfoil based on CFD [J]. Journal of Drainage and Irrigation Machinery Engineering, 2012,30(5): 513-516, 557(in Chinese).

    [25] Chen H. X., Lin Y. Z., Zhu B. Experimental study cavitation performance of centrifugal pump with impeller having leading edge slots [J]. Journal of Drainage and IrrigationMachinery Engineering, 2013, 31(7):570-574(in Chinese).

    August 1, 2017, Revised August 5, 2017)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51379120, 51179100 ).

    Biography: Hong-xun Chen (1962- ), Male, Ph. D., Professor

    猜你喜歡
    建武張睿劉超
    老吳的拉面館
    玩轉(zhuǎn)高考題
    Theoretical study of novel B-C-O compounds with non-diamond isoelectronic
    Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
    如夢(mèng)似幻
    金秋(2021年4期)2021-05-27 06:42:46
    征程萬(wàn)里,初心如一
    雷鋒(2021年12期)2021-04-12 00:57:22
    The dilemma and development of industrial design in contemporary life
    杜鵑黃化病的發(fā)生與防治
    Wechat, life in our Palm
    Design and experiment of the centrifugal pump impellers with twisted inlet vice blades *
    亚洲专区中文字幕在线| 97超级碰碰碰精品色视频在线观看| 一级黄色大片毛片| 中文字幕另类日韩欧美亚洲嫩草| 亚洲视频免费观看视频| 制服诱惑二区| 亚洲五月色婷婷综合| 一夜夜www| 亚洲中文日韩欧美视频| 一二三四社区在线视频社区8| 日韩欧美在线二视频| 欧美+亚洲+日韩+国产| 波多野结衣一区麻豆| 国产乱人伦免费视频| 少妇裸体淫交视频免费看高清 | 免费av毛片视频| 免费av中文字幕在线| 巨乳人妻的诱惑在线观看| 操美女的视频在线观看| 好男人电影高清在线观看| 欧美人与性动交α欧美精品济南到| 精品少妇一区二区三区视频日本电影| 国产精品 国内视频| a级毛片黄视频| 日韩大码丰满熟妇| 不卡一级毛片| 韩国av一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 露出奶头的视频| 97碰自拍视频| a级毛片黄视频| 在线观看免费午夜福利视频| 国产精品综合久久久久久久免费 | 夜夜看夜夜爽夜夜摸 | 一级片'在线观看视频| 亚洲第一av免费看| 伦理电影免费视频| 91麻豆精品激情在线观看国产 | 亚洲精品中文字幕一二三四区| 亚洲精品一二三| 一区二区三区激情视频| 黄色a级毛片大全视频| 久久久国产成人精品二区 | 亚洲欧美一区二区三区久久| 久久国产精品人妻蜜桃| 成年人免费黄色播放视频| 精品国产乱子伦一区二区三区| 免费高清视频大片| 欧美乱码精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 精品国内亚洲2022精品成人| 啦啦啦 在线观看视频| 日日摸夜夜添夜夜添小说| 19禁男女啪啪无遮挡网站| 日韩大尺度精品在线看网址 | 村上凉子中文字幕在线| 