• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈀納米粒子的形貌可控合成與催化性能

    2017-11-01 10:22:42茹婷婷初學(xué)峰石瑩巖鄭文琦楊小天
    無機化學(xué)學(xué)報 2017年10期
    關(guān)鍵詞:凹面初學(xué)長春

    茹婷婷 初學(xué)峰,2 石瑩巖 鄭文琦 郭 研 楊小天 蔣 鍇

    鈀納米粒子的形貌可控合成與催化性能

    茹婷婷1初學(xué)峰1,2石瑩巖1鄭文琦1郭 研1楊小天*,2蔣 鍇*,3

    (1吉林建筑大學(xué)基礎(chǔ)科學(xué)部,長春 130118)
    (2吉林建筑大學(xué)吉林省建筑電氣綜合節(jié)能重點實驗室,長春 130118)
    (3長春中醫(yī)藥大學(xué)附屬醫(yī)院,長春 130021)

    借助于一種全新的表面活性劑N,N-dimethyloctadecylammonium bromide acetate sodium(OTAB-Na),成功實現(xiàn)了對小尺寸鈀納米粒子微結(jié)構(gòu)的控制。通過對合成條件的微擾,高度均勻且分散性良好的枝化結(jié)構(gòu)和凹面體結(jié)構(gòu)的鈀納米粒子被成功地制備。催化測試(利用氨硼烷作為氫化試劑來還原4-硝基苯酚為4-胺基苯酚)發(fā)現(xiàn),鈀納米粒子的催化活性與其微觀納米結(jié)構(gòu)相關(guān),其中枝化結(jié)構(gòu)的鈀納米粒子表現(xiàn)出了更為突出的催化性能。

    鈀;貴金屬;納米粒子;凹面體;枝化結(jié)構(gòu)

    0 Introduction

    During the past decades,noble metal nanostructures have attracted considerable research interest because of their unique chemical and physical properties are widely applied in electronic,catalytic,photonic,biologic and energy-related areas[1-4].However,their ultra-low abundances in nature and the ultra-high prices have seriously limited their further applications.Thus,optimizing the properties of noble metals to reduce the overall cost has become one of the most important and urgent problems to be solved in nano-science.In generally speaking,the morphologies of noble metals can strongly affect their properties,especially for a catalytic reaction[5-8].That is because the stability of intermediate is highly depending on the interplanar spacing of the noble metals,which is determined by the morphology strongly.Designing and fabricating the noble metals with desirable nanostructures can endow them with superior catalytic activity,stability and selectivity.

    Among the various kinds of noble metal nanostructures,there are two specially ones,highly dendritic and concave morphologies,which have been paid more attention in the recent years.For a dendritic nanostructure,it has ultra-small building block and open channel.Thus such kind of noble metals always have high surface area and be rich in edge/corner atoms,which makes them play the important role of highly active sites in catalytic reactions[9].On the other hand,although the concave morphology also possess a large number of atoms at edges,the more important structural feature is the exposed high-index surface.As a result of the high density of low-coordinated atoms in the forms of atomic steps and kinks,high-index facets are generally more active toward specific reactions than low-index planes that are composed of closely packed surface atoms[10].Many kinds of dendritic and concave noble metal nanostructures are successfully fabricated.For instance of dendritic nanostructure,directly growth can achieve the main purpose.Wang and co-works have shown us a series of excellent works by using block copolymers to induce the formation of highly dendritic Pt or Pt on Pd nanostructures[11-13].Huang′s group has reported a facile synthesis by using hexadecylpyridinium chloride as capping agents to produce Pd nanospheres with highly ordered porous features and perpendicular pore channels[9].Very recently,Pt nanohelices with highly ordered horizontal pore channels are also created by Wang and co-works.A new kinds of surfactant,N,N-dimethyloctadecylammonium bromide acetate sodium (OTAB-Na)exhibited powerful capability to control the growth of Pt metals[14].On the other hand,for concave nanostructures,seeded growth method and galvanic replacement reaction-assisted process are more efficient.Xiong′s group has found that Ru3+can induce the morphology-evolution of Pd nanostructures from cube to concave cube[15].The similar phenomenon has been also observed by Zheng′s group,that they found Cu2+can assist the formation of concave Pt nanostructures[10].Moreover,concave Au and Au@Pd nanostructures are successfully obtained by a seeded method[16-18].By carefully referring to the above mentioned manuscripts,it is considered that investigating the shape-evolution process of noble metals is very important to optimize their catalytic properties.However,to the best of our knowledge,the shape-evolution process of noble metals from concave to dendritic nanocrystals is still no observed in one synthetic system.Thus,the challenge in the synthesis still exists.

    Herein Pd element has been chosen as the research objective owing to its high performance in many industrial applications.Nanostructured Pd serves as the primary catalyst for various organic reactions and also has remarkable performance in hydrogen storage and hydrogen sensing[19-21].Thus,investigating the morphology-effect of Pd nanocatalyst is very important.Inspired by the above mentioned representative works,OTAB-Na has been used here.Fortunately,a morphology-evolution has been observed.In a typical synthesis,a transparent aqueous solution contained OTAB-Na and certain amount of NaOH or HCl is heated at 60℃for a while,following by addition of Na2PdCl4solution and freshly prepared aqueous ascorbic acid solution in turn.The reaction is holding for 3 hours and finally the resulting colloidal product is collected by centrifugation and washed three times with ethanol.

