• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the hydrodynamics of hydraulic machinery and flow control *

    2017-11-02 09:09:15HongxunChen陳紅勛ZhengMa馬崢WeiZhang張偉BingZhu朱兵RuiZhang張睿QunWei魏群ZhengchuanZhang張正川ChaoLiu劉超JianwuHe何建武
    關(guān)鍵詞:建武張睿劉超

    Hong-xun Chen (陳紅勛), Zheng Ma (馬崢), Wei Zhang (張偉), Bing Zhu (朱兵), Rui Zhang (張睿),Qun Wei (魏群), Zheng-chuan Zhang (張正川), Chao Liu (劉超), Jian-wu He (何建武)

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China,

    E-mail: chenhx@shu.edu.cn

    2. Chinese Ship Scientific Research Center, Wuxi 214082, China

    On the hydrodynamics of hydraulic machinery and flow control*

    Hong-xun Chen (陳紅勛)1, Zheng Ma (馬崢)2, Wei Zhang (張偉)1, Bing Zhu (朱兵)1, Rui Zhang (張睿)1,Qun Wei (魏群)1, Zheng-chuan Zhang (張正川)1, Chao Liu (劉超)1, Jian-wu He (何建武)1

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China,

    E-mail: chenhx@shu.edu.cn

    2. Chinese Ship Scientific Research Center, Wuxi 214082, China

    Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry, mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering, etc.. The internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with the rotating dynamic boundary (rotor blade). Based on the analysis of the internal flow characteristics of hydraulic machinery, the author and his research team successively proposed a rotation correction model,a curvature corrected filter-based model, a scalable detached eddy simulation method, and a non-linear hybrid RANS/LES turbulence model to capture unsteady flow structures and then predict hydraulic performance and dynamic characteristics more accurately.According to the analysis on the internal flow, the corresponding flow control measures were put forward. It was verified by experiments that these methods could significantly improve the hydraulic performance, anti-cavitation performance and dynamic characteristics (pressure pulsation and vibration) of hydraulic machinery in a certain range of operating conditions. In addition, the mechanism how flow control measures influence internal flow was analyzed in depth, aiming at finding a feasible and effective way to improve hydraulic performance, anti-cavitation performance and dynamic characteristics of hydraulic machinery.

    Hydraulic machinery, unsteady flow, turbulence model, flow control method, dynamic characteristic

    Introduction

    Hydraulic machinery is a kind of mechanical equipment which takes water or other liquid as working mediums and energy conversion carrier to achieve the mutual transformation between liquid energy and mechanical energy. According to the way of working, it can be divided into positive displacement hydraulic machinery and blade type hydraulic machinery, of which the latter is a device to achieve energy conversion between the rotor with blades and the fluid medium flowing around blades. Blade type hydraulic machinery that mainly includes turbine,pump and hydraulic propulsion etc., has been applied widely in multiple fields which closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry,mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering , etc.. Though the blade type of hydraulic machinery need to be changed in different fields, the working principle and driving mode are actually the same.

    Many scholars[1-9]have studied in depth the internal flow of hydraulic machinery by experimental and numerical simulation methods, indicating that the internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with rotating dynamic boundary (rotor blade).The solution of complicated internal flow in hydraulic machinery has to proceed from the comprehensive Navier-Stokes equation. As is known to all, DNS and LES have enough capacity to resolve these unsteady turbulence problems, but there still exist many difficulties for requiring huge computing resources.Therefore, it is crucial to explore more effectivenumerical simulation methods which reflect complex flow characteristics in hydraulic machinery and enhance prediction precision with the efficiency being taken into account.

    1. Turbulence model

    In order to take both efficiency and accuracy into account, effective turbulence models which include rotation correction with extend intrinsic mean spin tensor (EIMST), curvature corrected filter-based turbulence model (FBM-CC), scalable detached eddy simulation (SDES) and non-linear hybrid RANS/LES were developed to enhance the accuracy of capturing unsteady flow structures inside hydraulic machinery,and then effectively predict the hydraulic performance and dynamic characteristics.

    1.1 Rotation correction with extend intrinsic mean spin tensor

    Zhang et al.[10,11]proposed a method to modify the eddy viscosity coefficient of conventional turbulence model based on redefined Richardson number with extend intrinsic mean spin tensor (EIMST),which made turbulence models sensitive to the rotation.

    In rotating coordinate system, the rotation effect affects the distribution of turbulent kinetic energy, and the turbulent kinetic energy spectrum in inertial sub area should be k-3(negative third power) instead of k-5/3(negative three-fifths power). The results showed that the modified turbulence model could successfully capture the stall phenomenon of the interphase channel of centrifugal pumps under offdesign conditions, and obtain more abundant turbulent structure.

    1.2 Curvature corrected filter-based turbulence model

    Consideringthemulti-scaleand unsteady characteristics inside axial-flow pumps, as well as the effect of streamline curvature which caused by the curvy surface of flow passage components and the rotation of impellers, Zhang[12]proposed a curvature corrected filter-based turbulence model(FBM-CC). It was tested and verified that FBM-CC model could not only capture more abundant scales of turbulent structures, but also improve the sensitivity to the effect of streamline curvature and accuracy of computation. For the curvature correction of FBM model, it was considered that the generated itemskG in the k and ε transport equations could be corrected by referring to the method proposed in literature[13].

