• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Al含量對(duì)AB5型儲(chǔ)氫合金電極低溫和高倍率性能的影響

    2017-11-01 10:22:42湯爭(zhēng)耀周萬(wàn)海吳朝玲黃利武陳云貴
    關(guān)鍵詞:高倍率儲(chǔ)氫陳云

    湯爭(zhēng)耀 周萬(wàn)海 朱 丁 吳朝玲 黃利武 劉 昆 陳云貴*,

    Al含量對(duì)AB5型儲(chǔ)氫合金電極低溫和高倍率性能的影響

    湯爭(zhēng)耀1周萬(wàn)海1朱 丁2吳朝玲1黃利武1劉 昆1陳云貴*,1

    (1四川大學(xué)材料科學(xué)與工程學(xué)院,成都 610065)
    (2四川大學(xué)新能源與低碳技術(shù)研究院,成都 610065)

    系統(tǒng)地研究了Al含量對(duì)富Ce儲(chǔ)氫合金MmNi4-xCo0.7Mn0.3Alx(x=0,0.1,0.2,0.3)電極綜合電化學(xué)性能,尤其是對(duì)低溫和高倍率性能的影響。在常溫下,儲(chǔ)氫合金電極放電容量和循環(huán)性能均隨著Al含量的增加而增加,而高倍率放電性能?chē)?yán)重下降。-20℃時(shí),放電容量仍隨著Al含量的增加而增加,但在-40℃下放電容量隨之嚴(yán)重衰退。電化學(xué)動(dòng)力學(xué)結(jié)果表明,常溫下高Al合金高倍率性能的降低主要是由于電極表面電荷轉(zhuǎn)移過(guò)程的惡化;低溫-40℃下,Al同時(shí)降低了合金電極的表面電催化活性以及體相H擴(kuò)散能力,嚴(yán)重惡化電極過(guò)程動(dòng)力學(xué),從而導(dǎo)致了高Al合金極低的容量及電壓輸出??紤]到各電極的綜合電化學(xué)性能,MmNi3.8Co0.7Mn0.3Al0.2為最佳的成分配比。

    AB5型儲(chǔ)氫合金;低溫電化學(xué)性能;Al替代;鎳氫電池;電化學(xué)動(dòng)力學(xué)

    0 Introduction

    Nowadays,in order to cope with global warming and air pollution,as well as the growing needs of mobile or stationary power supplies for portable electronics,electric vehicles and power grids,the development of rechargeable batteries has caught wide attentions to researchers.Nickel/metal hydride(Ni/MH)batteries have evolved quickly as popular energy storage systems,particularly in the high-power market,such as portable power tools,hybrid electric vehicles(HEV).As of January 2017,global hybrid sales are led by the Prius family,with cumulative sales of 6.036 1 million units(excluding plug-in hybrids)representing 60%of the10 million hybrids sold worldwide by Toyota and Lexus[1].Ni/MH battery dominates HEV applications through a combination of desirable performance attributes such as high energy and power,an excellent range of operating temperatures,and low cost.In the last three decades,Ni/MH batteries have achieved great progress in the limits of the low self-discharge[2-3],long life cycle[4-5],low cost[6-7],high energy[8-9],and wide temperature performance[10-11].For practical applications,especially in HEV,modern military electronic devices,space applications and gelid areas,it is necessary for Ni/MH batteries to work satisfactorily at the temperature down to-40℃[12-13].MH electrode alloy,as the key material in Ni/MH battery generally becomes to the main limits of the batterys charge/discharge behavior at lower temperatures,because of the severe deterioration in electrochemical kinetics.

    Generally,the electrochemical kinetics of the MH electrode mainly contains two aspects:the chargetransfer process on the alloy surface and the hydrogen diffusion process in the bulk of the alloy[14-16].The charge-transfer process is generally related to the surface state of the electrode.By now,various feasible economical approaches,such as electrolyte adjustment[16-17],nano-nickel powder additives[18]and duplex surface hot-alkali treatments[19],have been employed to accelerate charge transfer process.Meanwhile,multialloying of the alloys[11,20-24]is normally regarded as an efficient approach to adjust both the inherent thermodynamic stability and electrochemical kinetics.Al is regarded as an essential element of the hydrogen storage alloy for commercial Ni/MH battery,due to its good thermodynamic property,excellent corrosion resistance at room temperature[25].And the amount of Al substitution is generally controlled in the range of 0.1~0.3.However,the electrochemical kinetics of the alloy electrode will be impeded by the formation of the Al oxide film on the metal hydride surface[26].This may make the low-temperature and high-rate dischargeability of MH electrode severely deteriorate.Therefore,the adjustment of the Al content is critical to the optimization of the low-temperature and highrate performance of the MH electrode.

    Based on above,the Ce-rich mischmetal was employed to ensure the thermodynamic stability of the low-temperature hydrogen storage alloy.MmNi4-xCo0.7Mn0.3Alx(x=0,0.1,0.2,0.3;Mm:Ce-rich mischmetal,consisting of Ce,La and Pr)alloys were designed to optimize low-temperature and high-rate performance of the electrode.The effects of Al content on the comprehensive electrochemical performance,particularly the low-temperature and high-rate capacity were systematically studied.

    1 Experimental

    The active material MmNi4-xCo0.7Mn0.3Alx(x=0,0.1,0.2,0.3)alloys were prepared by arc melting technology.The purity of all the starting elemental metals in this experiment was over 99.5%(w/w).The samples were arc-melted into button-shaped ingots under argon atmosphere and re-melted for four times to ensure compositional homogeneity.Part of the as-cast ingot were mechanically crushed and ground into powders.Alloy powders with a dimension of 200-mesh(<75 mm)were used for electrochemical tests,and those with a size of 400-mesh (<38 mm)were used for X-ray diffractometer (XRD)analysis.Crystallographic characteristics of the alloys were examined by XRD(DX-2600 equipment with Cu Kαradiation at a sweep rate of 0.04°·s-1,λ=0.015 418 nm,U=35 kV,I=25 mA,2θ=20°~80°).