欧美黄色淫秽网站| 午夜福利一区二区在线看| 亚洲精品国产色婷婷电影| 欧美黄色片欧美黄色片| 丰满迷人的少妇在线观看| 人人妻人人爽人人添夜夜欢视频| 久久久久久久久免费视频了| 日本黄色日本黄色录像| 黄色毛片三级朝国网站| 久久久久久大精品| 亚洲av五月六月丁香网| 国产精品 国内视频| 99riav亚洲国产免费| 9热在线视频观看99| 又大又爽又粗| 欧美+亚洲+日韩+国产| 可以免费在线观看a视频的电影网站| 国产精品香港三级国产av潘金莲| av网站在线播放免费| 巨乳人妻的诱惑在线观看| 成人18禁在线播放| 女性生殖器流出的白浆| 欧美人与性动交α欧美软件| 人成视频在线观看免费观看| 一级a爱视频在线免费观看| 91国产中文字幕| 村上凉子中文字幕在线| 黑人猛操日本美女一级片| 美女高潮喷水抽搐中文字幕| 啦啦啦在线免费观看视频4| 免费高清在线观看日韩| 免费日韩欧美在线观看| 99riav亚洲国产免费| 97碰自拍视频| 久久影院123| 亚洲七黄色美女视频| 日本黄色视频三级网站网址| bbb黄色大片| 丰满的人妻完整版| 韩国av一区二区三区四区| av超薄肉色丝袜交足视频| 每晚都被弄得嗷嗷叫到高潮| 99久久精品国产亚洲精品| 午夜a级毛片| 色综合婷婷激情| 亚洲人成电影观看| 亚洲国产精品999在线| 国产精品一区二区在线不卡| 19禁男女啪啪无遮挡网站| 欧美精品啪啪一区二区三区| 亚洲人成电影观看| 午夜福利欧美成人| netflix在线观看网站| 中亚洲国语对白在线视频| 午夜视频精品福利| 男女高潮啪啪啪动态图| 一个人免费在线观看的高清视频| 色老头精品视频在线观看| 国产欧美日韩一区二区精品| 男女午夜视频在线观看| 美女扒开内裤让男人捅视频| 国产欧美日韩精品亚洲av| 免费在线观看视频国产中文字幕亚洲| 国产熟女午夜一区二区三区| 日韩欧美三级三区| 嫩草影院精品99| 男女床上黄色一级片免费看| 波多野结衣av一区二区av| 国产99白浆流出| 水蜜桃什么品种好| 熟女少妇亚洲综合色aaa.| 90打野战视频偷拍视频| 动漫黄色视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 午夜福利在线免费观看网站| 久久香蕉精品热| 国内久久婷婷六月综合欲色啪| 天天添夜夜摸| 纯流量卡能插随身wifi吗| 免费久久久久久久精品成人欧美视频| 别揉我奶头~嗯~啊~动态视频| a在线观看视频网站| 日本免费a在线| 国产一区二区三区在线臀色熟女 | 性欧美人与动物交配| 精品熟女少妇八av免费久了| 一区福利在线观看| 欧美精品亚洲一区二区| 一级作爱视频免费观看| 一进一出好大好爽视频| 欧美 亚洲 国产 日韩一| 男人操女人黄网站| 人人妻人人爽人人添夜夜欢视频| 欧美激情久久久久久爽电影 | 18禁美女被吸乳视频| 亚洲全国av大片| 啦啦啦在线免费观看视频4| 高清毛片免费观看视频网站 | 国产一区二区三区综合在线观看| 美女国产高潮福利片在线看| 97超级碰碰碰精品色视频在线观看| 欧美激情 高清一区二区三区| av电影中文网址| 女人精品久久久久毛片| 日韩三级视频一区二区三区| 国产精品一区二区精品视频观看| 亚洲av第一区精品v没综合| 成人精品一区二区免费| 中文欧美无线码| 亚洲av美国av| 免费在线观看影片大全网站| 亚洲精品国产色婷婷电影| cao死你这个sao货| 亚洲片人在线观看| 老司机深夜福利视频在线观看| 国产精品美女特级片免费视频播放器 | 又黄又粗又硬又大视频| 操出白浆在线播放| 亚洲人成77777在线视频| 亚洲专区中文字幕在线| 国产精品电影一区二区三区| 午夜精品在线福利| 美女高潮到喷水免费观看| 久久精品91蜜桃| xxxhd国产人妻xxx| 午夜老司机福利片| 天天添夜夜摸| 久久国产精品男人的天堂亚洲| 韩国av一区二区三区四区| 精品一区二区三区四区五区乱码| 国产欧美日韩精品亚洲av| 999久久久精品免费观看国产| 伦理电影免费视频| 国产av又大| 成人免费观看视频高清| 少妇粗大呻吟视频| 午夜日韩欧美国产| 国产单亲对白刺激| 中国美女看黄片| www.999成人在线观看| 