• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈀納米粒子的形貌可控合成與催化性能

    2017-11-01 10:22:42茹婷婷初學(xué)峰石瑩巖鄭文琦楊小天
    無機化學(xué)學(xué)報 2017年10期
    關(guān)鍵詞:凹面初學(xué)長春

    茹婷婷 初學(xué)峰,2 石瑩巖 鄭文琦 郭 研 楊小天 蔣 鍇

    鈀納米粒子的形貌可控合成與催化性能

    茹婷婷1初學(xué)峰1,2石瑩巖1鄭文琦1郭 研1楊小天*,2蔣 鍇*,3

    (1吉林建筑大學(xué)基礎(chǔ)科學(xué)部,長春 130118)
    (2吉林建筑大學(xué)吉林省建筑電氣綜合節(jié)能重點實驗室,長春 130118)
    (3長春中醫(yī)藥大學(xué)附屬醫(yī)院,長春 130021)

    借助于一種全新的表面活性劑N,N-dimethyloctadecylammonium bromide acetate sodium(OTAB-Na),成功實現(xiàn)了對小尺寸鈀納米粒子微結(jié)構(gòu)的控制。通過對合成條件的微擾,高度均勻且分散性良好的枝化結(jié)構(gòu)和凹面體結(jié)構(gòu)的鈀納米粒子被成功地制備。催化測試(利用氨硼烷作為氫化試劑來還原4-硝基苯酚為4-胺基苯酚)發(fā)現(xiàn),鈀納米粒子的催化活性與其微觀納米結(jié)構(gòu)相關(guān),其中枝化結(jié)構(gòu)的鈀納米粒子表現(xiàn)出了更為突出的催化性能。

    鈀;貴金屬;納米粒子;凹面體;枝化結(jié)構(gòu)

    0 Introduction

    During the past decades,noble metal nanostructures have attracted considerable research interest because of their unique chemical and physical properties are widely applied in electronic,catalytic,photonic,biologic and energy-related areas[1-4].However,their ultra-low abundances in nature and the ultra-high prices have seriously limited their further applications.Thus,optimizing the properties of noble metals to reduce the overall cost has become one of the most important and urgent problems to be solved in nano-science.In generally speaking,the morphologies of noble metals can strongly affect their properties,especially for a catalytic reaction[5-8].That is because the stability of intermediate is highly depending on the interplanar spacing of the noble metals,which is determined by the morphology strongly.Designing and fabricating the noble metals with desirable nanostructures can endow them with superior catalytic activity,stability and selectivity.

    Among the various kinds of noble metal nanostructures,there are two specially ones,highly dendritic and concave morphologies,which have been paid more attention in the recent years.For a dendritic nanostructure,it has ultra-small building block and open channel.Thus such kind of noble metals always have high surface area and be rich in edge/corner atoms,which makes them play the important role of highly active sites in catalytic reactions[9].On the other hand,although the concave morphology also possess a large number of atoms at edges,the more important structural feature is the exposed high-index surface.As a result of the high density of low-coordinated atoms in the forms of atomic steps and kinks,high-index facets are generally more active toward specific reactions than low-index planes that are composed of closely packed surface atoms[10].Many kinds of dendritic and concave noble metal nanostructures are successfully fabricated.For instance of dendritic nanostructure,directly growth can achieve the main purpose.Wang and co-works have shown us a series of excellent works by using block copolymers to induce the formation of highly dendritic Pt or Pt on Pd nanostructures[11-13].Huang′s group has reported a facile synthesis by using hexadecylpyridinium chloride as capping agents to produce Pd nanospheres with highly ordered porous features and perpendicular pore channels[9].Very recently,Pt nanohelices with highly ordered horizontal pore channels are also created by Wang and co-works.A new kinds of surfactant,N,N-dimethyloctadecylammonium bromide acetate sodium (OTAB-Na)exhibited powerful capability to control the growth of Pt metals[14].On the other hand,for concave nanostructures,seeded growth method and galvanic replacement reaction-assisted process are more efficient.Xiong′s group has found that Ru3+can induce the morphology-evolution of Pd nanostructures from cube to concave cube[15].The similar phenomenon has been also observed by Zheng′s group,that they found Cu2+can assist the formation of concave Pt nanostructures[10].Moreover,concave Au and Au@Pd nanostructures are successfully obtained by a seeded method[16-18].By carefully referring to the above mentioned manuscripts,it is considered that investigating the shape-evolution process of noble metals is very important to optimize their catalytic properties.However,to the best of our knowledge,the shape-evolution process of noble metals from concave to dendritic nanocrystals is still no observed in one synthetic system.Thus,the challenge in the synthesis still exists.

    Herein Pd element has been chosen as the research objective owing to its high performance in many industrial applications.Nanostructured Pd serves as the primary catalyst for various organic reactions and also has remarkable performance in hydrogen storage and hydrogen sensing[19-21].Thus,investigating the morphology-effect of Pd nanocatalyst is very important.Inspired by the above mentioned representative works,OTAB-Na has been used here.Fortunately,a morphology-evolution has been observed.In a typical synthesis,a transparent aqueous solution contained OTAB-Na and certain amount of NaOH or HCl is heated at 60℃for a while,following by addition of Na2PdCl4solution and freshly prepared aqueous ascorbic acid solution in turn.The reaction is holding for 3 hours and finally the resulting colloidal product is collected by centrifugation and washed three times with ethanol.