    1 Experimental

    1.1 Preparation of N,N-dimethyloctadecylammonium bromide acetatesodium salt(C18H37-N(CH3)2(CH2COONa)·Br,OTAB-Na)

    This synthesis is according to the recently reported method[14].Typically,10 mmol N,N-dimethyloctadecylamine was reacted with 5 mmol sodium bromoacetate in 50 mL ethanol at 80℃for 24 h.Herein,it should be noticed that excess amount of N,N-dimethyloctadecylamine was added in the reaction system to promote the quaternization reaction.After cooling down to room temperature,the solution was concentrated on a rotary evaporator to about 4 mL,following by addition of excess anhydrous diethyl ether to help the precipitation of OTAB-Na product.And in this step,the un-reacted N,N-dimethyloctadecylamine can be removed easily and completely.

    1.2 Preparation of Pd nanocubes

    OTAB-Na(90 mg)was dissolved in 10 mL water to form a transparent solution by heating the mixture at 60℃for a while.Then 2 mL HCl aqueous solution(0.1 mol·L-1)was added followed by injection of 1 mL Na2PdCl4solution (20 mmol·L-1)and 1 mL ascorbic acid solution(0.1 mol·L-1)in turn.Three hours later,the products were collected by centrifugation with the help of ethanol (ethanol makes the important role of antisolvent towards OTAB-Na molecules)and washed three times with water and ethanol.

    1.3 Preparation of Pd concave nanocubes

    OTAB-Na(90 mg)was dissolved in 10 mL water to form a transparent solution by heating the mixture at 60℃for a while.Then 1 mL Na2PdCl4solution(20 mmol·L-1)and 1 mL ascorbic acid solution (0.1 mol·L-1)were in turn.Three hours later,the products were added collected by centrifugation with the help of ethanol and washed three times with water and ethanol.

    1.4 Preparation of Pd seaanemone-likenanospheres

    OTAB-Na(90 mg)was dissolved in 10 mL water to form a transparent solution by heating the mixture at 60℃for a while.Then 2 mL NaOH aqueous solution(0.1 mol·L-1)was added followed by injection of 1 mL Na2PdCl4solution(20 mmol·L-1)and 1 mL ascorbic acid solution (0.1 mol·L-1)in turn.Three hours later,the products were collected by centrifugation with the help of ethanol and washed threetimeswith water and ethanol.

    1.5 Preparation of Pd octahedrons

    OTAB-Na(90 mg)was dissolved in 10 mL water to form a transparent solution by heating the mixture at 60℃for a while.Then 3 mL NaOH aqueous solution(0.1 mol·L-1)was added followed by injection of 1 mL Na2PdCl4solution(20 mmol·L-1)and 1 mL ascorbic acid solution (0.1 mol·L-1)in turn.Three hours later,the products were collected by centrifugation with the help of ethanol and washed three times with water and ethanol.

    1.6 Characterization

    The X-ray diffraction patterns of the products were collected on a Rigaku-D/max 2500 V X-ray diffractometer with Cu Kα radiation(λ=0.154 18 nm),with an operation voltage and current maintained at 40 kV and 40 mA(2θ=30°~70°).Transmission electron microscopic(TEM)images were obtained with a TECNAI G2 high-resolution transmission electron microscope operating at 200 kV.

    1.7 Liquid-phase reduction of 4-nitrophenol(4-NP)by ammonia-borane complex(AB)

    The catalytic test was directly taken in a quartz curette and monitored by the UV-Vis spectrophotometer(UV-3600).4-NP ions (0.01 mol·L-1)aqueous solution was prepared by mixing 4-NP and NaOH in water with the molar ratio of 1∶1.For a typical catalytic process,0.02 mL nitrophenol and 0.05 mL AB aqueous solution were mixed in 3 mL H2O.Then 100μL Pd colloid solution(0.002 mol·L-1,details are shown in Table S1)was quickly added.The intensity of the absorption peak at 400 nm for 4-NPions was monitored along with time.

    2 Results and discussion

    The structure information about the as-formed Pd nanostructures are first characterized by transmission electron microscopy(TEM),high-resolution transmission electron microscopy (HRTEM),and powder X-ray diffraction(XRD).As shown in Fig.S1(a low-magnification TEM image),monodisperse nanoparticles with diameters of approximately 20 nm are obtained.No scattered and smaller-sized Pd nanoparticles could be found,suggesting the high purity and relatively high quality.Interestingly,from the enlarged TEM image in Fig.1a and b,we can see that the products exhibit a typical concave nanostructure:each face of the cube is concave at the center.Referring to the previous reports[15],the concave cubes are enclosed by(730)facets(as shown in Fig.1c).Further X-ray diffraction was conducted on product nanocubes spread on a glass substrate.The pattern is well corresponding to fcc Pd metal(Fig.2,PDF No.87-0641).

    Fig.1 TEM images of(a)to(c):concave Pd cubes;(d)to(f):dendritic Pd nanospheres

    Very interesting,it is found that the morphology of Pd nanocrystal is highly dependent on the pH value of the growth solution.With the corresponding TEM image shown in Fig.1d,uniform and monodisperse Pd nanospheres with highly porous structural feature are obtained when 2 mL NaOH (0.1 mol·L-1)aqueous solution is added in the solution before the injection of Pd metal salt.Compared with the concave cubes,the particle size is grown up to sub 50 nm in average.Importantly,it is found that the building blocks of the nanospheres are highly dendritic short nanowires,which could be distinguished easily from the enlarge TEM image in Fig.1e.The HR-TEM image in Fig.1f confirms that the short nanowires are grew along with Pd 〈111〉direction.Further increasing the feeding amount of NaOH aqueous solution could destroy the original 3D nanostructures,but the final products are uniform sub 5 nm octahedrons(Fig.S2).Another control experiment has also been taken by decreasing the pH value of the growth solution by addition of HCl aqueous solution.Fig.S3 is the typical TEM result which obtained by the addition of 2 mL HCl(0.1 mol·L-1).Sub 11 nm Pd cubes are observed.There is no concave particles could be found from the TEM images.We also investigate the temperature-effect towards the shape-evolution of Pd nanocrystal.With the data shown in Fig.S4,under the similar synthetic condition (increasing the reaction temperature to 80℃),sea anemone-like nanospheres are disappeared and the products exhibit irregular shapes.