    Each metal hydride electrode was prepared by cold-pressing the mixture of 0.12 g of alloy powder with 0.36 g of nickel powder(T255,CAN.INCO)into a pellet(d=10 mm,h=1 mm)under a pressure of 65 MPa.Electrochemical measurements were performed in a half-cell consisting of the metal hydride working electrode,a sintered Ni(OH)2/NiOOH counter electrode and a Hg/HgO reference electrode immersed in 6 mol·L-1KOH electrolyte.Each electrode was fully activated at room temperature with a 0.2C(60 mA·g-1)charge/discharge current density.The discharge cutoff potential of the electrode was-0.6 V(vs Hg/HgO),except when the temperature reached-40℃,or the discharge rate was above 5C (1 500 mA·g-1),it was-0.55 V(vs Hg/HgO).For the low-temperature electrochemical measurements,electrodes were charged under 0.2C at room temperature and sustain for 7 h and then discharged at-20 and-40℃with 0.2C,respectively,after keeping the testing system at a constant temperature for 4 h by using a lowtemperature equipment(DWB 202).

    Electrochemical impedance spectra (EIS)were measured using a sine perturbation signal of 5 mV in the frequency range of 10 kHz~5 mHz.Exchange current density(I0)was measured by linear polarization(LP)curves,scanning electrode potential at the rate of 0.1 mV·s-1from-5 to 5 mV.Prior to all of the electrochemical kinetics analysis(performed by Parstat-2273 electrochemical potentiostat),the electrodes were discharged to 50%depth of discharge(50%DOD)and then rest for 2 h.Hydrogen diffusion coefficient(D)was estimated by the constant potential step (CPS)method,and the test electrodes were discharged at a constant potential of E=-0.6 V(vs Hg/HgO)for 3 600 s after 100%charge state.

    2 Results and discussion

    2.1 Microstructure

    Details of the effects of Al on the crystal structure characteristics of the AB5-type hydrogen storage have been previously reported[25-28].Here,a revisiting of XRD test is necessary to ensure the basic phase composition,and the actual measured XRD patterns and lattice parameters of the alloys are shown in Fig.1 and Table 1,respectively.As shown in Fig.1,the diffraction peaks of all the alloys are completely appointed to those of LaNi5phase with a hexagonal CaCu5crystal structure.The lattice constant a and c increase with the increase of Al content,and correspondingly leads to the increase of unit-cell volume.The reason is that the metallic radius of Al(0.143 nm)is litter larger than that of Ni(0.124 nm).In addition,the anisotropy(ratios of c/a)increases via Al substituting,which means higher cycle stability for the high-Al alloy according to our previous work[26].All of the results have a good consistency with reports elsewhere[25-29].

    Fig.1 XRD patterns of the MmNi4-x Co0.7Mn0.3Al x(x=0,0.1,0.2,0.3)hydrogen storage alloys

    Table 1 Lattice parameters of MmNi4-x Co0.7Mn0.3Al x(x=0,0.1,0.2,0.3)

    2.2 Electrochemical performance

    2.2.1 Room-temperature electrochemical behavior

    The room-temperature electrochemical properties of the MmNi4.0-xCo0.7Mn0.3Alx(x=0,0.1,0.2,0.3)alloys are shown in Table 2.All the alloy electrodes can be fully activated within 3 times at room temperature.The maximum discharge capacity at both 0.2 and 1C increases with the increase of Al content.This is inconsistent with the results of previous work[25-26].Here,the Ce-rich AB5-type alloys which possess lower thermodynamic stability are used for electrode material.The poor thermodynamic stability make the Al-free alloy hardly hydrogenate,and the charge potential prematurely reaches the hydrogen evolution reaction (HER)potential (EHER),leading to a poor charge acceptance ability.Fig.2a and 2b illustrate the charge and discharge curves of the electrodes at 20℃with 0.2C.The potential of the x=0 electrode polarizes to its maximum value rapidly,and it is hard to distinguish the hydride formation reaction (HFR)plateau and HER plateau.According to our previous work[25],The potential difference(EHER-Emid,c,Emid,cis the middle charge plateau potential)between the HFR plateau and HER plateau can be used to evaluate the charge acceptance ability.As shown in Fig.2c,the EHER-Emid,cvalue increases gradually with the increase of Al content,correspondingly leads to an improved discharge capacity.In addition,the value of Emid,c-Emid,d(Emid,dis the middle discharge plateau potential)can be used to evaluate the charge/discharge polarization of the electrode[30].As shown in Fig.2c,the Emid,c-Emid,dvalues increase from 0.051 1 V for x=0 alloy to 0.083 7 V for x=0.3 alloy.This is in good agreement with previous report that charge/discharge polarization increases with the increase of Al content due to the oxide film formed by Al[26].

    Fig.3 shows the high-rate dischargeability(HRD)of the MmNi4-xCo0.7Mn0.3Alx(x=0,0.1,0.2,0.3)alloys at room temperature,and the HRD value can be calculated from the following equation:

    Fig.2 Charge curves(a),discharge curves(b)and middle charge/discharge plateau potential and hydrogen evolution reaction potential(c)at 20℃

    Table 2 Electrochemical properties of MmNi4-x Co0.7Mn0.3Al x(x=0,0.1,0.2,0.3)

    Fig.3 High-rate discharge capacity of MmNi4.0-x Co0.7Mn0.3Al x(x=0,0.1,0.2,0.3)alloy electrodes at 20℃