    1 Experimental

    1.1 Preparation of N,N-dimethyloctadecylammonium bromide acetatesodium salt(C18H37-N(CH3)2(CH2COONa)·Br,OTAB-Na)

    This synthesis is according to the recently reported method[14].Typically,10 mmol N,N-dimethyloctadecylamine was reacted with 5 mmol sodium bromoacetate in 50 mL ethanol at 80℃for 24 h.Herein,it should be noticed that excess amount of N,N-dimethyloctadecylamine was added in the reaction system to promote the quaternization reaction.After cooling down to room temperature,the solution was concentrated on a rotary evaporator to about 4 mL,following by addition of excess anhydrous diethyl ether to help the precipitation of OTAB-Na product.And in this step,the un-reacted N,N-dimethyloctadecylamine can be removed easily and completely.

    1.2 Preparation of Pd nanocubes

    OTAB-Na(90 mg)was dissolved in 10 mL water to form a transparent solution by heating the mixture at 60℃for a while.Then 2 mL HCl aqueous solution(0.1 mol·L-1)was added followed by injection of 1 mL Na2PdCl4solution (20 mmol·L-1)and 1 mL ascorbic acid solution(0.1 mol·L-1)in turn.Three hours later,the products were collected by centrifugation with the help of ethanol (ethanol makes the important role of antisolvent towards OTAB-Na molecules)and washed three times with water and ethanol.

    1.3 Preparation of Pd concave nanocubes

    OTAB-Na(90 mg)was dissolved in 10 mL water to form a transparent solution by heating the mixture at 60℃for a while.Then 1 mL Na2PdCl4solution(20 mmol·L-1)and 1 mL ascorbic acid solution (0.1 mol·L-1)were in turn.Three hours later,the products were added collected by centrifugation with the help of ethanol and washed three times with water and ethanol.

    1.4 Preparation of Pd seaanemone-likenanospheres

    OTAB-Na(90 mg)was dissolved in 10 mL water to form a transparent solution by heating the mixture at 60℃for a while.Then 2 mL NaOH aqueous solution(0.1 mol·L-1)was added followed by injection of 1 mL Na2PdCl4solution(20 mmol·L-1)and 1 mL ascorbic acid solution (0.1 mol·L-1)in turn.Three hours later,the products were collected by centrifugation with the help of ethanol and washed threetimeswith water and ethanol.

    1.5 Preparation of Pd octahedrons

    OTAB-Na(90 mg)was dissolved in 10 mL water to form a transparent solution by heating the mixture at 60℃for a while.Then 3 mL NaOH aqueous solution(0.1 mol·L-1)was added followed by injection of 1 mL Na2PdCl4solution(20 mmol·L-1)and 1 mL ascorbic acid solution (0.1 mol·L-1)in turn.Three hours later,the products were collected by centrifugation with the help of ethanol and washed three times with water and ethanol.

    1.6 Characterization

    The X-ray diffraction patterns of the products were collected on a Rigaku-D/max 2500 V X-ray diffractometer with Cu Kα radiation(λ=0.154 18 nm),with an operation voltage and current maintained at 40 kV and 40 mA(2θ=30°~70°).Transmission electron microscopic(TEM)images were obtained with a TECNAI G2 high-resolution transmission electron microscope operating at 200 kV.

    1.7 Liquid-phase reduction of 4-nitrophenol(4-NP)by ammonia-borane complex(AB)

    The catalytic test was directly taken in a quartz curette and monitored by the UV-Vis spectrophotometer(UV-3600).4-NP ions (0.01 mol·L-1)aqueous solution was prepared by mixing 4-NP and NaOH in water with the molar ratio of 1∶1.For a typical catalytic process,0.02 mL nitrophenol and 0.05 mL AB aqueous solution were mixed in 3 mL H2O.Then 100μL Pd colloid solution(0.002 mol·L-1,details are shown in Table S1)was quickly added.The intensity of the absorption peak at 400 nm for 4-NPions was monitored along with time.

    2 Results and discussion

    The structure information about the as-formed Pd nanostructures are first characterized by transmission electron microscopy(TEM),high-resolution transmission electron microscopy (HRTEM),and powder X-ray diffraction(XRD).As shown in Fig.S1(a low-magnification TEM image),monodisperse nanoparticles with diameters of approximately 20 nm are obtained.No scattered and smaller-sized Pd nanoparticles could be found,suggesting the high purity and relatively high quality.Interestingly,from the enlarged TEM image in Fig.1a and b,we can see that the products exhibit a typical concave nanostructure:each face of the cube is concave at the center.Referring to the previous reports[15],the concave cubes are enclosed by(730)facets(as shown in Fig.1c).Further X-ray diffraction was conducted on product nanocubes spread on a glass substrate.The pattern is well corresponding to fcc Pd metal(Fig.2,PDF No.87-0641).

    Fig.1 TEM images of(a)to(c):concave Pd cubes;(d)to(f):dendritic Pd nanospheres

    Very interesting,it is found that the morphology of Pd nanocrystal is highly dependent on the pH value of the growth solution.With the corresponding TEM image shown in Fig.1d,uniform and monodisperse Pd nanospheres with highly porous structural feature are obtained when 2 mL NaOH (0.1 mol·L-1)aqueous solution is added in the solution before the injection of Pd metal salt.Compared with the concave cubes,the particle size is grown up to sub 50 nm in average.Importantly,it is found that the building blocks of the nanospheres are highly dendritic short nanowires,which could be distinguished easily from the enlarge TEM image in Fig.1e.The HR-TEM image in Fig.1f confirms that the short nanowires are grew along with Pd 〈111〉direction.Further increasing the feeding amount of NaOH aqueous solution could destroy the original 3D nanostructures,but the final products are uniform sub 5 nm octahedrons(Fig.S2).Another control experiment has also been taken by decreasing the pH value of the growth solution by addition of HCl aqueous solution.Fig.S3 is the typical TEM result which obtained by the addition of 2 mL HCl(0.1 mol·L-1).Sub 11 nm Pd cubes are observed.There is no concave particles could be found from the TEM images.We also investigate the temperature-effect towards the shape-evolution of Pd nanocrystal.With the data shown in Fig.S4,under the similar synthetic condition (increasing the reaction temperature to 80℃),sea anemone-like nanospheres are disappeared and the products exhibit irregular shapes.