    1.3 Scalable detached eddy simulation method

    Zhu[14]modified the traditional DES method by introducing the von Karman scale based on local flow field. The newly developed scalable detached eddy simulation(SDES) method improved the shortage of direct dependence on grids for traditional DES method in identification simulation regions, which made RANS/LES method switched adaptively to solve the steady or unsteady area. The Strelets[15]two-equation DES model based on the SST turbulence model is

    where the hybrid-functionDESF is given by

    The von Karman length scale is redefined as Lvk= κ S/▽?duì)? so the hybrid-function is corrected as

    The newly-defined criteria for identification of simulation region is directly determined by local flow field, rather than the density and distribution of grids divided by users, so that the physical significance is expressed more correctly and the actual physical characteristics of flow field is reflected more clearly.

    1.4 Non-linear hybrid RANS/LES turbulence model

    In order to effectively simulate unsteady flow structures and pressure pulsation inside vane centrifugal pumps, Wei et al.[16,17]have proposed a new non-linear hybrid RANS/LES method.

    A non-linear eddy viscosity model has been developed based on data obtained from experiment[18,19]and DNS[20,21]to construct the coefficient of eddy viscosity, which well avoid imprecise predictions in the flows with a strong flow separation and adverse pressure gradients or streamline curvatures, and the expressions are as follows:

    In addition, a hybrid strategy was proposed to allow the adoption of the RANS in the near-wall region and the LES in the outer unstable flow region by introducing von Karman length scalevkLas the critical parameter to determine the transition instead of the local grid size in this hybrid RANS/LES frame system. The eddy viscosity and the smoothing function are as follows:

    2. The controlling of unsteady flow inside hydraulic machinery

    On the basis of the analysis on internal flow,corresponding flow control measures were put forward by the authors. It was proved that these methodscould improve hydraulic performance,anti-cavitation performance and dynamic characteristics of hydraulic machinery in a certain range of operating conditions.

    2.1Improvement on stall characteristics of a vane axial flow pump by applying the J-Groove flow control technology

    Under stall conditions, swirling flow appears at the inlet of the impeller, which is a main factor to promote the formation of “saddle zone”. When flow rate is lower, the swirling flow become stronger, and the performance and operation stability of the axial pump will be influenced more seriously. The feasibility was studied that the stall characteristics of a vane axial pump could be improved by setting a J-Groove in the inlet channel shown in Fig.1 and Fig.2,which was learned from Kurokawa's J-Groove flow control technology[22]that strip structures were distributed uniformly on the tube wall.

    Fig.1 (Color online) Axial flow pump model with additional

    Fig.2 (Color online) Pressure monitoring points at the impeller

    As shown in Fig.3, the intensity of swirling flow could be effectively weakened, which improved the uniformity of flow at the inlet of the impeller. This not only improved the work capacity of blades and restrained the formation of “saddle zone”, but also made low frequency pressure pulsation at the inlet of impeller reduced and the stability of axial flow pumps enhanced.

    2.2Improvement on hydraulic performance of a vane axial pump by applying a guide impeller

    Fig.3 (Color online) Impact of J-Groove on the performance of axial flow pumps[12]

    In order to control the flow separation around blade surfaces and improve the performance of axial flow pumps under low flow rate conditions, a new type of guide impeller based on the idea of the “flap” flow control technology was put forward. By comparing the internal flow field of original impeller with the one of guide impeller, it could be found that the flow separation around blade surfaces were inhibited under low flow rate conditions as a result of the front vice blades' function of guiding flow, and thus the performance of axial flow pumps was improved as shown in Fig.4 and Fig.5.

    Fig.4 (Color online) Hydraulic performance of axial-flow pumps with different impellers[12]

    Fig.5 (Color online) The distribution of relative velocity limi- ting streamline on suction surfaces of blade

    Fig. 6 (Color online) A barrier strip at the suction side of a

    Fig.7 (Color online) The change trend of vapor volume in axial flow pumps under different cavitation stages[12]

    2.3Improvement on anti-cavitation performance of a vane axial flow pump by setting barriers

    The blade cavitation of axial pumps, which belongs to a type of hydrofoil cavitation, is located at the rear edge of blades. On this account, a barrier strip was set along the radial direction of at 90%cLof suction side wherecLis the length of airfoil chord of middle section (blade inlet edge is defined as reference position), shown in Fig.6. As illustrated in Fig.7, the anti-cavitation performance of axial flow pump was improved to a certain extent as a result of setting barrier strips.