    Where C60denotes the discharge capacity at the discharge current density of 60 mA·g-1,and Cddenotes the discharge capacity at the current density of 60,300,600,900,1 500 and 3 000 mA·g-1.It is interesting that the x=0 and x=0.1 alloys possess higher discharge capacity at 1C than that at 0.2C.This is related to the higher hydrogen desorption plateau pressure in Ce-rich-based alloys,leading to poor thermodynamic stability in MmNi4.0-xCo0.7Mn0.3Alx(x=0,0.1,0.2,0.3)alloys.This makes the x=0 and x=0.1 electrodes have spontaneous escape hydrogen tendency,causing a reversible loss of capacity.At 1C,the electrode discharge time is shorter,reducing the loss of self-discharge capacity.With the current density increases gradually,the discharge capacity of each alloy declines.Although the high-rate discharge capacity of high-Al alloy is higher than that of low-Al alloy,the HRD value decreases with the increase of Al content.When discharged at 5C,the discharge capacity of x=0.3 alloy is 162.0 mAh·g-1,significantly higher than 136.7 mAh·g-1of x=0 alloy.But the value of HRD1500decreases from 76.3% (x=0)to 52.9 (x=0.3).Particularly at 10C,the high-Al(x=0.3)alloy barely discharges,and the HRD3000is only 9.96%.

    2.2.2 Low-temperature performance

    Fig.4 shows the discharge curves of the MmNi4-xCo0.7Mn0.3Alx(x=0,0.1,0.2,0.3)alloy electrodes at-20 and-40℃.It can be seen from the Fig.4a that the change trend of the discharge capacity at-20℃is consistent with that at the room temperature,i.e.,the discharge capacity of the electrode increases with the increase of Al content.However,it is different when thetemperature dropsdown to-40℃.Thereis asevere decline of discharge capacity for the high-Al alloy.The x=0.3 alloy only can contribute a discharge capacity of 28.1 mAh·g-1.Thus the discharge capacity decreases from 114.8 mAh·g-1(x=0)to 28.1 mAh·g-1(x=0.3).Here,the low-temperature dischargeability(LTD),which is an important reference index for lowtemperature battery,is employed to evaluate the lowtemperature performance.It can be expressed by the following formula:

    Fig.4 Discharge characteristics of MmNi4-x Co0.7Mn0.3Al x(x=0,0.1,0.2,0.3)at-20℃(a)and-40℃(b)

    Where C20and C-40represent the discharge capacity at the discharge current density of 60 mA·g-1at 20 and-40℃,respectively.As shown in Table 2,the values of LTD-40decreasefrom64.1%for Al-free alloy to 9.2%for x=0.3 alloy.This indicates that the decrease of Al content is beneficial to improve the low-temperature performance of the alloy.In addition,as shown in Fig.4b,there is a remarkable drop for the discharge plateau potential.The decrease of discharge potential is expected because the decreased temperature contributes to a drop in the hydrogen desorption plateau in gas-solid reactions.And the strong polarization turns to the limiting factor at lower temperatures based on the previous study[19,30].The discharge potential decreases obviously with the increase of Al content,it decreases from 0.738 1 V for the Al-free alloy to 0.617 1 V for the x=0.3 alloy.Therefore,the low-Al design is conducive to reducing the electrode polarization,improving the low-temperature performance of the alloy.

    2.3 Electrochemical kinetics

    The discharge ability of the electrode severely decays at extreme low temperatures and high rate,which is attributed to the following polarization:(1)resistance polarization due to the increase in the internal resistance(the electrolyte resistance and oxide film impedance);(2)electrochemical polarization due to the increase in the faradaic impedance(the chargetransfer resistance and the hydrogen diffusion impedance);and(3)concentration polarization due to microarea consumption of the electrolyte.Here,the alloy electrodes were measured in a liquid-rich half-cell with 6 mol·L-1KOH solutions to relieve the concentration polarization,and the electrochemical polarization is intensively discussed in this work.

    EIS measurement is an effective approach to study the electrode kinetics as well as the reaction mechanism of the MH electrode.A novel explanation of EIS response in metal hydride electrodes was demonstrated by Yang et al.[21]to study polarization at low temperature.It found out that the bulk resistance(Rb)of the cell increases seriously at low temperatures,which accounts for the internal resistance increase and subsequently stronger ohm polarization;and the charge-transfer process at the alloy electrolyte interface is limited seriously at extremely low temperatures.Fig.5 presents the Nyquist plots of MmNi4-xCo0.7Mn0.3Alx(x=0,0.1,0.2,0.3)alloy electrodes at 20,-20 and-40℃,respectively.The proposed model of the equivalent circuit using the circuit description code(CDC)[21]is shown in Fig.5a,where Rbis the bulk resistance,which is composed of the resistance of the separator,electrode,electrolyte as well as the contact resistance;Coland Rolare the oxide layer capacitance and resistance,respectively;Cdlis the double layer capacitance; Rctrepresents the charge transfer resistance and Zwdenotes the Warburg diffusion impedance due to the diffusion of hydrogen.ZSimpWin 3.21 software was used to fit the experimental data using this CDC,and the results are shown in Table 3 and Fig.5.The Rctvalues increase with the decrease of temperature.Using the x=0.3 alloy as an example,the Rctincreases from 1.05Ωat 20℃to 21.51Ωat-40℃.Yet again,the rise of Rctproved that the charge transfer process on the alloy surface is greatly limited at extremely low temperature,which leads to the poor LTD.In addition,the Rctvalues gradually increase with the increase of Al content at 20℃and-40℃.This can be attributed to the accumulation of the oxidation layer via partial Alsubstitution,and consequently causes the stronger polarization.