    Fig.2 XRD patterns of dendritic nanospheres and concave nanocubes

    It is well known that the morphology of Pd nanocrystal is determined by the deposited rate of Pd atoms in different directions.The morpholoty-evolution is descried in Fig.3.For acid solution,protonation reaction of OTAB-Na will happen,as a result OTAB-Na should be in the form of OTAB-H(OTAB-Na+H+→OTAB-H+Na+).Thus,the coordination ability of the capping agent to Pd2+becomes so weak.At the same time,Br-ions play the critical role to induce the whole synthesis because that they can stabilize the{100}faces of Pd nanocrystals efficiently[22-25].The structural formula of OTAB-Na(as show in Fig.S5)indicates its weak alkalinity (OTAB-Na+H2O?OTBA-H+OH-),thus the OTAB-Na molecule can react with water to generate free OH-ions under heating treatment(without addition of HCl).The increased pH value enhances the reducing ability of ascorbic acid (AA).Compared with the acid condition,the reaction rate could be highly accelerated when no HCl is added in the growth solution[26-27].As reported previously,when the side faces are capped by Br-,the reduced atoms prefer to nucleate and grow from the edges and corners.When the reducing rate of metal atoms is greater than the surface diffusion rate on the particle,the newly deposited atoms will not migrate timely to the side surfaces,causing the formation of concave nanocubes[27-28].Thus,the formation mechanism of the concave nanocubes is easy to be understood that the large amount of as-generated Pd atoms are deposited along with the 〈111〉 direction instead of{100}faces.Furthermore,such growth orientation could be enlarged by further increasing the pH value of the reaction solution by direct addition of NaOH aqueous solution in.When 3 mL NaOH aqueous solution(0.1 mol·L-1)is added,no Pd atoms deposited on{100}surface,but grew along with 〈111〉direction to form the twist and short nanowires.At the same time,it is believed that in such strong alkaline solution, OTAB-Na is dissociated completely.The presence of-COO-groups makes the long alkyl chains bonded on the surface of Pd atoms strongly.By the help of van der Waals force,numbers of short Pd nanowires are assembled together to form a sea anemone-like porous nanospheres with highly dendritic structural feature.It is the first time that using one kind of surfactants induces the formation of both the dendritic and concave nanostructures successfully,which could help us to investigate the morphology-effect of Pd nanocrystals for the catalytic performances in-depth.As a short summary,OTAB-Na plays the key role in our synthesis.Compared with the traditional quaternary ammonium salt,such as CTAB and CTAC,the presence of carboxyl group in OTAB-Na makes it more different.Firstly,OTAB-Na can hydrolyze partly and generate free OH-in the reaction solution,which could speed up the reducing rate and change the atom-deposited form.Secondly,carboxyl group increases the bonding force between surfactants and generated noble metal atoms.In such condition,some special behaviors of the organic molecules can shift to the noble metals.These are considered as the main reasons for the morphologyevolution of Pd nanocrystals.

    Fig.3 Schematic illustration of the shape evolution of Pd nanocrystals

    Fig.4 Catalytic test of dendritic and concave Pd nanocrystals in liquid-phase reduction of 4-NPby AB

    The catalytic liquid-phase reduction of pnitrophenol(4-NP)by ammonia borane(AB)is chosen here to help us to evaluate the catalytic performances of dendritic and concave Pd nanoparticles.Compared with the traditional hydrogenation reagent,NaBH4,AB compound is safer and has higher hydrogen capacity[29-30].Using AB to instead of NaBH4has become the research hot spot in recent years.Before the starting of the catalytic reaction,NaOH hasbeen added in 4-NPaqueous solution to make the formation of 4-NP ions,which has strong absorption peak at 400 nm.The whole catalytic process is monitored by UV-Vis spectrophotometer.Fig.4a shows the typical conversion ratio of 4-NPas function of reaction time over two catalysts under the same conditions.Concave cubes have shown much poorer catalytic performance.18 min later,only about 33%4-NP has been conversed.On the opposite,the catalytic activity of dendritic Pd nanospheres is much higher.With the addition of the catalyst in the reaction system,the original yellow solution faded fast and finally became colorless with 18 min.The corresponding plot of time by dendritic Pd nanospheres is shown in Fig.4a black line.The greater slope of the curve indicating the higher catalytic activity compared with the concave one.Fig.4b shows the ln(C/C0)(C and C0represent the concentration of 4-NP at time (t)and at the beginning of the reaction,respectively)versus time of the two samples at T=19℃.A rapid and almost linear evolution is observed between t and ln(C/C0),which suggesting both of the two plots followed first-order reaction kinetics very well.Thus the rate constant k can be calculated from the rate equation ln(C/C0)=-kt.The value is 0.17 and 0.02 min-1for dendritic and concave Pd nanocrystals at 19℃,respectively.Be similar with the previous reports,increasing the feeding amount of catalyst can largely accelerate the catalyst rate.With the data shown in Fig.S6,the reaction can be finished with 12 min by addition of double amount of catalyst.