    Fig.2 XRD patterns of dendritic nanospheres and concave nanocubes

    It is well known that the morphology of Pd nanocrystal is determined by the deposited rate of Pd atoms in different directions.The morpholoty-evolution is descried in Fig.3.For acid solution,protonation reaction of OTAB-Na will happen,as a result OTAB-Na should be in the form of OTAB-H(OTAB-Na+H+→OTAB-H+Na+).Thus,the coordination ability of the capping agent to Pd2+becomes so weak.At the same time,Br-ions play the critical role to induce the whole synthesis because that they can stabilize the{100}faces of Pd nanocrystals efficiently[22-25].The structural formula of OTAB-Na(as show in Fig.S5)indicates its weak alkalinity (OTAB-Na+H2O?OTBA-H+OH-),thus the OTAB-Na molecule can react with water to generate free OH-ions under heating treatment(without addition of HCl).The increased pH value enhances the reducing ability of ascorbic acid (AA).Compared with the acid condition,the reaction rate could be highly accelerated when no HCl is added in the growth solution[26-27].As reported previously,when the side faces are capped by Br-,the reduced atoms prefer to nucleate and grow from the edges and corners.When the reducing rate of metal atoms is greater than the surface diffusion rate on the particle,the newly deposited atoms will not migrate timely to the side surfaces,causing the formation of concave nanocubes[27-28].Thus,the formation mechanism of the concave nanocubes is easy to be understood that the large amount of as-generated Pd atoms are deposited along with the 〈111〉 direction instead of{100}faces.Furthermore,such growth orientation could be enlarged by further increasing the pH value of the reaction solution by direct addition of NaOH aqueous solution in.When 3 mL NaOH aqueous solution(0.1 mol·L-1)is added,no Pd atoms deposited on{100}surface,but grew along with 〈111〉direction to form the twist and short nanowires.At the same time,it is believed that in such strong alkaline solution, OTAB-Na is dissociated completely.The presence of-COO-groups makes the long alkyl chains bonded on the surface of Pd atoms strongly.By the help of van der Waals force,numbers of short Pd nanowires are assembled together to form a sea anemone-like porous nanospheres with highly dendritic structural feature.It is the first time that using one kind of surfactants induces the formation of both the dendritic and concave nanostructures successfully,which could help us to investigate the morphology-effect of Pd nanocrystals for the catalytic performances in-depth.As a short summary,OTAB-Na plays the key role in our synthesis.Compared with the traditional quaternary ammonium salt,such as CTAB and CTAC,the presence of carboxyl group in OTAB-Na makes it more different.Firstly,OTAB-Na can hydrolyze partly and generate free OH-in the reaction solution,which could speed up the reducing rate and change the atom-deposited form.Secondly,carboxyl group increases the bonding force between surfactants and generated noble metal atoms.In such condition,some special behaviors of the organic molecules can shift to the noble metals.These are considered as the main reasons for the morphologyevolution of Pd nanocrystals.

    Fig.3 Schematic illustration of the shape evolution of Pd nanocrystals

    Fig.4 Catalytic test of dendritic and concave Pd nanocrystals in liquid-phase reduction of 4-NPby AB

    The catalytic liquid-phase reduction of pnitrophenol(4-NP)by ammonia borane(AB)is chosen here to help us to evaluate the catalytic performances of dendritic and concave Pd nanoparticles.Compared with the traditional hydrogenation reagent,NaBH4,AB compound is safer and has higher hydrogen capacity[29-30].Using AB to instead of NaBH4has become the research hot spot in recent years.Before the starting of the catalytic reaction,NaOH hasbeen added in 4-NPaqueous solution to make the formation of 4-NP ions,which has strong absorption peak at 400 nm.The whole catalytic process is monitored by UV-Vis spectrophotometer.Fig.4a shows the typical conversion ratio of 4-NPas function of reaction time over two catalysts under the same conditions.Concave cubes have shown much poorer catalytic performance.18 min later,only about 33%4-NP has been conversed.On the opposite,the catalytic activity of dendritic Pd nanospheres is much higher.With the addition of the catalyst in the reaction system,the original yellow solution faded fast and finally became colorless with 18 min.The corresponding plot of time by dendritic Pd nanospheres is shown in Fig.4a black line.The greater slope of the curve indicating the higher catalytic activity compared with the concave one.Fig.4b shows the ln(C/C0)(C and C0represent the concentration of 4-NP at time (t)and at the beginning of the reaction,respectively)versus time of the two samples at T=19℃.A rapid and almost linear evolution is observed between t and ln(C/C0),which suggesting both of the two plots followed first-order reaction kinetics very well.Thus the rate constant k can be calculated from the rate equation ln(C/C0)=-kt.The value is 0.17 and 0.02 min-1for dendritic and concave Pd nanocrystals at 19℃,respectively.Be similar with the previous reports,increasing the feeding amount of catalyst can largely accelerate the catalyst rate.With the data shown in Fig.S6,the reaction can be finished with 12 min by addition of double amount of catalyst.