    Table 3 Kinetics parameters of electrodes at 20,-20 and-40℃

    Fig.5 Nyquist plots of the alloy electrodes after activated:(a)at 20℃,(b)at-20℃,(c)at-40℃

    Conventionally,the exchange current density(I0)which is another method that can be used to study the charge transfer process and the bulk hydrogen diffusion coefficient(D)are used to study the source of LTD and high-rate output change.Details of their computing method can be found in our previous work[19].The I0and D values are presented in Table 3.Obviously,I0severely decreases with a decrease in the temperature and the increase of Al content,which is in accordance with the change of Rct,HRD and LTD.Therefore,Al has adverse effect on the surface charge transfer process,consequently leads to the decline in HRD and LTD.In addition,the D values sharply decline at-40℃with the increase of Al content.And the D value of the x=0.3 alloy is only 1.12.This may be related to the low concentration gradient of hydrogen in high-Al alloy.The charge transfer process of the high-Al alloy is limited,leading to barely discharge at-40℃.Consequently,the slight difference in the concentration of hydrogen between the surface and the bulk of alloy seems to offer relatively lower driving force for the diffusion of hydrogen.Therefore,we can confirm that both the hydrogen diffusion in the bulk and the charge transfer process on the alloy electrolyte interface are limited seriously at extremely low temperatures.Increasing the Al content reduces both I0and D at extremely low temperatures and consequently cuts down the LTD.

    3 Conclusions

    In summary,the following conclusions can be drawn:

    With the raise of charge acceptance ability and anti-corrosion property via Al substitution,the discharge capacity and cycling stability increase at room temperature.However,Al adversely affects the surface charge transfer process,increasing the content of Al reduces I0,and increases Rct,consequently leads to the decline in HRD.When the temperature drops down to-40℃,Al adversely affects both the surface catalytic ability and the bulk hydrogen diffusion ability,leading to the severe drop of discharge capacity and potential of the high-Al alloy.Based on the comprehensive electrochemical properties of the electrodes at various temperatures,an optimum alloy electrode is obtained when x=0.2.

    [1]https://en.wikipedia.org/wiki/Hybrid_electric_vehicle

    [2]Young K,Nei J.Materials,2013,6:4574-4608

    [3]Kong L,Chen B,Young K,et al.J.Power Sources,2012,213:128-139

    [4]Liu Y,Pan H,Gao M,et al.J.Mater.Chem.,2011,21:4743-4755

    [5]Young K,Wong D F,Wang L,et al.J.Power Sources,2015,277:426-432

    [6]Sun J,Fan Y,Liu B,et al.J.Alloys Compd.,2015,641:148-154

    [7]Wei X,Liu S,Dong H,et al.Electrochim.Acta,2007,52:2423-2428

    [8]Young K,Ouchi T,Lin X,et al.J.Alloys Compd.,2016,655:50-59

    [9]Li M H,Zhu Y F,Yang C,et al.Int.J.Hydrogen Energy,2015,40:13949-13956

    [10]Yao Q,Zhou H,Wang Z,et al.J.Alloys Compd.,2014,606:81-85

    [11]Balogun M S,Wang ZM,Zhang H G,et al.J.Alloys Compd.,2013,579:438-443

    [12]Erbacher JK.J.Power Sources,1999,80:265-271

    [13]Ye H,Xia B,Wu W,et al.J.Power Sources,2002,111:145-151

    [14]Senoh H,Hara Y,Inoue H,et al.Electrochim.Acta,2001,46:967-971

    [15]TAO Ming-Da(陶明大),CHEN Yun-Gui(陳云貴),WU Chao-Ling(吳朝玲),et al.J.Rare Earths(稀土學(xué)報(bào)),2004,22:882-886

    [16]ZHANG Xiao-Yan(張曉燕),CHEN Yun-Gui(陳云貴),TAO Ming-Dao(陶明大),et al.J.Rare Earths(稀土學(xué)報(bào)),2008,26:402-405

    [17]Shen X,Chen Y G,Tao M D,et al.Electrochim.Acta,2009,54:2581-2587

    [18]Ma Z W,Zhou W H,Wu C L,et al.J.Alloys Compd.,2016,660:289-296

    [19]Zhou WH,Tang ZY,Zhu D,et al.J.Alloys Compd.,2016,692:364-374

    [20]LI Rong(李蓉),WU Jian-Min(吳建民),ZHOU Shao-Xiong(周少雄),et al.J.Rare Earths(稀土學(xué)報(bào)),2006,24:341-345

    [21]Yang H,Chen Y G,Tao M D,et al.Electrochim.Acta,2010,55:648-655

    [22]Young K,Ouchi T,Reichman B,et al.J.Alloys Compd.,2011,509:3995-4001

    [23]Young K,Ouchi T,Reichman B,et al.J.Alloys Compd.,2011,509:7611-7617

    [24]Shen X,Chen Y G,Tao M D,et al.Int.J.Hydrogen Energy,2009,34:2661-2669

    [25]Zhou WH,Ma Z W,Wu CL,et al.Int.J.Hydrogen Energy,2015,40:10200-10210

    [26]Zhou WH,Ma ZW,Wu CL,et al.Int.J.Hydrogen Energy,2016,41:1801-1810

    [27]Yang X G,Liaw B Y.J.Power Sources,2001,102:186-197

    [28]Bliznakov S,Lefterova E,Dimitrov N,et al.J.Power Sources,2008,176:381-386

    [29]Kumar E A,Maiya M P,Murthy SS,et al.J.Alloys Compd.,2009,470:157-162

    [30]Zhou W H,Zhu D,Tang Z Y,et al.J.Power Sources,2017,343:11-21

    Effects of Al Content on Low-Temperature and High-Rate Performance of MmNi4.0-xCo0.7Mn0.3AlxAlloys

    Effects of Al content on the comprehensive electrochemical performance of Ce-rich MmNi4-xCo0.7Mn0.3Alx(x=0,0.1,0.2,0.3)hydrogen storage alloys,particularly the low-temperature and high-rate capacity have been systematically investigated.At room temperature,both the discharge capacity and cycling stability of the electrode increase with the Al content increases,but the high-rate dischargeability seriously deteriorates.The discharge capacity still increases with the increase of Al content at-20℃,but gradually deteriorates when the temperature drops down to-40℃.Electrochemical kinetics results demonstrate that the high-rate capacity recession of the high-Al alloy at room temperature is contributed to the deterioration of the charge-transfer process.When the temperature drops down to-40℃,Al deteriorates both the surface catalytic ability and the bulk hydrogen diffusion ability,leading to the severe drop of discharge capacity and potential of the high-Al alloy.Based on the comprehensive electrochemical properties of the electrodes,the optimal composition of MmNi4-xCo0.7Mn0.3Alxis obtained when x=0.2.