    2.4Influence of gap drainage blades on internal flow of a vane centrifugal pump

    2.4.1 Improvement on the hydraulic performance of centrifugal pumps by applying two-dimensional gap drainage blades

    Fig.8 (Color online) Traditional impeller and gap impeller[14]

    Fig.9 (Color online) Velocity surface[14] distribution on central stream

    Gap drainage blade is a newly-designed blade structure based on flow control theory[23-25]. Compared with a traditional impeller, a gap impeller was added with a vice blade overlapped with main blade and hold a narrow gap at the suction side of the leading edge of main blade, shown in Fig.8. The essential reason that gap drainage blades improve the hydraulic performance of centrifugal pumps is its improving of the distribution of velocity fields in the flow channel, so that the velocity field become more smooth and uniform shown as Fig.9.Gap impeller was designed with the vice blade at the leading edge deviating from original position and overlapping partly with main blade. On one hand, this would increase flow area to avoid the blocking effect at the inlet zone. On the other hand, due to the guiding flow function of vice blade, some fluid on the pressure surface would pass through the gap into the suction surface which makes the velocity field distribution more uniform in the flow channel.

    2.4.2 Improvement on the anti-cavitation performance mensional gap drainage blades

    The anti-cavitation performance of centrifugal pumps could be improved by applying the gap drainage blades. Under the characteristic flow rate and large flow rate conditions, the centrifugal pump with gap impeller had better anti-cavitation characteristics than the one with traditional impeller, illustrated in Fig.10 and Fig.11. On one hand, the vice blade at the leading edge of gap drainage impeller played a role in guiding flow and changed the attack angle of main blades, so that the flow separation at the leading edge of main blades would be inhibited, especially near the pressure under the large flow rate condition. On the other hand, high pressure fluid on the pressure surface would be guided through the gap into the suction surface, which compensated pressure to low pressure zones to some extent. At the same time, the fluid ejected from the gap would isolate the cavitation zone between main blades and vice blades, and have a disturbance to the cavitation regions that have been formed, which accelerated the cavity shedding and suppressed the formation of the large cavitation area to improve the cavitation performance. Obviously, the single blades of the traditional impeller cut off the ties between the fluids on the pressure surfaces and suction surfaces, so that the anti-cavitation mechanism above could be achieved. of vane centrifugal pumps by applying two-di-

    Fig.10 Comparison of the anti-cavitation between the two impellers[14]

    Fig.11 Vapor volume fraction distribution on the central plane[14]

    Fig.12 The layout of monitoring points of pressure pulsation

    Fig.13 The change curves of amplitude of pressure pulsation at different monitoring points along the circumferential di- rection of blades

    2.4.3 Improvement on dynamic characteristics of a vane centrifugal pump by applying two-dimen- sional gap drainage blades

    The author also carried out the researches about the pressure pulsation characteristics and related mechanism of centrifugal pumps with gap drainage blades. The gap drainage blades with the function of guiding flow improved the problem about the asymmetrical rate of inflow in different flow channels under characteristic to large flow rate conditions, which was leaded by non-uniform circumferential pressure in volute, and made the distribution of the flow and the relative velocity of the trailing edge of each pressure surface more uniform, so that the fundamental frequency pressure pulsation in the volute was radically improved. In addition, the unsteady flow problem caused by the excess flow rate of the individual flow channel was also weakened, and the amplitude of the fundamental frequency pressure pulsation was further reduced. Figures 12-14 respectively show the layout of monitoring points of pressure pulsation, amplitude of pressure pulsation at different positions, and the spectrum of pressure pulsation.

    Fig.14 Comparison of pressure pulsation spectrums in the volu- tes of two pumps

    Fig.15 (Color online) The three-dimensional model of two im- pellers

    2.4.4 Study on improving the performance of a vane centrifugal pump by applying three-dimensional gap drainage blades

    Based on the above researches, it was verified that the two-dimensional gap drainage blade structure could effectively improve the hydraulic performance and anti-cavitation performance of vane centrifugal pumps, and enhance the hydraulic dynamic characteristics to a certain extent. In order to introduce this technology into practical application, a new threedimensional gap drainage impeller was designed as shown in Fig.15.

    The experimental results showed that the new three-dimensional gap drainage impeller significantly improved the hydraulic performance, anti-cavitation performance and dynamic characteristics of the vane centrifugal pumps, which laid a solid foundation for introducing the gap drainage technology to the practical application.

    3. Conclusion

    (1) Based on the study of turbulence models,which is suitable for the internal flow characteristics of hydraulic machinery, the author effectively achieved the simulation of the internal flow and performance prediction of hydraulic machinery. This provides the basis for improving the performance of hydraulic machinery by applying flow control measures, and confirms that these methods are effective by a series of measures such as experiments, calculation and analysis.

    (2) In the aspect of controlling flow, the relationship between geometry and performance, anti- cavitation and pressure pulsation will be further studied and more effective flow control methods will be proposed to improve the performance of hydraulic machinery.

    (3) The relationship between pressure pulsation and vibration would be studied and the mechanism how internal flow induce the structure vibration,which provides the theoretical basis for restraining harmful vibration during the operation process of hydraulic machinery.

    [1] Paone N., Riethmuller M. L., Braembussche R. A. V. D.Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry [J]. Experiments in Fluids, 1989, 7(6):371-378.

    [2] Abramian M., Howard J. H. G. Experimental investigation of the steady and unsteady relative flow in a model centrifugal impeller passage [J]. Journal of Imaging Science and Technology, 1994, 116(2): 269-279.

    [3] Hasmatuchi V., Farhat M., Roth S. et al. Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode [J]. Journal of Fluids Engineering, 2011, 133(5): 051104.