    Fig.4c and e have shown the plot of ln(C/C0)versus time at various reaction temperatures of dendritic and concave Pd nanocrystals,respectively.The nearly horizontal lines indicate that increasing the reaction temperature can just increase the reaction rate but can′t change the catalytic kinetic model.The values of k at various temperatures are calculated from the slope of the linear part of each plot in Fig.4c and e to determine the activation energy.Fig.4d and f show the linear fitting of ln k and 1/T.The apparent activation energy (Ea)can be calculated from the Arrhenius equation:ln k=ln A-Ea/(RT)[31].The calculated Eavalue is approximately 35.0 and 20.7 kJ·mol-1for concave and dendritic Pd nanocrystals,respectively,where ln A is the intercept of the line and R is the gas constant.The above results have firmly confirmed that the as-obtained dendritic spheres have higher catalytic properties than the concave cubes.

    Finally,a cycling test has also been done to investigate the catalytic stability of the dendritic nano-spheres.As shown in Fig.5,the reaction time of the second cycle is faster than the first cycle.The possible reason is considered that the hydrogenation reaction in first cycle has clean the surface-bonded OTAB-Na molecules.Thus,the catalytic rate is accelerated.For the following three cycles,the as-obtained dendritic catalyst kept well their activity.The whole reaction could be finished within 15 min.

    Fig.5 Cycling test catalyzed by dendritic nanospheres

    3 Conclusions

    In all,a morphology-evolution process of Pd nanocrystals has been observed by using OTAB-Na as the capping agent.Simply changing the pH value of the growth solution can produce high quality Pd nanocubes,concave nanocubes,dendritic spheres and small sized octahedrons.The main effect of OTAB-Na for the particle growth could be divided to three parts:Br-can stabilize Pd{100}faces;OTAB-Na can react with water to generate OH-and carboxyl group can make the long alkyl chains bonded on the surface of Pd atoms strongly,which could trigger the self-assembling performance.It is the first time to achieve the goal of using one kind surfactant to induce the formation of both the dendritic and concave Pd nanostructures.In the following catalytic test of liquid-phase reduction of 4-NP by AB,the asobtained dendritic spheres have shown higher catalytic properties,which is a typical shape-dependent catalytic properties.

    Supportinginformation is available at http://www.wjhxxb.cn

    [1]Sun Y G,Xia Y N.Science,2002,298:2176-2179

    [2]Chiu C,Wu H,Yao Z,et al.J.Am.Chem.Soc.,2013,135:15489-15500

    [3]Lim B,Jiang M,Camargo P,et al.Science,2009,324:1302-1305

    [4]Xia Y,Xiong Y,Lim B,et al.Angew.Chem.Int.Ed.,2009,48:60-103

    [5]Xia B,Ng W,Wu H,et al.Angew.Chem.Int.Ed.,2012,51:7213-7216

    [6]Xia B,Wu H,Yan Y,et al.J.Am.Chem.Soc.,2013,135:9480-9485

    [7]Jin M,Zhang H,Xie Z,et al.Energy Environ.Sci.,2012,5:6352-6357

    [8]Wu Y,Cai S,Wang D,et al.J.Am.Chem.Soc.,2012,134:8975-8981

    [9]Huang X,Li Y,Chen Y,et al.Angew.Chem.Int.Ed.,2013,52:2520-2524

    [10]Huang X,Zhao Z,Fan J,et al.J.Am.Chem.Soc.,2011,133:4718-4721

    [11]Wang L,Nemoto Y,Yamauchi Y.J.Am.Chem.Soc.,2011,133:9674-9677

    [12]Wang L,Yamauchi Y.J.Am.Chem.Soc.,2009,131:9152-9253

    [13]Wang L,Yamauchi Y.J.Am.Chem.Soc.,2013,135:16762-16765

    [14]Song S,Wang X,Li S,et al.Chem.Sci.,2015,6:6420-6424

    [15]Long R,Rao Z,Mao K,et al.Angew.Chem.Int.Ed.,2015,54:2425-2430

    [16]Lu C,Prasad K,Wu H,et al.J.Am.Chem.Soc.,2010,132:14546-14553

    [17]Yu Y,Zhang Q,Liu B,et al.J.Am.Chem.Soc.,2010,132:18258-18265

    [18]Hong J,Lee S,Lee,Han Y.J.Am.Chem.Soc.,2012,134:4565-4568

    [19]Bosch S,Schutyser W,Koelewijn S,et al.Chem.Commun.,2015,51:13158-13161

    [20]Xia Y,Liu Z,Ge R,et al.Chem.Commun.,2015,51:11233-11235

    [21]Li J,Zhu Q,Xu Q.Chem.Commun.,2015,51:10827-10830

    [22]Xia Y,Xia X,Peng H.J.Am.Chem.Soc.,2015,137:7947-7966

    [23]Peng H,Xie S,Park J,et al.J.Am.Chem.Soc.,2013,135:3780-3783

    [24]Peng H,Park J,Zhang L.J.Am.Chem.Soc.,2015,137:6643-6652

    [25]Xia X,Choi S,Herron J,et al.J.Am.Chem.Soc.,2013,135:15706-15709

    [26]Niu W,Zhang W,et al.Chem.Mater.,2014,26:2180-2186

    [27]Shao Z,Zhu W,Wang H,et al.J.Phys.Chem.C,2013,117:14289-14294

    [28]Zhang H,Jin M,Xia Y.Angew.Chem.,Int.Ed.,2012,51:7656-7673

    [29]Wang X,Liu D,Song S,et al.J.Am.Chem.Soc.,2013,135:15864-15872

    [30]Chandra M,Xu Q.J.Power Sources,2006,159:855-860

    [31]Zeng J,Zhang Q,Chen J Y,et al.Nano Lett.,2010,10:30-35

    Shape-Controlled Synthesis of Pd Nanocrystals with Remarkable Enhanced Catalytic Performance

    A morphology-evolution of Pd nanocrystals was successfully triggered by using N,N-dimethyloctadecylammonium bromide acetate sodium(OTAB-Na)as the capping agent.Uniform and monodisperse dendritic and concave Pd nanocrystals were synthesized by directly changing the pH value of the reaction solution.In the following catalytic test of liquid-phase reduction of 4-nitrophenol(4-NP)by ammonia-borane complex(AB),the asobtained Pd nanocrystals exhibit a shape-dependent catalytic properties,in which the dendritic nanosphere is the better one.