    AB5-type hydrogen storage alloy;low-temperature electrochemical performance;aluminum substitution;nickel metal hydride battery;electrochemical kinetics

    TB331

    A

    1001-4861(2017)10-1881-08

    10.11862/CJIC.2017.228

    TANG Zheng-Yao1ZHOU Wan-Hai1ZHU Ding2WU Chao-Ling1HUANG Li-Wu1LIU Kun1CHEN Yun-Gui*,1
    (1College of Materials Science and Engineering,Sichuan University,Chengdu 610065,China)
    (2Institute of New Energy and Low-Carbon Technology,Sichuan University,Chengdu 610065,China)

    2017-05-26。收修改稿日期:2017-09-04。

    四川省科技創(chuàng)新苗子工程(No.2017RZ0033)資助項(xiàng)目。*

    。 E-mail:ygchen60@aliyun.com

    猜你喜歡
    高倍率儲(chǔ)氫陳云
    站用儲(chǔ)氫瓶式容器組缺陷及檢測(cè)方法
    我國(guó)固定式儲(chǔ)氫壓力容器發(fā)展現(xiàn)狀綜述
    三維多孔石墨烯在高倍率超級(jí)電容器中的應(yīng)用
    能源工程(2020年5期)2021-01-04 01:29:06
    My plan for new term
    向陳云學(xué)習(xí)錘煉“筆力”
    論ZVR高倍率視頻壓縮存儲(chǔ)技術(shù)的先進(jìn)性與實(shí)用性
    李賢能:銀隆鈦高倍率快充 解決新能源汽車(chē)之痛
    儲(chǔ)氫合金La0.74Mg0.26Ni2.55Co0.55Al0.2Fe0.1的制備與電化學(xué)性能
    高比表面積活性炭吸附儲(chǔ)氫材料的研究進(jìn)展
    TransitivityandCharacterization:AnalysisonDickinTenderisTheNight
    岛国在线观看网站| 99久久精品热视频| 制服丝袜大香蕉在线| 麻豆国产av国片精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲成av人片在线播放无| 999精品在线视频| 久久精品aⅴ一区二区三区四区| 舔av片在线| 亚洲成人久久爱视频| 精品第一国产精品| 三级国产精品欧美在线观看 | 19禁男女啪啪无遮挡网站| 午夜免费激情av| 亚洲avbb在线观看| 50天的宝宝边吃奶边哭怎么回事| 不卡一级毛片| 天堂√8在线中文| 亚洲成av人片免费观看| 欧美最黄视频在线播放免费| 国内少妇人妻偷人精品xxx网站 | 国产成人一区二区三区免费视频网站| netflix在线观看网站| 欧美一区二区精品小视频在线| 久久久久久久久久黄片| 久久午夜亚洲精品久久| 窝窝影院91人妻| 亚洲一区二区三区色噜噜| 1024香蕉在线观看| 一本一本综合久久| 啦啦啦韩国在线观看视频| 欧美成人午夜精品| 亚洲av美国av| 久久香蕉激情| 欧美最黄视频在线播放免费| 国产精品影院久久| 免费观看人在逋| 在线看三级毛片| 成人精品一区二区免费| 日韩免费av在线播放| 国产欧美日韩精品亚洲av| 香蕉国产在线看| 欧美久久黑人一区二区| 欧美一区二区精品小视频在线| 国产欧美日韩精品亚洲av| 精品欧美国产一区二区三| 男女那种视频在线观看| 每晚都被弄得嗷嗷叫到高潮| or卡值多少钱| 国产v大片淫在线免费观看| 无限看片的www在线观看| 久久人人精品亚洲av| 视频区欧美日本亚洲| bbb黄色大片| 国产1区2区3区精品| 人妻夜夜爽99麻豆av| 五月玫瑰六月丁香| 99在线视频只有这里精品首页| 99热这里只有是精品50| 91字幕亚洲| 亚洲中文av在线| 国产精品美女特级片免费视频播放器 | 国产成人一区二区三区免费视频网站| 特级一级黄色大片| 国产免费av片在线观看野外av| a级毛片在线看网站| √禁漫天堂资源中文www| 国产黄片美女视频| 亚洲男人天堂网一区| 91国产中文字幕| 亚洲人成网站高清观看| 国产精品综合久久久久久久免费| av在线天堂中文字幕| 欧美黄色淫秽网站| 欧美日韩瑟瑟在线播放| 国产精品一及| 亚洲人成电影免费在线| 国产亚洲精品一区二区www| 最好的美女福利视频网| 一级片免费观看大全| 亚洲国产精品久久男人天堂| 在线观看免费视频日本深夜| 19禁男女啪啪无遮挡网站| 国产麻豆成人av免费视频| 国产精品野战在线观看| 亚洲国产精品999在线| 国产伦人伦偷精品视频| 老司机福利观看| 婷婷亚洲欧美| 中文字幕人妻丝袜一区二区| aaaaa片日本免费| 