动漫黄色视频在线观看| 9色porny在线观看| av福利片在线| 天天添夜夜摸| 国产精品香港三级国产av潘金莲| 激情在线观看视频在线高清| 亚洲精品国产一区二区精华液| 国产成人精品无人区| 国产xxxxx性猛交| 国产视频一区二区在线看| 国产av一区在线观看免费| 在线观看午夜福利视频| 婷婷六月久久综合丁香| 一边摸一边做爽爽视频免费| 国产片内射在线| bbb黄色大片| 国产成人精品无人区| 男女做爰动态图高潮gif福利片 | 日韩大码丰满熟妇| 欧美日韩中文字幕国产精品一区二区三区 | а√天堂www在线а√下载| 成人三级黄色视频| 侵犯人妻中文字幕一二三四区| 亚洲精品国产色婷婷电影| 欧美日韩福利视频一区二区| 免费不卡黄色视频| 熟女少妇亚洲综合色aaa.| 老司机福利观看| 日韩欧美在线二视频| 中文字幕色久视频| 可以在线观看毛片的网站| 国产成人一区二区三区免费视频网站| 欧美在线一区亚洲| 久久久国产精品麻豆| 成人三级黄色视频| 丝袜在线中文字幕| a级毛片黄视频| 脱女人内裤的视频| 亚洲男人的天堂狠狠| 亚洲国产精品合色在线| 国产成人欧美| 国产成人系列免费观看| 欧美在线黄色| 99久久精品热视频| 久久精品影院6| 亚洲av第一区精品v没综合| 老鸭窝网址在线观看| 熟女人妻精品中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 国产精品av视频在线免费观看| 熟女电影av网| 熟妇人妻久久中文字幕3abv| 一本精品99久久精品77| 简卡轻食公司| 国模一区二区三区四区视频| 久久精品综合一区二区三区| 一级a爱片免费观看的视频| 熟女电影av网| 在线十欧美十亚洲十日本专区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产成人影院久久av| 国产一区二区亚洲精品在线观看| 国产极品精品免费视频能看的| 免费av观看视频| 精品久久久久久久久久免费视频| 国产成人av教育| 午夜老司机福利剧场| 露出奶头的视频| 日本精品一区二区三区蜜桃| 日韩欧美精品v在线| 一区二区三区激情视频| 欧美乱色亚洲激情| 国产欧美日韩精品一区二区| 欧美极品一区二区三区四区| 在现免费观看毛片| 一区二区三区免费毛片| 午夜福利免费观看在线| 日韩欧美一区二区三区在线观看| 日韩欧美国产一区二区入口| 一级黄色大片毛片| 欧美激情久久久久久爽电影| 欧美潮喷喷水| 国产av一区在线观看免费| 国产激情偷乱视频一区二区| 亚洲黑人精品在线| 极品教师在线免费播放| 99热只有精品国产| 男女做爰动态图高潮gif福利片| ponron亚洲| 国产午夜福利久久久久久| 免费看光身美女| 看片在线看免费视频| 日韩欧美在线二视频| 亚洲欧美激情综合另类| 国产精品嫩草影院av在线观看 | 又黄又爽又免费观看的视频| av专区在线播放| 国产色婷婷99| 男女那种视频在线观看| 亚洲avbb在线观看| 18禁黄网站禁片午夜丰满| 久久久久久久精品吃奶| 九九热线精品视视频播放| 色吧在线观看| 国产精品久久久久久精品电影| 日韩欧美国产一区二区入口| 成人国产综合亚洲| 搞女人的毛片| 国产精品不卡视频一区二区 | 成人高潮视频无遮挡免费网站| 国产高清三级在线| 亚洲第一电影网av| 日本在线视频免费播放| 国产69精品久久久久777片| 欧美日韩乱码在线| 国产精品自产拍在线观看55亚洲| 国产精品影院久久| 老熟妇仑乱视频hdxx| .国产精品久久| 伦理电影大哥的女人| 在线国产一区二区在线| av在线老鸭窝| 亚洲在线观看片| 又爽又黄无遮挡网站| 成人无遮挡网站| 国产精品久久久久久精品电影| 97碰自拍视频| av中文乱码字幕在线| 欧美区成人在线视频| 亚洲av中文字字幕乱码综合| 欧美国产日韩亚洲一区| 很黄的视频免费| 两人在一起打扑克的视频| 三级毛片av免费| 亚洲成人久久爱视频| 亚洲成av人片免费观看| 97热精品久久久久久| 国产成人影院久久av| 在线播放国产精品三级| 特级一级黄色大片| 国内揄拍国产精品人妻在线| 亚洲内射少妇av| 日韩欧美免费精品| 成人性生交大片免费视频hd| 