    Pd;noble metal;nanoparticle;concave;dendritic

    O614.82+3

    A

    1001-4861(2017)10-1835-08

    10.11862/CJIC.2017.193

    RU Ting-Ting1CHU Xue-Feng1,2SHIYing-Yan1ZHENGWen-Qi1GUOYan1YANG Xiao-Tian*,2JIANGKai*,3
    (1Department of Basic Science,Jilin Jianzhu University,Changchun 130118,China)
    (2Jilin Provincial Key Laboratory of Architectural Electricity&Comprehensive Energy Saving,Jilin Jianzhu University,Changchun 130118,China)
    (3Affiliated Hospital to Changchun University of Chinese Medicine,Changchun 130021,China)

    2017-03-21。收修改稿日期:2017-07-19。

    國家自然基金(No.51672103)和國家科技部重大專項(No.2016YFB0401103)資助項目。*

    。 E-mail:hanyxt@163.com,jiangkaitiamei@sina.com

    猜你喜歡
    凹面初學(xué)長春
    初夏
    搜集凹面錐體
    給初學(xué)寫作者的意見
    文苑(2020年4期)2020-05-30 12:35:42
    印語長春
    談初學(xué)書法選帖五忌
    減壓小心機
    決策探索(2016年21期)2016-11-28 09:30:57
    輪滑苦與樂
    《初學(xué)記》文部資料探微
    走進長春凈月潭
    長春——我熱愛的森林城
    欧美精品av麻豆av| 宅男免费午夜| 中文字幕亚洲精品专区| 精品少妇一区二区三区视频日本电影| 国产在视频线精品| 久久久久久久久免费视频了| 国产一区亚洲一区在线观看| 日本午夜av视频| 国产成人精品久久二区二区91| 日韩,欧美,国产一区二区三区| 一区福利在线观看| 女人高潮潮喷娇喘18禁视频| 在线观看www视频免费| 不卡av一区二区三区| 大码成人一级视频| 日韩人妻精品一区2区三区| 午夜福利免费观看在线| 久热这里只有精品99| 999久久久国产精品视频| www.自偷自拍.com| 婷婷色av中文字幕| 啦啦啦啦在线视频资源| 国产精品久久久久成人av| 国产成人精品久久二区二区免费| 高潮久久久久久久久久久不卡| 国产成人欧美在线观看 | 午夜福利在线免费观看网站| 国产精品二区激情视频| 99国产精品99久久久久| 国产成人精品无人区| 亚洲成人免费电影在线观看 | 国产男人的电影天堂91| 尾随美女入室| 美女主播在线视频| 丁香六月天网| 中文字幕色久视频| 亚洲人成网站在线观看播放| 久久99热这里只频精品6学生| 首页视频小说图片口味搜索 | 丰满人妻熟妇乱又伦精品不卡| bbb黄色大片| 麻豆av在线久日| 一区福利在线观看| 精品国产超薄肉色丝袜足j| 午夜福利视频精品| 国产男人的电影天堂91| 国产色视频综合| 51午夜福利影视在线观看| 少妇被粗大的猛进出69影院| 日本欧美视频一区| 亚洲精品第二区| 国产成人免费无遮挡视频| 2018国产大陆天天弄谢| 香蕉国产在线看| 欧美精品一区二区大全| 亚洲国产精品999| 国产深夜福利视频在线观看| 婷婷色av中文字幕| 精品第一国产精品| 最近中文字幕2019免费版| 欧美精品高潮呻吟av久久| 欧美日韩黄片免| 高清欧美精品videossex| 青青草视频在线视频观看| 亚洲天堂av无毛| 欧美日韩亚洲综合一区二区三区_| 女人被躁到高潮嗷嗷叫费观| 秋霞在线观看毛片| 欧美日韩av久久| 大片免费播放器 马上看| 国产免费一区二区三区四区乱码| 大码成人一级视频| 伊人亚洲综合成人网| 十八禁网站网址无遮挡| 男人添女人高潮全过程视频| 亚洲国产毛片av蜜桃av| 男女无遮挡免费网站观看| 日本91视频免费播放| 18禁观看日本| 亚洲成人免费电影在线观看 | 亚洲国产日韩一区二区| 国产在线视频一区二区| 精品亚洲成a人片在线观看| 精品亚洲成国产av| 欧美av亚洲av综合av国产av| avwww免费| 在线观看一区二区三区激情| 国产成人91sexporn| 久久天躁狠狠躁夜夜2o2o | 人人妻人人添人人爽欧美一区卜| 久久久久国产一级毛片高清牌| 国产国语露脸激情在线看| 国产极品粉嫩免费观看在线| 18禁黄网站禁片午夜丰满| 一区二区av电影网| 波野结衣二区三区在线| 蜜桃在线观看..