    Fig.4c and e have shown the plot of ln(C/C0)versus time at various reaction temperatures of dendritic and concave Pd nanocrystals,respectively.The nearly horizontal lines indicate that increasing the reaction temperature can just increase the reaction rate but can′t change the catalytic kinetic model.The values of k at various temperatures are calculated from the slope of the linear part of each plot in Fig.4c and e to determine the activation energy.Fig.4d and f show the linear fitting of ln k and 1/T.The apparent activation energy (Ea)can be calculated from the Arrhenius equation:ln k=ln A-Ea/(RT)[31].The calculated Eavalue is approximately 35.0 and 20.7 kJ·mol-1for concave and dendritic Pd nanocrystals,respectively,where ln A is the intercept of the line and R is the gas constant.The above results have firmly confirmed that the as-obtained dendritic spheres have higher catalytic properties than the concave cubes.

    Finally,a cycling test has also been done to investigate the catalytic stability of the dendritic nano-spheres.As shown in Fig.5,the reaction time of the second cycle is faster than the first cycle.The possible reason is considered that the hydrogenation reaction in first cycle has clean the surface-bonded OTAB-Na molecules.Thus,the catalytic rate is accelerated.For the following three cycles,the as-obtained dendritic catalyst kept well their activity.The whole reaction could be finished within 15 min.

    Fig.5 Cycling test catalyzed by dendritic nanospheres

    3 Conclusions

    In all,a morphology-evolution process of Pd nanocrystals has been observed by using OTAB-Na as the capping agent.Simply changing the pH value of the growth solution can produce high quality Pd nanocubes,concave nanocubes,dendritic spheres and small sized octahedrons.The main effect of OTAB-Na for the particle growth could be divided to three parts:Br-can stabilize Pd{100}faces;OTAB-Na can react with water to generate OH-and carboxyl group can make the long alkyl chains bonded on the surface of Pd atoms strongly,which could trigger the self-assembling performance.It is the first time to achieve the goal of using one kind surfactant to induce the formation of both the dendritic and concave Pd nanostructures.In the following catalytic test of liquid-phase reduction of 4-NP by AB,the asobtained dendritic spheres have shown higher catalytic properties,which is a typical shape-dependent catalytic properties.

    Supportinginformation is available at http://www.wjhxxb.cn

    [1]Sun Y G,Xia Y N.Science,2002,298:2176-2179

    [2]Chiu C,Wu H,Yao Z,et al.J.Am.Chem.Soc.,2013,135:15489-15500

    [3]Lim B,Jiang M,Camargo P,et al.Science,2009,324:1302-1305

    [4]Xia Y,Xiong Y,Lim B,et al.Angew.Chem.Int.Ed.,2009,48:60-103

    [5]Xia B,Ng W,Wu H,et al.Angew.Chem.Int.Ed.,2012,51:7213-7216

    [6]Xia B,Wu H,Yan Y,et al.J.Am.Chem.Soc.,2013,135:9480-9485

    [7]Jin M,Zhang H,Xie Z,et al.Energy Environ.Sci.,2012,5:6352-6357

    [8]Wu Y,Cai S,Wang D,et al.J.Am.Chem.Soc.,2012,134:8975-8981

    [9]Huang X,Li Y,Chen Y,et al.Angew.Chem.Int.Ed.,2013,52:2520-2524

    [10]Huang X,Zhao Z,Fan J,et al.J.Am.Chem.Soc.,2011,133:4718-4721

    [11]Wang L,Nemoto Y,Yamauchi Y.J.Am.Chem.Soc.,2011,133:9674-9677

    [12]Wang L,Yamauchi Y.J.Am.Chem.Soc.,2009,131:9152-9253

    [13]Wang L,Yamauchi Y.J.Am.Chem.Soc.,2013,135:16762-16765

    [14]Song S,Wang X,Li S,et al.Chem.Sci.,2015,6:6420-6424

    [15]Long R,Rao Z,Mao K,et al.Angew.Chem.Int.Ed.,2015,54:2425-2430

    [16]Lu C,Prasad K,Wu H,et al.J.Am.Chem.Soc.,2010,132:14546-14553

    [17]Yu Y,Zhang Q,Liu B,et al.J.Am.Chem.Soc.,2010,132:18258-18265

    [18]Hong J,Lee S,Lee,Han Y.J.Am.Chem.Soc.,2012,134:4565-4568

    [19]Bosch S,Schutyser W,Koelewijn S,et al.Chem.Commun.,2015,51:13158-13161

    [20]Xia Y,Liu Z,Ge R,et al.Chem.Commun.,2015,51:11233-11235

    [21]Li J,Zhu Q,Xu Q.Chem.Commun.,2015,51:10827-10830

    [22]Xia Y,Xia X,Peng H.J.Am.Chem.Soc.,2015,137:7947-7966

    [23]Peng H,Xie S,Park J,et al.J.Am.Chem.Soc.,2013,135:3780-3783

    [24]Peng H,Park J,Zhang L.J.Am.Chem.Soc.,2015,137:6643-6652

    [25]Xia X,Choi S,Herron J,et al.J.Am.Chem.Soc.,2013,135:15706-15709

    [26]Niu W,Zhang W,et al.Chem.Mater.,2014,26:2180-2186

    [27]Shao Z,Zhu W,Wang H,et al.J.Phys.Chem.C,2013,117:14289-14294

    [28]Zhang H,Jin M,Xia Y.Angew.Chem.,Int.Ed.,2012,51:7656-7673

    [29]Wang X,Liu D,Song S,et al.J.Am.Chem.Soc.,2013,135:15864-15872

    [30]Chandra M,Xu Q.J.Power Sources,2006,159:855-860

    [31]Zeng J,Zhang Q,Chen J Y,et al.Nano Lett.,2010,10:30-35

    Shape-Controlled Synthesis of Pd Nanocrystals with Remarkable Enhanced Catalytic Performance

    A morphology-evolution of Pd nanocrystals was successfully triggered by using N,N-dimethyloctadecylammonium bromide acetate sodium(OTAB-Na)as the capping agent.Uniform and monodisperse dendritic and concave Pd nanocrystals were synthesized by directly changing the pH value of the reaction solution.In the following catalytic test of liquid-phase reduction of 4-nitrophenol(4-NP)by ammonia-borane complex(AB),the asobtained Pd nanocrystals exhibit a shape-dependent catalytic properties,in which the dendritic nanosphere is the better one.