    [4] Medvitz R. B., Kunz R. F., Boger D. A. et al. Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD [J]. Journal of Fluids Engineering,2002, 124(2): 377-383.

    [5] Huang B., Wang G. Y. Partially averaged Navier-Stokes method for time-dependent turbulent cavitating flows [J].Journal of Hydrodynamics, 2011, 23(1): 26-33.

    [6] Byskov R. K., Jacobsen C. B., Pedersen N. Flow in a centrifugal pump impeller at design and off-design conditions-Part II: Large eddy simulations [J]. Journal of Fluids Engineering, 2003, 125(1): 73-83.

    [7] Luo X., Zhang Y., Peng J. et al. Impeller inlet geometry effect on performance improvement for centrifugal pumps[J]. Journal of Mechanical Science and Technology, 2008,22(10): 1971-1976.

    [8] Shi Y., Xiao Z., Chen S. Constrained subgrid-scale stress model for large eddy simulation [J]. Physics of Fluids,2008, 20(1): 011701.

    [9] Zhang R., Mao F., Wu J. Z. et al. Characteristics and control of the draft-tube flow in part-load Francis turbine[J]. Journal of Fluids Engineering, 2009, 131(2): 021101.

    [10] Zhang W., Ma Z., Yu Y. C. et al. Validation and verification study of RANS simulation in centrifugal pump impeller: Design and off-design condition [J]. Chinese Journal of Hydrodynamics,2011, 28(1):73-74(in Chinese).

    [11] Zhang W. Analysis and prediction of the internal flow in the vane pump impeller at off-design condition [D].Doctoral Thesis, Shanghai, China: Shanghai University,2010(in Chinese).

    [12] Zhang R. Research on the stall and cavitation flow characteristics and the performance improvement of axial-flow pump [D]. Doctoral Thesis, Shanghai, China: Shanghai University, 2014(in Chinese).

    [13] Smirnov P. E., Menter F. R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term [J]. Journal of Turbomachinery, 2009, 131(4): 1-8.

    [14] Zhu B. Research on the mechanism of performance improving in low specific speed centrifugal pump with gap drainage blades [D]. Doctoral Thesis, Shanghai, China:Shanghai University, 2014(in Chinese).

    [15] Strelets M. Detached eddy simulation of massively separated flows [R]. AIAA paper 2001-0879, 2001.

    [16] Wei Q. Chen H. X., Ma Z. A hybrid RANS/LES model for simulation of complex turbulent flow [J]. Journal of Hydrodynamics, 2016, 28(5): 811-820.

    [17] Wei Q. Chen H. X., Ma Z. Numerical simulation of flow around airfoil with non-linear RANS model [C].ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. Seoul, Korea, 2015.

    [18] Champagne F. H., Harris V. G., Corrsin S. Experiments on nearly homogeneous turbulent shear flow [J]. Journal of Fluid Mechanics, 1970, 41(1): 81-139.

    [19] Tavoularis S., Corrsin S. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1 [J]. Journal of Fluid Mechanics, 1981, 178: 459-475.

    [20] Lee M. J., Kim J., Moin P. Structure of turbulence at high shear rate [J]. Journal of Fluid Mechanics, 2006, 216(4):561-583.

    [21] Rogers M. M., Moin P. The structure of the vorticity field in homogeneous turbulent shear flow [J]. Journal of Fluid Mechanics, 1987, 176: 33-66.

    [22] Kurokawa J., Imamura H., Choi Y. D. et al. Effect of J-Groove on the suppression of swirl flow in a conical diffuser [J]. Journal of Fluids Engineering, 2010, 132(7):1773-1780.

    [23] Chen H. X., Liu W. W., Jian W. et al. Development of low specific-speed centrifugal pump impellers based on flow control technique [J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(6): 466-470(in Chinese).

    [24] Chen H. X., Huo C. C., Liu W. M. Study on control of multi-element airfoil based on CFD [J]. Journal of Drainage and Irrigation Machinery Engineering, 2012,30(5): 513-516, 557(in Chinese).

    [25] Chen H. X., Lin Y. Z., Zhu B. Experimental study cavitation performance of centrifugal pump with impeller having leading edge slots [J]. Journal of Drainage and IrrigationMachinery Engineering, 2013, 31(7):570-574(in Chinese).

    August 1, 2017, Revised August 5, 2017)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51379120, 51179100 ).