香蕉久久夜色| 两个人免费观看高清视频| 色精品久久人妻99蜜桃| 脱女人内裤的视频| 欧美日本亚洲视频在线播放| 男女之事视频高清在线观看| 中文字幕最新亚洲高清| 91字幕亚洲| 99国产综合亚洲精品| 又爽又黄无遮挡网站| 又黄又爽又免费观看的视频| 国产av一区二区精品久久| 亚洲精品久久国产高清桃花| 90打野战视频偷拍视频| 欧美一级毛片孕妇| 一二三四在线观看免费中文在| 亚洲成人国产一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机深夜福利视频在线观看| av国产免费在线观看| 性色av乱码一区二区三区2| 首页视频小说图片口味搜索| 国产精品98久久久久久宅男小说| 久久中文看片网| 午夜福利视频1000在线观看| 高潮久久久久久久久久久不卡| 久久精品91蜜桃| 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡| 国产亚洲精品综合一区在线观看 | 亚洲欧美激情综合另类| 两性午夜刺激爽爽歪歪视频在线观看 | 99国产综合亚洲精品| 久久久久久亚洲精品国产蜜桃av| 婷婷精品国产亚洲av| 久久亚洲精品不卡| 青草久久国产| 国产av麻豆久久久久久久| 亚洲全国av大片| 午夜福利免费观看在线| 精品久久蜜臀av无| 国产精品99久久99久久久不卡| 国产av一区二区精品久久| 午夜免费激情av| 一级毛片精品| 久久精品夜夜夜夜夜久久蜜豆 | 免费无遮挡裸体视频| 欧美午夜高清在线| 免费在线观看亚洲国产| 国产亚洲av高清不卡| 19禁男女啪啪无遮挡网站| 最新在线观看一区二区三区| 黄色成人免费大全| 淫秽高清视频在线观看| 日本在线视频免费播放| www.自偷自拍.com| 免费看十八禁软件| 在线观看舔阴道视频| 99re在线观看精品视频| 在线观看午夜福利视频| 一本综合久久免费| 在线永久观看黄色视频| 亚洲人成伊人成综合网2020| 国产精品一区二区三区四区免费观看 | 一本久久中文字幕| 黄色毛片三级朝国网站| 男女做爰动态图高潮gif福利片| 俺也久久电影网| 日日爽夜夜爽网站| 久久精品aⅴ一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 91老司机精品| av国产免费在线观看| 久久久久久久精品吃奶| 精品国产乱子伦一区二区三区| 久久欧美精品欧美久久欧美| 18禁裸乳无遮挡免费网站照片| 脱女人内裤的视频| 久久亚洲精品不卡| 在线观看日韩欧美| 777久久人妻少妇嫩草av网站| 亚洲精品色激情综合| 亚洲人成伊人成综合网2020| 精品不卡国产一区二区三区| 91av网站免费观看| 精品国内亚洲2022精品成人| 男女下面进入的视频免费午夜| 91国产中文字幕| 久久精品国产综合久久久| avwww免费| 成年人黄色毛片网站| netflix在线观看网站| 男女做爰动态图高潮gif福利片| 在线观看日韩欧美| 在线观看66精品国产| 女生性感内裤真人,穿戴方法视频| 99久久国产精品久久久| 国产精品亚洲一级av第二区| 国产黄色小视频在线观看| 成人18禁高潮啪啪吃奶动态图| 大型黄色视频在线免费观看| 久久久久国内视频| 亚洲专区字幕在线| 日韩三级视频一区二区三区| 国内久久婷婷六月综合欲色啪| 日韩欧美 国产精品| 两个人视频免费观看高清| 亚洲人成网站高清观看| 日本 av在线| 操出白浆在线播放| 国产亚洲av高清不卡| 久久久精品欧美日韩精品| 亚洲第一电影网av| 此物有八面人人有两片| tocl精华| 婷婷精品国产亚洲av| 视频区欧美日本亚洲| 日本三级黄在线观看| 天天躁夜夜躁狠狠躁躁| 嫁个100分男人电影在线观看| 搡老熟女国产l中国老女人| 国产免费av片在线观看野外av| 午夜激情福利司机影院| 亚洲国产高清在线一区二区三| 亚洲狠狠婷婷综合久久图片| 欧美一级a爱片免费观看看 | 欧美最黄视频在线播放免费| 久久精品国产清高在天天线| 人妻久久中文字幕网| 久久久久久人人人人人| 18美女黄网站色大片免费观看| 波多野结衣巨乳人妻| 国产高清激情床上av| 国产成人一区二区三区免费视频网站| 不卡一级毛片| 久久久久久久精品吃奶| 天堂av国产一区二区熟女人妻 | 女人被狂操c到高潮| 一区二区三区激情视频| 久久久久久久精品吃奶| 国产伦一二天堂av在线观看| 国产亚洲欧美在线一区二区| 日本在线视频免费播放| 一级a爱片免费观看的视频| 成年人黄色毛片网站| 757午夜福利合集在线观看| 久久香蕉国产精品| 久久人妻av系列| 少妇人妻一区二区三区视频| 很黄的视频免费| 成人特级黄色片久久久久久久| 国产亚洲精品久久久久5区| 一级毛片女人18水好多| 丰满的人妻完整版| 美女扒开内裤让男人捅视频| 成人三级黄色视频| 好看av亚洲va欧美ⅴa在| 免费av毛片视频| 少妇被粗大的猛进出69影院| 国产麻豆成人av免费视频| 在线a可以看的网站| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 美女午夜性视频免费| 精品熟女少妇八av免费久了| 亚洲电影在线观看av| 欧美日韩乱码在线| 