    Pd;noble metal;nanoparticle;concave;dendritic

    O614.82+3

    A

    1001-4861(2017)10-1835-08

    10.11862/CJIC.2017.193

    RU Ting-Ting1CHU Xue-Feng1,2SHIYing-Yan1ZHENGWen-Qi1GUOYan1YANG Xiao-Tian*,2JIANGKai*,3
    (1Department of Basic Science,Jilin Jianzhu University,Changchun 130118,China)
    (2Jilin Provincial Key Laboratory of Architectural Electricity&Comprehensive Energy Saving,Jilin Jianzhu University,Changchun 130118,China)
    (3Affiliated Hospital to Changchun University of Chinese Medicine,Changchun 130021,China)

    2017-03-21。收修改稿日期:2017-07-19。

    國家自然基金(No.51672103)和國家科技部重大專項(No.2016YFB0401103)資助項目。*

    。 E-mail:hanyxt@163.com,jiangkaitiamei@sina.com

    猜你喜歡
    凹面初學(xué)長春
    初夏
    搜集凹面錐體
    給初學(xué)寫作者的意見
    文苑(2020年4期)2020-05-30 12:35:42
    印語長春
    談初學(xué)書法選帖五忌
    減壓小心機
    決策探索(2016年21期)2016-11-28 09:30:57
    輪滑苦與樂
    《初學(xué)記》文部資料探微
    走進長春凈月潭
    長春——我熱愛的森林城
    亚洲成av人片在线播放无| 久久欧美精品欧美久久欧美| 色综合亚洲欧美另类图片| 听说在线观看完整版免费高清| 最近中文字幕高清免费大全6| 久久国内精品自在自线图片| 精品久久久久久久久久久久久| 啦啦啦韩国在线观看视频| 三级男女做爰猛烈吃奶摸视频| 天天躁夜夜躁狠狠久久av| 欧美bdsm另类| 日日干狠狠操夜夜爽| 国产视频内射| 欧美高清成人免费视频www| 国产黄片美女视频| 在线观看一区二区三区| 激情 狠狠 欧美| 人妻少妇偷人精品九色| 可以在线观看毛片的网站| 亚洲最大成人中文| 国产午夜精品久久久久久一区二区三区| 麻豆国产97在线/欧美| 日韩欧美精品免费久久| 级片在线观看| 九九在线视频观看精品| 日本wwww免费看| 国产黄片视频在线免费观看| 欧美3d第一页| 亚洲,欧美,日韩| 男人舔奶头视频| 五月玫瑰六月丁香| 亚洲精品国产av成人精品| 午夜精品国产一区二区电影 | 少妇的逼好多水| av卡一久久| 国产精品久久久久久久久免| 国产精品一区二区三区四区免费观看| 3wmmmm亚洲av在线观看| 69av精品久久久久久| 国产片特级美女逼逼视频| 亚洲精品乱码久久久v下载方式| 色5月婷婷丁香| 身体一侧抽搐| 精品午夜福利在线看| 最后的刺客免费高清国语| 国产91av在线免费观看| 国产精品1区2区在线观看.| 国产不卡一卡二| 亚洲av一区综合| 午夜亚洲福利在线播放| 简卡轻食公司| 99热这里只有是精品50| 国语自产精品视频在线第100页| 搞女人的毛片| 精品久久久久久久久亚洲| 只有这里有精品99| 亚洲精品国产成人久久av| 午夜精品在线福利| videos熟女内射| 免费看光身美女| av播播在线观看一区| 欧美性猛交╳xxx乱大交人| 午夜精品在线福利| 看黄色毛片网站| 日韩欧美 国产精品| av又黄又爽大尺度在线免费看 | av在线亚洲专区| 一级黄色大片毛片| 日日撸夜夜添| 亚洲精品国产av成人精品| 久久人妻av系列| 国产精品久久久久久久电影| 亚洲精品乱久久久久久| 成人av在线播放网站| 欧美一级a爱片免费观看看| 大话2 男鬼变身卡| 亚洲国产欧美人成| 久久久国产成人精品二区| 免费av观看视频| 91午夜精品亚洲一区二区三区| АⅤ资源中文在线天堂| 日本欧美国产在线视频| 久久这里有精品视频免费| 小说图片视频综合网站| 国产av不卡久久| 亚洲va在线va天堂va国产| 蜜桃久久精品国产亚洲av| 国产伦理片在线播放av一区| 国产午夜精品久久久久久一区二区三区| 在线观看美女被高潮喷水网站| 麻豆成人午夜福利视频| 91狼人影院| 永久免费av网站大全| 免费不卡的大黄色大毛片视频在线观看 | 黄片wwwwww| 久久综合国产亚洲精品| 亚洲久久久久久中文字幕| 成年版毛片免费区| 亚洲国产精品专区欧美| 