| 日韩精品免费视频一区二区三区| 亚洲图色成人| 女人被躁到高潮嗷嗷叫费观| 少妇 在线观看| 人妻人人澡人人爽人人| 高潮久久久久久久久久久不卡| 99久久综合免费| 日日爽夜夜爽网站| 9色porny在线观看| 黑人欧美特级aaaaaa片| 亚洲精品国产色婷婷电影| av网站在线播放免费| 国产成人免费观看mmmm| av片东京热男人的天堂| 久久久久国产一级毛片高清牌| 熟女少妇亚洲综合色aaa.| 一级毛片电影观看| 国精品久久久久久国模美| 午夜日韩欧美国产| 亚洲欧美清纯卡通| 亚洲欧美精品综合一区二区三区| 欧美成人精品欧美一级黄| 黄网站色视频无遮挡免费观看| 免费看av在线观看网站| 午夜免费成人在线视频| 无遮挡黄片免费观看| 国产免费又黄又爽又色| 精品人妻熟女毛片av久久网站| 亚洲国产日韩一区二区| 久久国产精品大桥未久av| 久久影院123| 久久午夜综合久久蜜桃| 人人澡人人妻人| 91精品国产国语对白视频| 99国产精品99久久久久| 午夜91福利影院| 久久精品国产综合久久久| 久久国产亚洲av麻豆专区| 大香蕉久久成人网| 久久性视频一级片| 在线观看免费日韩欧美大片| 男人操女人黄网站| 欧美黄色片欧美黄色片| 看十八女毛片水多多多| 人体艺术视频欧美日本| 中国美女看黄片| 日本午夜av视频| 一级片'在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品av麻豆狂野| 亚洲国产最新在线播放| 777久久人妻少妇嫩草av网站| 精品国产超薄肉色丝袜足j| 超碰97精品在线观看| 国产精品久久久久久精品古装| 热re99久久精品国产66热6| 精品少妇一区二区三区视频日本电影| 下体分泌物呈黄色| 亚洲欧美中文字幕日韩二区| 下体分泌物呈黄色| 亚洲精品中文字幕在线视频| 欧美在线黄色| 99re6热这里在线精品视频| 精品少妇黑人巨大在线播放| 亚洲精品美女久久av网站| 岛国毛片在线播放| www.av在线官网国产| 日韩av在线免费看完整版不卡| 日本a在线网址| 午夜福利免费观看在线| 如日韩欧美国产精品一区二区三区| 成人国语在线视频| 制服人妻中文乱码| 热re99久久国产66热| 97人妻天天添夜夜摸| 午夜视频精品福利| 成年av动漫网址| 无遮挡黄片免费观看| h视频一区二区三区| 国产av一区二区精品久久| 成年动漫av网址| 曰老女人黄片| 老司机影院成人| 老司机在亚洲福利影院| 丰满饥渴人妻一区二区三| 夜夜骑夜夜射夜夜干| 在线 av 中文字幕| 亚洲中文字幕日韩| 亚洲av综合色区一区| 久久久久久久大尺度免费视频| 久久久久久久国产电影| videos熟女内射| 日韩中文字幕欧美一区二区 | 最近中文字幕2019免费版| 亚洲欧美精品自产自拍| a级片在线免费高清观看视频| 成人亚洲欧美一区二区av| 最近最新中文字幕大全免费视频 | av国产久精品久网站免费入址| 午夜91福利影院| 超碰97精品在线观看| 亚洲精品在线美女| 80岁老熟妇乱子伦牲交| 五月开心婷婷网| 大香蕉久久成人网| 国产成人91sexporn| xxx大片免费视频| 丰满迷人的少妇在线观看| 久久 成人 亚洲| 国产成人欧美| 欧美日韩亚洲高清精品| 自线自在国产av| 亚洲伊人色综图| 亚洲国产精品999| 亚洲精品日韩在线中文字幕| 七月丁香在线播放| 18禁裸乳无遮挡动漫免费视频| 亚洲国产中文字幕在线视频| 男女国产视频网站| 久久影院123| 丁香六月欧美| 成年人午夜在线观看视频| 97精品久久久久久久久久精品| 亚洲国产精品国产精品| 青春草视频在线免费观看| 国产伦理片在线播放av一区| 久久精品人人爽人人爽视色| 国产亚洲精品久久久久5区| 一级,二级,三级黄色视频| 如日韩欧美国产精品一区二区三区| 久久久精品国产亚洲av高清涩受| 99热网站在线观看| 中文字幕人妻丝袜一区二区| 一本一本久久a久久精品综合妖精| 国产主播在线观看一区二区 | 一区二区av电影网| 激情五月婷婷亚洲| 国产成人影院久久av| 国产极品粉嫩免费观看在线| bbb黄色大片| 一本色道久久久久久精品综合| www.熟女人妻精品国产| 亚洲精品av麻豆狂野| 欧美 亚洲 国产 日韩一| 久久久久久久国产电影| 97在线人人人人妻| 深夜精品福利| 欧美激情高清一区二区三区| 亚洲精品自拍成人| 欧美日韩福利视频一区二区| 一本色道久久久久久精品综合| 啦啦啦在线观看免费高清www| 久久影院123| 好男人视频免费观看在线| 欧美日韩av久久| 亚洲成人免费电影在线观看 | 国产成人精品久久二区二区91| 人成视频在线观看免费观看| 天天操日日干夜夜撸| 欧美成狂野欧美在线观看| 少妇人妻 视频| 色婷婷av一区二区三区视频| 男女高潮啪啪啪动态图| 亚洲av片天天在线观看| 亚洲欧美中文字幕日韩二区| 亚洲欧美激情在线| 97在线人人人人妻| 国产伦理片在线播放av一区| 叶爱在线成人免费视频播放| 一区二区三区精品91| 国产精品亚洲av一区麻豆| √禁漫天堂资源中文www| 