日日摸夜夜添夜夜添av毛片 | 国产探花在线观看一区二区| 精品久久久久久久久久免费视频| 尤物成人国产欧美一区二区三区| 日韩欧美在线二视频| 亚洲avbb在线观看| 最近最新中文字幕大全电影3| 又爽又黄a免费视频| 久久伊人香网站| 欧美一级a爱片免费观看看| 精品一区二区三区av网在线观看| 99热精品在线国产| 村上凉子中文字幕在线| 一级毛片久久久久久久久女| 久久久久久大精品| 亚洲最大成人av| 99国产精品一区二区蜜桃av| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩精品一区二区| 日本成人三级电影网站| 波多野结衣高清无吗| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩卡通动漫| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩高清在线视频| 亚洲 欧美 日韩 在线 免费| 国语自产精品视频在线第100页| 欧美日韩综合久久久久久 | 精品无人区乱码1区二区| x7x7x7水蜜桃| 日本三级黄在线观看| 又爽又黄a免费视频| 俄罗斯特黄特色一大片| 直男gayav资源| 啦啦啦观看免费观看视频高清| 欧美潮喷喷水| 日韩国内少妇激情av| 久久久久免费精品人妻一区二区| 久久6这里有精品| 男人舔女人下体高潮全视频| 日韩欧美一区二区三区在线观看| 国产精品综合久久久久久久免费| 91午夜精品亚洲一区二区三区 | 在线免费观看不下载黄p国产 | 欧美成人性av电影在线观看| 男女之事视频高清在线观看| 久久精品国产清高在天天线| АⅤ资源中文在线天堂| 舔av片在线| 日本 欧美在线| 亚洲最大成人手机在线| 少妇人妻精品综合一区二区 | 久久国产乱子伦精品免费另类| 欧美在线黄色| 免费电影在线观看免费观看| 麻豆国产97在线/欧美| 18禁在线播放成人免费| 日日干狠狠操夜夜爽| 高清毛片免费观看视频网站| 一进一出抽搐动态| 国产久久久一区二区三区| 夜夜躁狠狠躁天天躁| 9191精品国产免费久久| 757午夜福利合集在线观看| 午夜两性在线视频| 国产三级在线视频| 深夜精品福利| а√天堂www在线а√下载| 18禁裸乳无遮挡免费网站照片| 国产人妻一区二区三区在| 色视频www国产| 天堂网av新在线| 伦理电影大哥的女人| 12—13女人毛片做爰片一| 亚洲精品一区av在线观看| 国产高清激情床上av| 99在线人妻在线中文字幕| 嫩草影院新地址| 国产精品美女特级片免费视频播放器| 内地一区二区视频在线| 欧美潮喷喷水| 国产视频一区二区在线看| 人人妻,人人澡人人爽秒播| 久久婷婷人人爽人人干人人爱| 亚洲精品粉嫩美女一区| а√天堂www在线а√下载| 欧美xxxx黑人xx丫x性爽| 十八禁人妻一区二区| 国产日本99.免费观看| 99热这里只有精品一区| 免费在线观看日本一区| 天天一区二区日本电影三级| 小说图片视频综合网站| 好男人电影高清在线观看| 亚洲片人在线观看| 制服丝袜大香蕉在线| 亚洲精品久久国产高清桃花| 午夜激情福利司机影院| 久久久久久大精品| 亚洲精品久久国产高清桃花| 老司机午夜福利在线观看视频| 中文字幕久久专区| 亚洲第一区二区三区不卡| 国产野战对白在线观看| 亚洲av美国av| 成人无遮挡网站| 亚洲美女搞黄在线观看 | 婷婷六月久久综合丁香| 国产精品自产拍在线观看55亚洲| 男插女下体视频免费在线播放| 中文字幕精品亚洲无线码一区| 乱码一卡2卡4卡精品| 美女cb高潮喷水在线观看| 午夜免费激情av| 成年版毛片免费区| 一二三四社区在线视频社区8| 亚洲av不卡在线观看| 国产免费一级a男人的天堂| 亚洲精品久久国产高清桃花| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 国产在线精品亚洲第一网站| 国产伦精品一区二区三区视频9| 美女高潮的动态| 免费无遮挡裸体视频| 久久人人爽人人爽人人片va | 亚洲 欧美 日韩 在线 免费| 99国产精品一区二区蜜桃av| 亚洲午夜理论影院| 国产亚洲欧美在线一区二区| 