午夜日韩欧美国产| 亚洲精品粉嫩美女一区| 精品久久久久久久久久免费视频| 99久久精品热视频| 精品久久久久久成人av| av国产免费在线观看| 国产麻豆成人av免费视频| 亚洲成人免费电影在线观看| 亚洲av第一区精品v没综合| 国产精品电影一区二区三区| 免费av毛片视频| 久久草成人影院| 欧美+亚洲+日韩+国产| 在线观看午夜福利视频| 国产乱人伦免费视频| 舔av片在线| 午夜精品一区二区三区免费看| 男人舔女人下体高潮全视频| 91麻豆av在线| 午夜影院日韩av| 99精品久久久久人妻精品| av免费在线观看网站| 久久中文字幕人妻熟女| netflix在线观看网站| 亚洲熟妇中文字幕五十中出| 九色国产91popny在线| 日韩精品免费视频一区二区三区| 欧美成人免费av一区二区三区| 大型黄色视频在线免费观看| 一本一本综合久久| 动漫黄色视频在线观看| 俺也久久电影网| 婷婷亚洲欧美| 亚洲精品中文字幕一二三四区| 久久 成人 亚洲| 在线免费观看的www视频| 精品日产1卡2卡| 神马国产精品三级电影在线观看 | 人人妻人人澡欧美一区二区| x7x7x7水蜜桃| 国产三级中文精品| 国产成人aa在线观看| 国产一级毛片七仙女欲春2| 亚洲aⅴ乱码一区二区在线播放 | 亚洲色图 男人天堂 中文字幕| 亚洲专区国产一区二区| 色播亚洲综合网| 搞女人的毛片| 一夜夜www| netflix在线观看网站| 日韩三级视频一区二区三区| 亚洲 欧美一区二区三区| 黄片小视频在线播放| 日韩欧美在线二视频| 搡老岳熟女国产| 黄色片一级片一级黄色片| 女同久久另类99精品国产91| 日韩高清综合在线| 国产黄片美女视频| 日本 欧美在线| 久久久久国产精品人妻aⅴ院| 听说在线观看完整版免费高清| 黄色a级毛片大全视频| 精品久久久久久,| 免费在线观看亚洲国产| 亚洲精品中文字幕在线视频| 成人手机av| 一二三四在线观看免费中文在| 岛国在线免费视频观看| 在线十欧美十亚洲十日本专区| 中文字幕熟女人妻在线| 欧美乱码精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 在线国产一区二区在线| 88av欧美| 淫妇啪啪啪对白视频| 国产精品免费一区二区三区在线| 黑人欧美特级aaaaaa片| 黄片小视频在线播放| 国产人伦9x9x在线观看| 18禁国产床啪视频网站| 观看免费一级毛片| 亚洲精品色激情综合| 国产aⅴ精品一区二区三区波| 国产蜜桃级精品一区二区三区| 蜜桃久久精品国产亚洲av| 无遮挡黄片免费观看| 国产视频内射| 少妇人妻一区二区三区视频| 欧美一级毛片孕妇| 日韩精品免费视频一区二区三区| 国产久久久一区二区三区| 日韩 欧美 亚洲 中文字幕| 精品久久蜜臀av无| 色噜噜av男人的天堂激情| 欧美一级毛片孕妇| av欧美777| 亚洲av电影不卡..在线观看| 久久亚洲精品不卡| 天堂影院成人在线观看| 国产成年人精品一区二区| 最新美女视频免费是黄的| 日韩欧美一区二区三区在线观看| 国产又黄又爽又无遮挡在线| 久久99热这里只有精品18| 久久伊人香网站| 国内揄拍国产精品人妻在线| 高清在线国产一区| 美女高潮喷水抽搐中文字幕| 天堂影院成人在线观看| 亚洲男人天堂网一区| 亚洲人成网站高清观看| 日韩三级视频一区二区三区| 成人精品一区二区免费| 亚洲九九香蕉| 亚洲最大成人中文| cao死你这个sao货| 女同久久另类99精品国产91| 久久午夜亚洲精品久久| 男人舔女人的私密视频| 欧美色欧美亚洲另类二区| 国产男靠女视频免费网站| 精品无人区乱码1区二区| 久久欧美精品欧美久久欧美| 亚洲免费av在线视频| 亚洲乱码一区二区免费版| 欧美色欧美亚洲另类二区| 午夜影院日韩av| 国产成人欧美在线观看| 国产一区二区在线观看日韩 | 一夜夜www| 成人高潮视频无遮挡免费网站| 亚洲一码二码三码区别大吗| 变态另类成人亚洲欧美熟女| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮| 精品无人区乱码1区二区| 国产av在哪里看| 免费在线观看亚洲国产| 精华霜和精华液先用哪个| 久久久久国产一级毛片高清牌| 99re在线观看精品视频| 国内久久婷婷六月综合欲色啪| 国产精品一及| 天堂影院成人在线观看| 国产av不卡久久| 怎么达到女性高潮| 国产三级黄色录像| 麻豆一二三区av精品| 国产亚洲欧美在线一区二区| 一本综合久久免费| 一个人观看的视频www高清免费观看 | 在线观看舔阴道视频| 黄频高清免费视频| 黄色成人免费大全| 好男人在线观看高清免费视频| 国产高清视频在线播放一区| 精品一区二区三区四区五区乱码| 欧美av亚洲av综合av国产av| 日韩欧美在线二视频| 免费电影在线观看免费观看| 99热这里只有是精品50| 国产亚洲欧美在线一区二区| 成人永久免费在线观看视频| 男女之事视频高清在线观看| 激情在线观看视频在线高清| 高清毛片免费观看视频网站| 欧美一区二区精品小视频在线| 美女 人体艺术 gogo| 午夜福利在线在线| 老司机午夜福利在线观看视频| 搡老岳熟女国产| 日韩欧美在线二视频| 久久中文看片网| 99精品在免费线老司机午夜| 