精品少妇久久久久久888优播| av国产久精品久网站免费入址| 亚洲精品一卡2卡三卡4卡5卡 | 精品一区二区三区av网在线观看 | 国产免费视频播放在线视频| 亚洲自偷自拍图片 自拍| 性色av一级| videos熟女内射| 国产精品国产av在线观看| 90打野战视频偷拍视频| 母亲3免费完整高清在线观看| 麻豆国产av国片精品| 国产男人的电影天堂91| 啦啦啦中文免费视频观看日本| av不卡在线播放| 成人国产一区最新在线观看 | 欧美日韩一级在线毛片| 欧美另类一区| 久久国产亚洲av麻豆专区| 久久人人爽人人片av| 十八禁高潮呻吟视频| 国产男女超爽视频在线观看| 欧美在线黄色| 久久鲁丝午夜福利片| 亚洲国产欧美一区二区综合| 免费不卡黄色视频| 在线观看国产h片| 午夜激情av网站| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩黄片免| 十八禁高潮呻吟视频| www.av在线官网国产| 国产女主播在线喷水免费视频网站| 精品久久久久久电影网| 多毛熟女@视频| 亚洲成人手机| 国产一级毛片在线| 少妇精品久久久久久久| 国产三级黄色录像| 亚洲天堂av无毛| 欧美久久黑人一区二区| 人妻人人澡人人爽人人| 精品国产超薄肉色丝袜足j| 亚洲成人国产一区在线观看 | 亚洲免费av在线视频| 看免费av毛片| a级毛片黄视频| 男女午夜视频在线观看| 人人妻人人澡人人爽人人夜夜| 久久精品国产亚洲av涩爱| 日韩av在线免费看完整版不卡| 亚洲成国产人片在线观看| 欧美性长视频在线观看| 精品视频人人做人人爽| 国产亚洲精品久久久久5区| 欧美成狂野欧美在线观看| 国产成人啪精品午夜网站| 精品高清国产在线一区| 亚洲 国产 在线| 男女床上黄色一级片免费看| av网站免费在线观看视频| 日韩伦理黄色片| 国产精品 欧美亚洲| av不卡在线播放| 黄网站色视频无遮挡免费观看| 麻豆乱淫一区二区| 好男人视频免费观看在线| 亚洲三区欧美一区| 老司机在亚洲福利影院| 老司机在亚洲福利影院| 超碰成人久久| 亚洲国产最新在线播放| 99九九在线精品视频| 99九九在线精品视频| netflix在线观看网站| 国产免费视频播放在线视频| 精品一区二区三区av网在线观看 | 国产精品av久久久久免费| 90打野战视频偷拍视频| 亚洲第一青青草原| 国产精品麻豆人妻色哟哟久久| 国产日韩欧美在线精品| 欧美+亚洲+日韩+国产| 在线观看人妻少妇| 亚洲成人国产一区在线观看 | 日日夜夜操网爽| 国产黄色视频一区二区在线观看| 波多野结衣av一区二区av| 尾随美女入室| 亚洲欧美一区二区三区黑人| 亚洲美女黄色视频免费看| 欧美国产精品一级二级三级| 午夜激情av网站| 18禁观看日本| 国产成人一区二区在线| 麻豆av在线久日| 大片电影免费在线观看免费| 王馨瑶露胸无遮挡在线观看| 午夜福利影视在线免费观看| 午夜福利视频在线观看免费| 捣出白浆h1v1| 日韩伦理黄色片| 成年人午夜在线观看视频| 久久久国产精品麻豆| 美女扒开内裤让男人捅视频| 免费看av在线观看网站| 女性生殖器流出的白浆| 熟女少妇亚洲综合色aaa.| 性色av一级| 叶爱在线成人免费视频播放| 国产成人啪精品午夜网站| 国产亚洲一区二区精品| 波野结衣二区三区在线| 一级毛片电影观看| 亚洲国产精品国产精品| 男女之事视频高清在线观看 | 欧美日韩精品网址| 女性生殖器流出的白浆| 亚洲综合色网址| 亚洲精品在线美女| 国产免费福利视频在线观看| 丰满迷人的少妇在线观看| 99久久人妻综合| 交换朋友夫妻互换小说| xxxhd国产人妻xxx| 男女无遮挡免费网站观看| 欧美日韩一级在线毛片| 久久久久网色| 亚洲第一青青草原| 桃花免费在线播放| 国产精品久久久久久精品古装| 中文字幕另类日韩欧美亚洲嫩草| 欧美另类一区| 悠悠久久av| 中文字幕另类日韩欧美亚洲嫩草| 激情五月婷婷亚洲| 韩国精品一区二区三区| 少妇裸体淫交视频免费看高清 | 嫁个100分男人电影在线观看 | 美女午夜性视频免费| 国产精品一国产av| 国产成人免费无遮挡视频| 在线观看一区二区三区激情| 国产黄色免费在线视频| 亚洲欧美一区二区三区久久| 亚洲视频免费观看视频| 精品熟女少妇八av免费久了| 我要看黄色一级片免费的| 免费看不卡的av| 亚洲国产av新网站| 欧美 亚洲 国产 日韩一| 久久亚洲国产成人精品v| 国产成人91sexporn| 国产精品免费视频内射| 亚洲av电影在线进入| 夫妻午夜视频| 三上悠亚av全集在线观看| 国产精品久久久久久人妻精品电影 | 欧美日韩一级在线毛片| www日本在线高清视频| 看免费成人av毛片| 日韩av免费高清视频| 蜜桃国产av成人99| 精品免费久久久久久久清纯 | 99热网站在线观看| 黄网站色视频无遮挡免费观看| 国产在线免费精品| 爱豆传媒免费全集在线观看| 九色亚洲精品在线播放| www.av在线官网国产| 国产成人免费观看mmmm| 手机成人av网站| 