    Biography: Hong-xun Chen (1962- ), Male, Ph. D., Professor

    猜你喜歡
    建武張睿劉超
    老吳的拉面館
    玩轉(zhuǎn)高考題
    Theoretical study of novel B-C-O compounds with non-diamond isoelectronic
    Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
    如夢(mèng)似幻
    金秋(2021年4期)2021-05-27 06:42:46
    征程萬(wàn)里,初心如一
    雷鋒(2021年12期)2021-04-12 00:57:22
    The dilemma and development of industrial design in contemporary life
    杜鵑黃化病的發(fā)生與防治
    Wechat, life in our Palm
    Design and experiment of the centrifugal pump impellers with twisted inlet vice blades *
    在线a可以看的网站| 欧美一区二区国产精品久久精品| 最近最新免费中文字幕在线| 成人鲁丝片一二三区免费| 窝窝影院91人妻| 变态另类成人亚洲欧美熟女| 精品人妻视频免费看| 十八禁网站免费在线| 一区二区三区免费毛片| 亚洲av电影不卡..在线观看| 久久久久久久久中文| 人妻夜夜爽99麻豆av| 亚洲综合色惰| 男人的好看免费观看在线视频| 亚洲久久久久久中文字幕| 亚洲,欧美,日韩| 波多野结衣高清无吗| 哪里可以看免费的av片| 亚洲国产色片| 中文字幕久久专区| 大型黄色视频在线免费观看| 中文字幕熟女人妻在线| 最新在线观看一区二区三区| 国产精品乱码一区二三区的特点| 少妇被粗大猛烈的视频| 毛片一级片免费看久久久久 | 91在线观看av| 精品人妻视频免费看| 国产精品女同一区二区软件 | 美女免费视频网站| 久久久久久久精品吃奶| 亚洲第一电影网av| 国内精品一区二区在线观看| 热99在线观看视频| 成人无遮挡网站| 中文字幕免费在线视频6| 搞女人的毛片| av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 亚洲人与动物交配视频| 中文资源天堂在线| 久久国产乱子免费精品| 欧美日韩乱码在线| 亚洲avbb在线观看| 麻豆成人av在线观看| 午夜a级毛片| 午夜亚洲福利在线播放| 精品日产1卡2卡| 内射极品少妇av片p| 国产精品福利在线免费观看| 日本爱情动作片www.在线观看 | 国产精品亚洲美女久久久| 午夜福利在线在线| 午夜亚洲福利在线播放| 欧美国产日韩亚洲一区| 欧美三级亚洲精品| 国国产精品蜜臀av免费| 国产日本99.免费观看| 午夜免费男女啪啪视频观看 | 嫩草影院精品99| aaaaa片日本免费| 久久久久久久久中文| 日韩欧美国产一区二区入口| 观看美女的网站| 国产亚洲欧美98| 搡老熟女国产l中国老女人| 亚洲精品一区av在线观看| 噜噜噜噜噜久久久久久91| 三级毛片av免费| 亚洲午夜理论影院| 久久人人精品亚洲av| 18禁在线播放成人免费| 精品午夜福利视频在线观看一区| 不卡视频在线观看欧美| 日本色播在线视频| 亚洲精华国产精华精| 精品人妻一区二区三区麻豆 | 亚洲av中文av极速乱 | av天堂中文字幕网| 美女高潮喷水抽搐中文字幕| 国产成人aa在线观看| 国产激情偷乱视频一区二区| 日韩欧美精品v在线| 日本免费a在线| 久久精品国产99精品国产亚洲性色| 国产成人一区二区在线| 色噜噜av男人的天堂激情| 成人午夜高清在线视频| 最近最新中文字幕大全电影3| 一级黄色大片毛片| 婷婷六月久久综合丁香| 国产精华一区二区三区| 日本一本二区三区精品| 欧美+亚洲+日韩+国产| 99九九线精品视频在线观看视频| 久久久国产成人精品二区| 伦精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 女人十人毛片免费观看3o分钟| 中出人妻视频一区二区| 免费人成在线观看视频色| 国产老妇女一区| 一a级毛片在线观看| 波多野结衣高清无吗| 男人舔奶头视频| 欧美+亚洲+日韩+国产| 久久精品夜夜夜夜夜久久蜜豆| 亚洲黑人精品在线| 亚洲欧美清纯卡通| 精品99又大又爽又粗少妇毛片 | 最新中文字幕久久久久| 久久久久久久久久黄片| 国产一区二区亚洲精品在线观看| 日韩强制内射视频| 亚洲熟妇熟女久久| 搡老妇女老女人老熟妇| 狂野欧美激情性xxxx在线观看| 久久人人爽人人爽人人片va| 亚洲av日韩精品久久久久久密| 天堂动漫精品| 