亚洲五月天丁香| 欧美成人午夜免费资源| 国产精品乱码一区二三区的特点| 99久久中文字幕三级久久日本| 欧美成人a在线观看| av黄色大香蕉| 一区二区三区高清视频在线| 色综合站精品国产| 免费看日本二区| 成人高潮视频无遮挡免费网站| 村上凉子中文字幕在线| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的 | 日日啪夜夜撸| 欧美一区二区亚洲| 高清毛片免费看| 成年版毛片免费区| 亚洲精品色激情综合| 日本一二三区视频观看| 人人妻人人看人人澡| 日本五十路高清| 超碰av人人做人人爽久久| 久久精品国产99精品国产亚洲性色| 我要看日韩黄色一级片| 极品教师在线视频| 黄色日韩在线| 国产一区二区在线av高清观看| 一本一本综合久久| 国产伦理片在线播放av一区| av免费在线看不卡| 午夜激情欧美在线| 国产精品.久久久| 热99在线观看视频| 国内精品宾馆在线| 亚洲欧美成人精品一区二区| 国内揄拍国产精品人妻在线| 亚洲av免费高清在线观看| 国产激情偷乱视频一区二区| 午夜福利在线在线| 日韩av在线大香蕉| 国产精品野战在线观看| 久久精品国产自在天天线| 毛片一级片免费看久久久久| 天堂网av新在线| 天天躁夜夜躁狠狠久久av| 一级二级三级毛片免费看| 婷婷色av中文字幕| 老司机影院毛片| 一边亲一边摸免费视频| 在线免费观看不下载黄p国产| 中文资源天堂在线| 菩萨蛮人人尽说江南好唐韦庄 | 边亲边吃奶的免费视频| 永久网站在线| 欧美又色又爽又黄视频| 舔av片在线| 热99re8久久精品国产| a级一级毛片免费在线观看| 国产精品一区二区在线观看99 | 精品一区二区免费观看| 色5月婷婷丁香| 日本免费一区二区三区高清不卡| 丰满乱子伦码专区| 热99re8久久精品国产| kizo精华| 国产极品天堂在线| 嫩草影院精品99| 少妇人妻精品综合一区二区| 色5月婷婷丁香| 国产一区二区三区av在线| 久久久精品94久久精品| 午夜免费激情av| 麻豆国产97在线/欧美| 成人高潮视频无遮挡免费网站| 两个人的视频大全免费| 成年女人永久免费观看视频| 日日干狠狠操夜夜爽| 九九爱精品视频在线观看| 日韩,欧美,国产一区二区三区 | 国语对白做爰xxxⅹ性视频网站| 你懂的网址亚洲精品在线观看 | 日本一二三区视频观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美另类亚洲清纯唯美| 丰满乱子伦码专区| 久久亚洲精品不卡| 91久久精品电影网| 国内精品一区二区在线观看| 国产高清三级在线| 在现免费观看毛片| 汤姆久久久久久久影院中文字幕 | av福利片在线观看| 真实男女啪啪啪动态图| 狠狠狠狠99中文字幕| 国产伦理片在线播放av一区| 99热这里只有是精品在线观看| 99热网站在线观看| 欧美97在线视频| 最近视频中文字幕2019在线8| 免费观看精品视频网站| 亚洲成人精品中文字幕电影| 成人美女网站在线观看视频| 国产高清有码在线观看视频| 美女脱内裤让男人舔精品视频| 国产单亲对白刺激| 99在线人妻在线中文字幕| 最近中文字幕2019免费版| 99热这里只有是精品在线观看| 国产亚洲最大av| 欧美日韩一区二区视频在线观看视频在线 | 成年版毛片免费区| 国产一级毛片在线| 免费av毛片视频| 国产视频内射| 久久久久久久久久黄片| 国产在线男女| 卡戴珊不雅视频在线播放| 自拍偷自拍亚洲精品老妇| 亚洲欧美成人精品一区二区| 男人和女人高潮做爰伦理| 亚洲精品乱久久久久久| 亚洲精品aⅴ在线观看| 99久久精品一区二区三区| 日韩 亚洲 欧美在线| 国产高清有码在线观看视频| av在线老鸭窝| 2021天堂中文幕一二区在线观| 久久精品久久精品一区二区三区| 亚洲精品一区蜜桃| 亚洲欧美精品自产自拍| 亚洲国产欧美人成| 一级av片app| 人人妻人人澡人人爽人人夜夜 | 日韩欧美三级三区| 久久国内精品自在自线图片| 国产中年淑女户外野战色| 欧美成人午夜免费资源| 午夜视频国产福利| 寂寞人妻少妇视频99o| 成人国产麻豆网| 淫秽高清视频在线观看| 黄色配什么色好看| 男的添女的下面高潮视频| 国产午夜福利久久久久久| 哪个播放器可以免费观看大片| 亚洲av成人精品一二三区| 国产精品国产三级国产av玫瑰| 一级毛片久久久久久久久女| 99热这里只有是精品在线观看| 天堂网av新在线| 亚洲成色77777| 国产真实伦视频高清在线观看| 成人特级av手机在线观看| 中文字幕免费在线视频6| 成年女人看的毛片在线观看| 男女国产视频网站| 中文字幕久久专区| 亚洲精品自拍成人| 性插视频无遮挡在线免费观看| 国产综合懂色| 婷婷六月久久综合丁香| 一本一本综合久久| 天天一区二区日本电影三级| 欧美性猛交黑人性爽| 亚洲欧美日韩高清专用| 三级男女做爰猛烈吃奶摸视频| 国产亚洲最大av| av在线老鸭窝| 亚洲国产精品专区欧美| 久久久久网色| 成年免费大片在线观看| 国产高潮美女av| 免费黄色在线免费观看| 国产一区亚洲一区在线观看| 婷婷色综合大香蕉| 天天躁夜夜躁狠狠久久av| 国语自产精品视频在线第100页| 免费一级毛片在线播放高清视频| 乱码一卡2卡4卡精品| 亚洲人成网站高清观看| 亚洲av成人精品一区久久| 国产午夜精品论理片| 亚洲国产日韩欧美精品在线观看| 高清在线视频一区二区三区 | 日韩强制内射视频| 蜜臀久久99精品久久宅男| 18+在线观看网站| 少妇人妻精品综合一区二区| 国产国拍精品亚洲av在线观看| av福利片在线观看| 国产又黄又爽又无遮挡在线| 男人的好看免费观看在线视频| 日韩制服骚丝袜av| .