欧美人与善性xxx| 免费不卡黄色视频| 精品国产超薄肉色丝袜足j| 亚洲中文av在线| 大片电影免费在线观看免费| 日韩 亚洲 欧美在线| 亚洲国产日韩一区二区| 一本—道久久a久久精品蜜桃钙片| 久久久国产欧美日韩av| 欧美激情极品国产一区二区三区| 中文精品一卡2卡3卡4更新| 国产高清视频在线播放一区 | 高清视频免费观看一区二区| 久久久精品国产亚洲av高清涩受| 午夜激情av网站| 亚洲国产日韩一区二区| 桃花免费在线播放| 少妇 在线观看| 亚洲av日韩精品久久久久久密 | 国产免费一区二区三区四区乱码| 精品一区二区三卡| 日本色播在线视频| 一区二区三区乱码不卡18| 久久毛片免费看一区二区三区| 操出白浆在线播放| 欧美精品亚洲一区二区| 黄色一级大片看看| 高清av免费在线| 久久久久久久大尺度免费视频| 日本a在线网址| 人人妻人人添人人爽欧美一区卜| videos熟女内射| 国产成人影院久久av| 一本久久精品| 成年动漫av网址| 亚洲熟女精品中文字幕| 亚洲国产最新在线播放| 亚洲视频免费观看视频| 亚洲成国产人片在线观看| 亚洲成人免费电影在线观看 | 夫妻午夜视频| 极品少妇高潮喷水抽搐| 操出白浆在线播放| 国产亚洲一区二区精品| 男女免费视频国产| 日日夜夜操网爽| 国产av一区二区精品久久| 一本色道久久久久久精品综合| 久久久久久久大尺度免费视频| 免费高清在线观看视频在线观看| 老司机亚洲免费影院| 国产有黄有色有爽视频| 午夜福利视频精品| 国产精品二区激情视频| 一边亲一边摸免费视频| 精品亚洲乱码少妇综合久久| 一区二区av电影网| 悠悠久久av| 婷婷色麻豆天堂久久| 欧美性长视频在线观看| 老司机影院毛片| 一区二区三区四区激情视频| 亚洲男人天堂网一区| av天堂久久9| 久久毛片免费看一区二区三区| √禁漫天堂资源中文www| 青春草视频在线免费观看| 色婷婷av一区二区三区视频| 天天躁夜夜躁狠狠躁躁| 如日韩欧美国产精品一区二区三区| 亚洲五月色婷婷综合| 男的添女的下面高潮视频| 欧美性长视频在线观看| 一级毛片黄色毛片免费观看视频| 午夜日韩欧美国产| 一二三四社区在线视频社区8| 男女边吃奶边做爰视频| 波多野结衣av一区二区av| 人人妻人人澡人人看| 久久久久久久大尺度免费视频| 一区二区三区精品91| 久热爱精品视频在线9| 男的添女的下面高潮视频| 日韩免费高清中文字幕av| 日韩熟女老妇一区二区性免费视频| 午夜免费鲁丝| 国产成人一区二区在线| 久久ye,这里只有精品| 两个人免费观看高清视频| 美女扒开内裤让男人捅视频| av在线app专区| 极品人妻少妇av视频| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧洲国产日韩| 亚洲国产成人一精品久久久| 在线观看免费午夜福利视频| 丝瓜视频免费看黄片| 亚洲欧洲国产日韩| 精品人妻1区二区| 爱豆传媒免费全集在线观看| 日韩视频在线欧美| 熟女少妇亚洲综合色aaa.| 巨乳人妻的诱惑在线观看| 国产成人免费观看mmmm| av天堂在线播放| 在线av久久热| 国产亚洲精品第一综合不卡| 一区二区av电影网| 久久精品国产a三级三级三级| av福利片在线| 中文字幕亚洲精品专区| 久9热在线精品视频| 午夜两性在线视频| 这个男人来自地球电影免费观看| 9热在线视频观看99| 日韩一本色道免费dvd| 老司机在亚洲福利影院| 色精品久久人妻99蜜桃| 国产精品一区二区精品视频观看| 51午夜福利影视在线观看| 一本综合久久免费| 国产成人精品久久久久久| 午夜福利影视在线免费观看| 天天添夜夜摸| 91九色精品人成在线观看| 最近中文字幕2019免费版| 99久久综合免费| 最近中文字幕2019免费版| 亚洲国产最新在线播放| 精品国产一区二区三区久久久樱花| 丰满少妇做爰视频| 美女高潮到喷水免费观看| 欧美乱码精品一区二区三区| 亚洲欧美精品自产自拍| 欧美日韩精品网址| 国产精品久久久久久人妻精品电影 | 天天躁日日躁夜夜躁夜夜| 亚洲精品美女久久av网站| 真人做人爱边吃奶动态| 色网站视频免费| 一本综合久久免费| 国产福利在线免费观看视频| 欧美人与性动交α欧美软件| 国产福利在线免费观看视频| 精品少妇一区二区三区视频日本电影| 久久性视频一级片| 亚洲专区中文字幕在线| 男人操女人黄网站| av天堂在线播放| 中文字幕色久视频| 嫩草影视91久久| 少妇的丰满在线观看| 亚洲精品久久成人aⅴ小说| 成人影院久久| 精品人妻熟女毛片av久久网站| 久久 成人 亚洲| 久久人妻熟女aⅴ| 国产黄色视频一区二区在线观看| 欧美亚洲 丝袜 人妻 在线| 成年av动漫网址| 性少妇av在线| 在线观看人妻少妇| 国产精品三级大全| 亚洲精品美女久久久久99蜜臀 | 一二三四社区在线视频社区8| 久久精品久久精品一区二区三区| 国产免费现黄频在线看| 日本欧美国产在线视频| 婷婷色麻豆天堂久久| 悠悠久久av| 日韩中文字幕视频在线看片| 两个人免费观看高清视频|