久久久久久大精品| 如何舔出高潮| 人妻夜夜爽99麻豆av| 中文字幕熟女人妻在线| 又爽又黄a免费视频| 一个人看的www免费观看视频| 少妇丰满av| 午夜老司机福利剧场| 久久久久精品国产欧美久久久| 国产亚洲精品久久久久久毛片| 亚洲自偷自拍三级| 又爽又黄无遮挡网站| 少妇熟女aⅴ在线视频| 99热网站在线观看| 国产淫片久久久久久久久| 国产伦精品一区二区三区四那| 99久久久亚洲精品蜜臀av| 国国产精品蜜臀av免费| 日本三级黄在线观看| 亚洲中文字幕日韩| 黄色视频,在线免费观看| 精品99又大又爽又粗少妇毛片 | 久久久久性生活片| 久久香蕉精品热| 欧美一区二区国产精品久久精品| 亚洲不卡免费看| 在线天堂最新版资源| 99在线人妻在线中文字幕| 国产美女午夜福利| av天堂中文字幕网| 成人特级av手机在线观看| 欧美3d第一页| 中文亚洲av片在线观看爽| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器| 成人性生交大片免费视频hd| 亚洲乱码一区二区免费版| 88av欧美| 久久久久九九精品影院| 亚洲人成伊人成综合网2020| 99热6这里只有精品| 在线播放无遮挡| eeuss影院久久| 日韩高清综合在线| 色5月婷婷丁香| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人手机在线| 91在线观看av| 五月玫瑰六月丁香| 蜜桃亚洲精品一区二区三区| 麻豆久久精品国产亚洲av| 国产精品女同一区二区软件 | 婷婷色综合大香蕉| 99精品久久久久人妻精品| 国产精品不卡视频一区二区| 色吧在线观看| 成年免费大片在线观看| 动漫黄色视频在线观看| 天美传媒精品一区二区| 免费一级毛片在线播放高清视频| 久久这里只有精品中国| 成年免费大片在线观看| 国产高潮美女av| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站| 欧美一区二区精品小视频在线| 亚洲av一区综合| 在线播放国产精品三级| 日日啪夜夜撸| 午夜福利视频1000在线观看| 免费看光身美女| 日本精品一区二区三区蜜桃| 特大巨黑吊av在线直播| 欧美一区二区精品小视频在线| 欧美成人性av电影在线观看| 午夜免费男女啪啪视频观看 | 久久久久国内视频| 国产成人一区二区在线| 国产一区二区在线av高清观看| 免费看日本二区| 国产极品精品免费视频能看的| 舔av片在线| 日本在线视频免费播放| 2021天堂中文幕一二区在线观| 久久午夜福利片| 免费观看精品视频网站| 久久精品国产清高在天天线| 一级av片app| 国产熟女欧美一区二区| 超碰av人人做人人爽久久| 精品人妻一区二区三区麻豆 | 他把我摸到了高潮在线观看| 成人鲁丝片一二三区免费| 成年女人看的毛片在线观看| 99国产精品一区二区蜜桃av| 国产亚洲精品综合一区在线观看| 88av欧美| 亚洲第一电影网av| eeuss影院久久| 熟女人妻精品中文字幕| 久久香蕉精品热| 少妇裸体淫交视频免费看高清| 一本精品99久久精品77| 18禁黄网站禁片免费观看直播| 午夜福利视频1000在线观看| 黄色日韩在线| 免费观看人在逋| 国产 一区 欧美 日韩| 亚洲国产高清在线一区二区三| 亚洲综合色惰| 最近中文字幕高清免费大全6 | 亚洲在线观看片| 少妇熟女aⅴ在线视频| 亚洲国产高清在线一区二区三| 少妇人妻一区二区三区视频| 亚洲av日韩精品久久久久久密| 成人av在线播放网站| av黄色大香蕉| .国产精品久久| 亚洲欧美日韩无卡精品| 国产精品精品国产色婷婷| 久久午夜亚洲精品久久| 免费人成在线观看视频色| 亚洲性久久影院| 午夜福利18| 男人和女人高潮做爰伦理| 不卡视频在线观看欧美| 极品教师在线免费播放| 赤兔流量卡办理| 色综合亚洲欧美另类图片| 国产视频内射| 久久精品91蜜桃| 校园人妻丝袜中文字幕| 看黄色毛片网站| 男人狂女人下面高潮的视频| 久久人妻av系列| 国产 一区精品| 别揉我奶头~嗯~啊~动态视频| 日韩精品中文字幕看吧| 国产黄色小视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产不卡一卡二| 国产麻豆成人av免费视频| 全区人妻精品视频| 性插视频无遮挡在线免费观看| 窝窝影院91人妻| 亚洲综合色惰| 亚洲avbb在线观看| 欧美日韩精品成人综合77777| bbb黄色大片| 亚洲电影在线观看av| 日韩av在线大香蕉| 又黄又爽又免费观看的视频| 欧美一区二区亚洲| 亚洲国产日韩欧美精品在线观看| 成人特级av手机在线观看| 亚洲人成网站高清观看| 亚洲综合色惰| 特大巨黑吊av在线直播| 日本色播在线视频| 久久精品国产99精品国产亚洲性色| 日本免费一区二区三区高清不卡| 亚洲四区av| 99久久九九国产精品国产免费| 