国产精品久久| 国产午夜精品一二区理论片| 亚洲最大成人手机在线| 日韩大片免费观看网站 | 午夜精品国产一区二区电影 | 中国美白少妇内射xxxbb| 国产av一区在线观看免费| 国产一级毛片在线| 在线播放国产精品三级| 观看免费一级毛片| 秋霞伦理黄片| 精品少妇黑人巨大在线播放 | 日韩大片免费观看网站 | 国产精品精品国产色婷婷| 国产精品爽爽va在线观看网站| 欧美精品国产亚洲| 亚洲自偷自拍三级| av视频在线观看入口| av卡一久久| 欧美xxxx性猛交bbbb| 亚洲久久久久久中文字幕| 99久久成人亚洲精品观看| 国产伦一二天堂av在线观看| 国产白丝娇喘喷水9色精品| 国产老妇女一区| av播播在线观看一区| 丰满人妻一区二区三区视频av| 亚洲国产欧美人成| 搡老妇女老女人老熟妇| 日本一二三区视频观看| 中文字幕亚洲精品专区| 久久精品国产亚洲av涩爱| 中国美白少妇内射xxxbb| 国产爱豆传媒在线观看| 99热网站在线观看| 日本爱情动作片www.在线观看| 中文乱码字字幕精品一区二区三区 | 精品久久久久久久人妻蜜臀av| 在线天堂最新版资源| 少妇人妻一区二区三区视频| 有码 亚洲区| 美女内射精品一级片tv| 三级国产精品片| 亚洲三级黄色毛片| 亚洲欧美日韩东京热| 边亲边吃奶的免费视频| 哪个播放器可以免费观看大片| 久久精品影院6| 免费搜索国产男女视频| 热99re8久久精品国产| 欧美另类亚洲清纯唯美| 国产激情偷乱视频一区二区| 九九在线视频观看精品| 男人舔女人下体高潮全视频| 九色成人免费人妻av| 最近中文字幕高清免费大全6| av女优亚洲男人天堂| 国产久久久一区二区三区| 国产在线男女| 三级国产精品欧美在线观看| 国产一区二区在线观看日韩| 亚洲av电影在线观看一区二区三区 | 亚洲国产最新在线播放| 中文字幕制服av| 中国美白少妇内射xxxbb| 国产精品一区二区性色av| 久久久久久久久大av| 99久久无色码亚洲精品果冻| 如何舔出高潮| 国产精品不卡视频一区二区| 免费观看在线日韩| www日本黄色视频网| 成人漫画全彩无遮挡| 99在线视频只有这里精品首页| 亚洲美女搞黄在线观看| 97超碰精品成人国产| 国产免费一级a男人的天堂| 日本wwww免费看| 最近中文字幕高清免费大全6| 久久精品国产亚洲网站| 国产视频内射| av免费在线看不卡| 亚洲高清免费不卡视频| 亚洲欧美清纯卡通| 只有这里有精品99| 亚洲成人中文字幕在线播放| 视频中文字幕在线观看| 别揉我奶头 嗯啊视频| 在线天堂最新版资源| 国产精品三级大全| 国内少妇人妻偷人精品xxx网站| 亚洲欧美清纯卡通| 黄色一级大片看看| 中文欧美无线码| 亚洲欧美日韩卡通动漫| 日韩欧美国产在线观看| 天天躁夜夜躁狠狠久久av| 精品免费久久久久久久清纯| 亚洲av不卡在线观看| 亚洲在久久综合| 一本一本综合久久| 我的老师免费观看完整版| 久久韩国三级中文字幕| 亚洲av成人精品一区久久| 国产精品国产三级国产专区5o | 成人高潮视频无遮挡免费网站| 欧美一区二区精品小视频在线| 国产精品人妻久久久影院| 午夜亚洲福利在线播放| 国语对白做爰xxxⅹ性视频网站| 99热全是精品| 最近最新中文字幕大全电影3| 人人妻人人看人人澡| 免费无遮挡裸体视频| 国产亚洲5aaaaa淫片| 国产欧美另类精品又又久久亚洲欧美| 青春草亚洲视频在线观看| 插阴视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 啦啦啦观看免费观看视频高清| 白带黄色成豆腐渣| 婷婷色麻豆天堂久久 | 又爽又黄无遮挡网站| 精品国内亚洲2022精品成人| 小蜜桃在线观看免费完整版高清| 久久精品人妻少妇| 国产伦精品一区二区三区视频9| 成人漫画全彩无遮挡| 非洲黑人性xxxx精品又粗又长| 国产在线男女| 国产乱人视频| 国产精品,欧美在线| 91精品伊人久久大香线蕉| 欧美丝袜亚洲另类| av视频在线观看入口| 一级毛片电影观看 | 青春草亚洲视频在线观看| 亚州av有码| 国产黄a三级三级三级人| 亚洲av成人精品一二三区| av.