久久人妻福利社区极品人妻图片| 午夜激情av网站| 99riav亚洲国产免费| 亚洲中文字幕一区二区三区有码在线看 | 日韩大码丰满熟妇| 欧美一区二区精品小视频在线| 亚洲欧美激情综合另类| 亚洲中文字幕日韩| 1024手机看黄色片| 午夜福利高清视频| 欧美黄色淫秽网站| 日韩欧美一区二区三区在线观看| 精品国内亚洲2022精品成人| 欧美黑人精品巨大| 久久热在线av| 国产一区二区在线av高清观看| 国产av麻豆久久久久久久| 国产三级黄色录像| 天天一区二区日本电影三级| 又大又爽又粗| 伊人久久大香线蕉亚洲五| 又爽又黄无遮挡网站| 男女做爰动态图高潮gif福利片| 日本一本二区三区精品| 亚洲av电影在线进入| 国产精品乱码一区二三区的特点| 十八禁人妻一区二区| 久久婷婷成人综合色麻豆| 国产成人一区二区三区免费视频网站| 啦啦啦免费观看视频1| 精品久久久久久久久久久久久| 十八禁网站免费在线| 欧美高清成人免费视频www| 午夜亚洲福利在线播放| 女同久久另类99精品国产91| 亚洲人与动物交配视频| 国产一区在线观看成人免费| 久久久久久久久免费视频了| 听说在线观看完整版免费高清| 成人国产综合亚洲| 亚洲欧美日韩高清专用| 国产野战对白在线观看| 国内久久婷婷六月综合欲色啪| 久久精品影院6| 欧美乱码精品一区二区三区| 国产精品久久视频播放| 少妇粗大呻吟视频| 国产精品亚洲av一区麻豆| 日韩欧美一区二区三区在线观看| 精品国内亚洲2022精品成人| 一夜夜www| 亚洲熟女毛片儿| 热99re8久久精品国产| www日本黄色视频网| 国产又黄又爽又无遮挡在线| 亚洲av电影在线进入| 国产精品国产高清国产av| 久久久久九九精品影院| 亚洲精品在线观看二区| 丰满人妻熟妇乱又伦精品不卡| 国产黄a三级三级三级人| 欧美绝顶高潮抽搐喷水| 禁无遮挡网站| 人人妻人人澡欧美一区二区| 精品久久久久久久久久久久久| 亚洲中文av在线| 亚洲国产精品合色在线| 1024手机看黄色片| 美女大奶头视频| 久久国产精品人妻蜜桃| 丝袜美腿诱惑在线| 三级男女做爰猛烈吃奶摸视频| 在线观看免费午夜福利视频| 一级a爱片免费观看的视频| 精品第一国产精品| 丝袜美腿诱惑在线| 夜夜看夜夜爽夜夜摸| 在线观看免费午夜福利视频| 在线观看一区二区三区| 可以在线观看毛片的网站| 久久精品国产亚洲av高清一级| 久久久久久免费高清国产稀缺| aaaaa片日本免费| 国产免费av片在线观看野外av| 国产1区2区3区精品| 亚洲国产精品成人综合色| 国产一区二区三区视频了| 亚洲一区高清亚洲精品| 亚洲av美国av| 欧美绝顶高潮抽搐喷水| 制服诱惑二区| 欧美在线黄色| 国产探花在线观看一区二区| 成人午夜高清在线视频| 12—13女人毛片做爰片一| 特大巨黑吊av在线直播| 九色成人免费人妻av| 国产精品乱码一区二三区的特点| 亚洲欧美日韩高清专用| 欧美在线黄色| 日日爽夜夜爽网站| 母亲3免费完整高清在线观看| 悠悠久久av| 老司机福利观看| 变态另类丝袜制服| 亚洲av五月六月丁香网| 99久久国产精品久久久| 丰满的人妻完整版| 久久久久免费精品人妻一区二区| 亚洲五月婷婷丁香| 国产精品久久久av美女十八| 夜夜躁狠狠躁天天躁| 日本a在线网址| 每晚都被弄得嗷嗷叫到高潮| 亚洲avbb在线观看| 欧美性猛交黑人性爽| 三级男女做爰猛烈吃奶摸视频| 免费在线观看成人毛片| 香蕉av资源在线| 亚洲午夜理论影院| 亚洲五月婷婷丁香| 97人妻精品一区二区三区麻豆| 亚洲人成网站高清观看| 日日干狠狠操夜夜爽| 一进一出抽搐gif免费好疼| 成人三级做爰电影| 天堂动漫精品| 国产成人精品久久二区二区免费| 91av网站免费观看| 欧美不卡视频在线免费观看 | 精品日产1卡2卡| 精品电影一区二区在线| 美女 人体艺术 gogo| 999精品在线视频| 成年免费大片在线观看| 欧美成人午夜精品| 亚洲成av人片免费观看| 91字幕亚洲| 一卡2卡三卡四卡精品乱码亚洲| 丰满的人妻完整版| 精品一区二区三区av网在线观看| 国产一区二区激情短视频| 久久精品亚洲精品国产色婷小说| 狠狠狠狠99中文字幕| 一区二区三区激情视频| 男女床上黄色一级片免费看| 国产午夜精品论理片| 国模一区二区三区四区视频 | 亚洲自拍偷在线| 高清在线国产一区| 久久天堂一区二区三区四区| 国产成人av激情在线播放| 亚洲精品国产精品久久久不卡| 亚洲专区字幕在线| 国模一区二区三区四区视频 | 一区福利在线观看| 精品一区二区三区av网在线观看| 淫秽高清视频在线观看| 久久久久国产精品人妻aⅴ院| 久久久久九九精品影院| 大型黄色视频在线免费观看| 欧美一级毛片孕妇| 黄片小视频在线播放| 中文字幕高清在线视频| 成人午夜高清在线视频| 亚洲成人免费电影在线观看| 无人区码免费观看不卡| 国产不卡一卡二| 黑人欧美特级aaaaaa片| or卡值多少钱| 国产黄片美女视频| 国产真实乱freesex| 丁香欧美五月| 欧美久久黑人一区二区| 中文字幕熟女人妻在线| 国产乱人伦免费视频| 一级作爱视频免费观看| 国产在线观看jvid| xxx96com| 丝袜美腿诱惑在线| 小说图片视频综合网站| 午夜老司机福利片|