99九九线精品视频在线观看视频| 国产精品人妻久久久久久| 国产精品国产三级国产av玫瑰| 老司机午夜福利在线观看视频| 22中文网久久字幕| 1024手机看黄色片| 成年女人看的毛片在线观看| 男人的好看免费观看在线视频| 少妇高潮的动态图| 最近中文字幕高清免费大全6 | 国产精品一区二区三区四区久久| 黄色丝袜av网址大全| 村上凉子中文字幕在线| 免费在线观看成人毛片| 婷婷精品国产亚洲av在线| 男人和女人高潮做爰伦理| 国产高清不卡午夜福利| 欧美成人一区二区免费高清观看| 免费av不卡在线播放| 最近视频中文字幕2019在线8| 精品国内亚洲2022精品成人| 天堂√8在线中文| av黄色大香蕉| 日日撸夜夜添| 精品日产1卡2卡| 亚洲美女黄片视频| 麻豆精品久久久久久蜜桃| 国产免费一级a男人的天堂| 日本 欧美在线| 欧美绝顶高潮抽搐喷水| 免费看美女性在线毛片视频| 亚洲性久久影院| 露出奶头的视频| 人妻丰满熟妇av一区二区三区| 九九久久精品国产亚洲av麻豆| 久久精品国产99精品国产亚洲性色| 人人妻,人人澡人人爽秒播| 真人一进一出gif抽搐免费| .国产精品久久| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| 欧美性猛交╳xxx乱大交人| 波多野结衣巨乳人妻| 国产国拍精品亚洲av在线观看| 又爽又黄a免费视频| 日本 av在线| 国产单亲对白刺激| 精品人妻视频免费看| 亚洲成a人片在线一区二区| 22中文网久久字幕| 中文字幕精品亚洲无线码一区| 久久久久久九九精品二区国产| 美女cb高潮喷水在线观看| 麻豆成人av在线观看| 嫩草影院入口| 亚洲经典国产精华液单| 欧美黑人巨大hd| 日韩,欧美,国产一区二区三区 | 国产极品精品免费视频能看的| 午夜老司机福利剧场| 国产精品1区2区在线观看.| 日日干狠狠操夜夜爽| 欧美日韩国产亚洲二区| 我要搜黄色片| 内射极品少妇av片p| 超碰av人人做人人爽久久| 欧美日本视频| 中文亚洲av片在线观看爽| videossex国产| 免费av不卡在线播放| 亚洲五月天丁香| 婷婷亚洲欧美| videossex国产| 变态另类成人亚洲欧美熟女| 桃红色精品国产亚洲av| 精品一区二区三区人妻视频| 久99久视频精品免费| 国产高潮美女av| 简卡轻食公司| 神马国产精品三级电影在线观看| 国产麻豆成人av免费视频| 中文字幕av成人在线电影| 一进一出抽搐动态| 婷婷精品国产亚洲av在线| 99热6这里只有精品| 波多野结衣高清无吗| 国产中年淑女户外野战色| 波多野结衣高清无吗| 韩国av在线不卡| 又粗又爽又猛毛片免费看| 简卡轻食公司| 精品人妻1区二区| 亚洲成a人片在线一区二区| 国产三级在线视频| 精品日产1卡2卡| 男女下面进入的视频免费午夜| 国产男靠女视频免费网站| 日日干狠狠操夜夜爽| 欧美日韩瑟瑟在线播放| 91久久精品国产一区二区成人| 欧美精品啪啪一区二区三区| 亚洲精品影视一区二区三区av| 欧美日韩瑟瑟在线播放| 国模一区二区三区四区视频| 亚洲中文字幕一区二区三区有码在线看| 日本欧美国产在线视频| 人妻夜夜爽99麻豆av| 人妻少妇偷人精品九色| 男女啪啪激烈高潮av片| 日本黄色片子视频| 男女下面进入的视频免费午夜| 亚洲不卡免费看| 一进一出好大好爽视频| 男女那种视频在线观看| 亚洲av美国av| 午夜视频国产福利| 九九热线精品视视频播放| 成人综合一区亚洲| 国产精品久久久久久精品电影| 级片在线观看| 色综合亚洲欧美另类图片| 国产aⅴ精品一区二区三区波| 国产成年人精品一区二区| 国产探花在线观看一区二区| 91久久精品国产一区二区三区| 看黄色毛片网站| 美女xxoo啪啪120秒动态图| 欧美日韩国产亚洲二区| 夜夜爽天天搞| 欧美日韩综合久久久久久 | 亚洲va日本ⅴa欧美va伊人久久| 日本免费a在线| 久久久久国产精品人妻aⅴ院| 久久6这里有精品| 亚洲专区国产一区二区| 1024手机看黄色片| 人人妻,人人澡人人爽秒播| 欧美中文日本在线观看视频| 婷婷六月久久综合丁香| 国内精品久久久久精免费| 琪琪午夜伦伦电影理论片6080| 国产精品不卡视频一区二区| 亚洲欧美日韩卡通动漫| 小说图片视频综合网站| 在线免费十八禁| 久久精品人妻少妇| 干丝袜人妻中文字幕| 少妇丰满av| 中文字幕人妻熟人妻熟丝袜美| 丰满人妻一区二区三区视频av| 人妻丰满熟妇av一区二区三区| 久久精品综合一区二区三区| 国产伦一二天堂av在线观看| 91在线精品国自产拍蜜月| 变态另类成人亚洲欧美熟女| 国产淫片久久久久久久久| 日日啪夜夜撸| 亚洲avbb在线观看| 亚洲av免费在线观看| 日日摸夜夜添夜夜添小说| 欧美性感艳星| 老熟妇乱子伦视频在线观看| 成年人黄色毛片网站| 亚洲精品亚洲一区二区| 国产单亲对白刺激| 一进一出好大好爽视频| 