在线天堂| www.av在线官网国产| 久久精品夜色国产| 欧美成人一区二区免费高清观看| 中文欧美无线码| 亚洲欧洲国产日韩| 边亲边吃奶的免费视频| 亚洲精品国产成人久久av| 久久久a久久爽久久v久久| 精品久久久久久久久亚洲| 久久午夜福利片| 免费av观看视频| 国产精品无大码| 欧美精品国产亚洲| 国产精品伦人一区二区| 人体艺术视频欧美日本| 免费大片18禁| 青春草视频在线免费观看| av免费观看日本| 大香蕉97超碰在线| 成人综合一区亚洲| www日本黄色视频网| 亚洲欧美一区二区三区国产| 亚洲色图av天堂| 床上黄色一级片| 99久久成人亚洲精品观看| 国产精品无大码| 麻豆成人午夜福利视频| 国产伦在线观看视频一区| 亚洲国产欧美在线一区| 欧美成人精品欧美一级黄| 成年女人看的毛片在线观看| 欧美精品国产亚洲| 18禁动态无遮挡网站| 麻豆久久精品国产亚洲av| 观看美女的网站| 国产大屁股一区二区在线视频| 中文欧美无线码| 国产精品嫩草影院av在线观看| 免费看光身美女| 床上黄色一级片| 国产在视频线在精品| 国产一区二区三区av在线| 男人和女人高潮做爰伦理| 国产免费男女视频| 长腿黑丝高跟| 亚洲人成网站在线播| 亚洲精品aⅴ在线观看| 欧美一级a爱片免费观看看| 国产午夜福利久久久久久| 亚洲综合色惰| 久久午夜福利片| 精品人妻一区二区三区麻豆| 欧美不卡视频在线免费观看| 亚洲怡红院男人天堂| 国产黄片视频在线免费观看| 51国产日韩欧美| 赤兔流量卡办理| 国产爱豆传媒在线观看| 蜜桃久久精品国产亚洲av| 精品酒店卫生间| 日本午夜av视频| 嫩草影院入口| 高清在线视频一区二区三区 | 亚洲性久久影院| 国产亚洲5aaaaa淫片| 嫩草影院精品99| 国产乱来视频区| av专区在线播放| 日韩欧美 国产精品| 高清av免费在线| 最近2019中文字幕mv第一页| 国产精品野战在线观看| ponron亚洲| 国产男人的电影天堂91| 禁无遮挡网站| 天堂av国产一区二区熟女人妻| 我的老师免费观看完整版| 免费大片18禁| 久久精品熟女亚洲av麻豆精品 | 欧美激情久久久久久爽电影| 听说在线观看完整版免费高清| 看片在线看免费视频| 亚洲av福利一区| videos熟女内射| 色噜噜av男人的天堂激情| 国产视频内射| 亚洲精品久久久久久婷婷小说 | 久久久精品大字幕| 国产精品国产三级国产av玫瑰| 蜜桃久久精品国产亚洲av| 亚洲精品成人久久久久久| 婷婷色av中文字幕| 午夜精品国产一区二区电影 | 嫩草影院入口| 亚洲色图av天堂| 一二三四中文在线观看免费高清| 不卡视频在线观看欧美| 亚洲精品国产成人久久av| 精品久久久噜噜| 丰满人妻一区二区三区视频av| 特大巨黑吊av在线直播| 国产一区二区三区av在线| 成年免费大片在线观看| 日日啪夜夜撸| 免费黄色在线免费观看| 久久久久久九九精品二区国产| 国产真实乱freesex| 我的老师免费观看完整版| 大香蕉97超碰在线| 99视频精品全部免费 在线| 日日摸夜夜添夜夜爱| 国产成人freesex在线| 亚洲欧美日韩卡通动漫| 男女边吃奶边做爰视频| 久久久精品大字幕| 国产男人的电影天堂91| 在线播放国产精品三级| 在线观看av片永久免费下载| 日韩av在线大香蕉| 女人久久www免费人成看片 | 亚洲在线观看片| 美女黄网站色视频| 国产精品永久免费网站| 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲不卡免费看| 久久久久久伊人网av| 免费黄网站久久成人精品| 少妇被粗大猛烈的视频| 亚洲人成网站在线播| 成人国产麻豆网| 欧美高清性xxxxhd video| 日本色播在线视频| 91精品国产九色| 日韩精品有码人妻一区| 久久久国产成人精品二区| 天堂中文最新版在线下载 | 免费av观看视频| 舔av片在线| 欧美日本视频| 我要搜黄色片| 大香蕉久久网| 91久久精品国产一区二区成人| 日韩,欧美,国产一区二区三区 | 欧美人与善性xxx| 嫩草影院精品99| 日韩国内少妇激情av| 少妇猛男粗大的猛烈进出视频 | 国产成人aa在线观看| 日韩av不卡免费在线播放| 久久精品国产亚洲网站| 亚洲欧美日韩无卡精品| 男人狂女人下面高潮的视频| 看非洲黑人一级黄片| 别揉我奶头 嗯啊视频| 色吧在线观看| 午夜精品一区二区三区免费看| 国产亚洲91精品色在线| a级一级毛片免费在线观看| 中国国产av一级| 日韩成人伦理影院| 观看美女的网站| 免费无遮挡裸体视频| 最后的刺客免费高清国语| 欧美日韩一区二区视频在线观看视频在线 | 天堂影院成人在线观看| 只有这里有精品99| 亚洲成人久久爱视频| 国产老妇女一区| 国产黄色小视频在线观看| 青春草视频在线免费观看| 婷婷六月久久综合丁香| 中文字幕亚洲精品专区| 国产精品福利在线免费观看| 国产精品一区www在线观看| 欧美三级亚洲精品| 亚洲婷婷狠狠爱综合网| 国产伦一二天堂av在线观看| 男女国产视频网站| 一级爰片在线观看| 亚洲国产精品专区欧美|