又爽又黄a免费视频| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 久久精品91蜜桃| 18美女黄网站色大片免费观看| 真人做人爱边吃奶动态| 97超视频在线观看视频| 欧美成人免费av一区二区三区| av中文乱码字幕在线| 99在线视频只有这里精品首页| 少妇熟女aⅴ在线视频| 色吧在线观看| 成熟少妇高潮喷水视频| 国产老妇女一区| 九九在线视频观看精品| www.999成人在线观看| 精品久久久久久久久久久久久| 97人妻精品一区二区三区麻豆| 成人av在线播放网站| 搞女人的毛片| 欧美性感艳星| 亚洲一区二区三区不卡视频| 久久久久亚洲av毛片大全| 别揉我奶头~嗯~啊~动态视频| 在线a可以看的网站| 亚洲精品影视一区二区三区av| 99久久99久久久精品蜜桃| 深夜精品福利| 国产又黄又爽又无遮挡在线| 精品久久久久久,| 女人被狂操c到高潮| 2021天堂中文幕一二区在线观| 丰满乱子伦码专区| 中文字幕av在线有码专区| 在线免费观看的www视频| 免费看日本二区| 成人三级黄色视频| 蜜桃亚洲精品一区二区三区| 91午夜精品亚洲一区二区三区 | 亚洲国产欧洲综合997久久,| 99久国产av精品| 亚洲精品一区av在线观看| 国产欧美日韩一区二区精品| 欧美+日韩+精品| 精品久久久久久久久av| 国产高清三级在线| 宅男免费午夜| 日本三级黄在线观看| 亚洲精品成人久久久久久| bbb黄色大片| 91久久精品电影网| 国产真实乱freesex| 九九在线视频观看精品| av视频在线观看入口| 国产精品不卡视频一区二区 | 97超级碰碰碰精品色视频在线观看| 人妻夜夜爽99麻豆av| 日本一二三区视频观看| 搡老熟女国产l中国老女人| 久久久久久久午夜电影| 国产av麻豆久久久久久久| 亚洲av成人av| 看片在线看免费视频| 亚洲内射少妇av| 中文字幕免费在线视频6| 村上凉子中文字幕在线| 很黄的视频免费| 村上凉子中文字幕在线| 性欧美人与动物交配| 婷婷色综合大香蕉| av黄色大香蕉| 哪里可以看免费的av片| 免费看日本二区| 热99在线观看视频| 成年女人毛片免费观看观看9| 一进一出好大好爽视频| 99精品在免费线老司机午夜| 九九热线精品视视频播放| 欧美激情久久久久久爽电影| 亚洲av免费高清在线观看| 国产男靠女视频免费网站| 国内久久婷婷六月综合欲色啪| 国产一区二区在线av高清观看| 内射极品少妇av片p| 久久天躁狠狠躁夜夜2o2o| 久久香蕉精品热| 国产日本99.免费观看| 99久久精品热视频| 韩国av一区二区三区四区| 欧美在线一区亚洲| 老熟妇仑乱视频hdxx| 欧美成人免费av一区二区三区| 欧美黑人欧美精品刺激| 欧美乱色亚洲激情| 午夜精品久久久久久毛片777| 91av网一区二区| 窝窝影院91人妻| 亚洲精华国产精华精| 亚洲专区中文字幕在线| 蜜桃久久精品国产亚洲av| 亚洲内射少妇av| 黄色日韩在线| 免费在线观看成人毛片| 国产高清激情床上av| 免费一级毛片在线播放高清视频| 最近中文字幕高清免费大全6 | av中文乱码字幕在线| 在线播放国产精品三级| 露出奶头的视频| 亚洲国产高清在线一区二区三| 亚洲欧美激情综合另类| 久久精品久久久久久噜噜老黄 | 日韩欧美国产一区二区入口| 欧美极品一区二区三区四区| 美女高潮喷水抽搐中文字幕| netflix在线观看网站| 成人无遮挡网站| 日韩欧美精品v在线| 国产成人a区在线观看| 欧美性感艳星| 免费在线观看影片大全网站| 久久久国产成人精品二区| 国产成年人精品一区二区| 搞女人的毛片| bbb黄色大片| 黄片小视频在线播放| 国产伦在线观看视频一区| 青草久久国产| 亚洲精品成人久久久久久| 啦啦啦韩国在线观看视频| 成人午夜高清在线视频| 一进一出抽搐gif免费好疼| 亚洲男人的天堂狠狠| a级毛片免费高清观看在线播放| 亚洲经典国产精华液单 | 欧美午夜高清在线| 欧美乱色亚洲激情| 亚洲成人久久爱视频| 久久久成人免费电影| 中文字幕av在线有码专区| 一边摸一边抽搐一进一小说| 神马国产精品三级电影在线观看| 级片在线观看| 男女之事视频高清在线观看| 99久久久亚洲精品蜜臀av|