天堂av国产一区二区熟女人妻| 精品久久久久久久久av| 日本一本二区三区精品| 国产精品一区二区三区四区久久| 日韩在线高清观看一区二区三区 | 国产69精品久久久久777片| 日本与韩国留学比较| 两人在一起打扑克的视频| 18禁黄网站禁片免费观看直播| 精品久久久久久久久久久久久| 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 久久久久久久午夜电影| 久久久久国产精品人妻aⅴ院| 国产成人影院久久av| 91久久精品电影网| 性欧美人与动物交配| 99久久精品热视频| 国产av麻豆久久久久久久| 国产精品自产拍在线观看55亚洲| 人妻制服诱惑在线中文字幕| 午夜福利视频1000在线观看| av天堂在线播放| 免费黄网站久久成人精品| 日本精品一区二区三区蜜桃| av在线亚洲专区| 91久久精品国产一区二区成人| av.在线天堂| 一级黄片播放器| 国产不卡一卡二| 国产精品一区二区免费欧美| a级毛片免费高清观看在线播放| 欧美人与善性xxx| 久久久久国内视频| 国产三级中文精品| 亚洲av电影不卡..在线观看| 十八禁网站免费在线| av在线亚洲专区| 欧美xxxx黑人xx丫x性爽| 我的老师免费观看完整版| 麻豆av噜噜一区二区三区| 一区福利在线观看| 日日夜夜操网爽| 深爱激情五月婷婷| 九九在线视频观看精品| 国产美女午夜福利| 国内揄拍国产精品人妻在线| 99精品在免费线老司机午夜| 日日干狠狠操夜夜爽| 久久精品91蜜桃| 97超级碰碰碰精品色视频在线观看| 婷婷六月久久综合丁香| 真人做人爱边吃奶动态| 一个人观看的视频www高清免费观看| 亚洲一区二区三区色噜噜| 亚洲一区高清亚洲精品| 香蕉av资源在线| 午夜免费男女啪啪视频观看 | 国产精品永久免费网站| 床上黄色一级片| 日韩,欧美,国产一区二区三区 | 日本与韩国留学比较| 99久久成人亚洲精品观看| 欧美一区二区国产精品久久精品| 伦理电影大哥的女人| 男人和女人高潮做爰伦理| 国产一区二区三区av在线 | 亚洲精品乱码久久久v下载方式| 国产av不卡久久| 亚洲最大成人中文| 99在线视频只有这里精品首页| 国产 一区精品| 国产成人a区在线观看| 一级毛片久久久久久久久女| 女同久久另类99精品国产91| 在线免费观看不下载黄p国产 | 天堂av国产一区二区熟女人妻| 欧美激情在线99| 国内精品美女久久久久久| 男人狂女人下面高潮的视频| 波多野结衣高清作品| 亚洲va日本ⅴa欧美va伊人久久| 国内精品宾馆在线| 无遮挡黄片免费观看| 国产高清三级在线| 校园人妻丝袜中文字幕| 人妻夜夜爽99麻豆av| 婷婷丁香在线五月| 国产黄a三级三级三级人| 久久精品国产亚洲av涩爱 | 97热精品久久久久久| 日韩一本色道免费dvd| 欧美国产日韩亚洲一区| 舔av片在线| 国产精品久久久久久久电影| 免费看av在线观看网站| 97超视频在线观看视频| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久av不卡| 国产视频一区二区在线看| 啪啪无遮挡十八禁网站| www.www免费av| 亚洲av二区三区四区| 97热精品久久久久久| 日本黄色视频三级网站网址| 能在线免费观看的黄片| 午夜影院日韩av| 欧洲精品卡2卡3卡4卡5卡区| 久久中文看片网| 小蜜桃在线观看免费完整版高清| 极品教师在线免费播放| 免费无遮挡裸体视频| 日韩强制内射视频| 亚洲国产精品合色在线| 日本a在线网址| 婷婷亚洲欧美| 国产亚洲精品久久久com| 男人舔奶头视频| 成人亚洲精品av一区二区| 亚州av有码| 中文字幕久久专区| 舔av片在线| 白带黄色成豆腐渣| videossex国产| .国产精品久久| 麻豆国产av国片精品| 日本免费一区二区三区高清不卡| 免费看av在线观看网站| www.色视频.com| 国产在线男女| 午夜亚洲福利在线播放| 婷婷精品国产亚洲av| 成年人黄色毛片网站| 日韩人妻高清精品专区| 很黄的视频免费| 国产一区二区在线观看日韩| 色av中文字幕| 日韩欧美一区二区三区在线观看| 国产在线精品亚洲第一网站| 亚洲av日韩精品久久久久久密| 久久久久久久久久成人| 日本爱情动作片www.在线观看 | 欧美绝顶高潮抽搐喷水| 日本 欧美在线| 日本黄大片高清| aaaaa片日本免费| 午夜福利欧美成人| 国产精品一区二区免费欧美| 欧美性猛交黑人性爽| 亚洲国产精品合色在线| 男人的好看免费观看在线视频| 久久热精品热| 91精品国产九色| 国产精品免费一区二区三区在线| 欧美最黄视频在线播放免费| 我要搜黄色片| 在线a可以看的网站| 亚洲成人久久爱视频| 日本色播在线视频| 国产色爽女视频免费观看| 狂野欧美激情性xxxx在线观看| 亚洲国产精品合色在线| 久久九九热精品免费| 日韩欧美国产一区二区入口| 级片在线观看|