• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種用于活細(xì)胞中檢測(cè)Zn2+的萘酚席夫堿類熒光探針

    2017-11-01 10:22:42王少靜宋戰(zhàn)科
    關(guān)鍵詞:萘酚席夫堿西北大學(xué)

    陳 邦 王少靜 宋戰(zhàn)科 郭 媛

    一種用于活細(xì)胞中檢測(cè)Zn2+的萘酚席夫堿類熒光探針

    陳 邦 王少靜 宋戰(zhàn)科 郭 媛*

    (西北大學(xué)化學(xué)與材料科學(xué)學(xué)院,合成與天然功能分子化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,西安 710127)

    設(shè)計(jì)合成了1種基于C=N異構(gòu)化和螯合熒光增強(qiáng)機(jī)理 (CHEF)的Zn2+熒光探針BMO和NBMO,其結(jié)構(gòu)經(jīng)1H NMR,13C NMR,1H-1H COSY,HSQC,IR和HRMS進(jìn)行了表征。光譜分析實(shí)驗(yàn)結(jié)果顯示,探針對(duì)Zn2+均具有較好的選擇性和靈敏度,檢出限分別為30和21 nmol·L-1。在0~20μmol·L-1濃度的范圍內(nèi),BMO和NBMO的熒光強(qiáng)度與Zn2+濃度可呈良好的線性關(guān)系。NBMOZn2+配合物單晶結(jié)構(gòu)和Job曲線證實(shí)該探針與Zn2+以1∶1配位。NBMO被成功應(yīng)用于活細(xì)胞中Zn2+的檢測(cè)。

    熒光探針;C=N異構(gòu)化;螯合熒光增強(qiáng);鋅離子;活細(xì)胞成像

    Zn2+is the second most abundant trace essential metals in the human body after iron and plays a critical role in many biochemical and physiological processes such as protein metabolism,reproduction,cell growth,cell division,cellular transport,immune system,and gene transcription[1-3].Importantly,deficiency or excess of this essential trace element is known to have adverse consequences to human health[4].Any disruption in the bio-availability of Zn2+in the mammalian system may cause serious diseases such as Alzheimer′s,amyotrophic lateral sclerosis(ALS),Parkinson′s,ischemia,epilepsy[5],while excess accumula-tion of Zn2+in human body may lead to health hazards.Thus,spatiotemporal detection of Zn2+in biological samples is of great significance for understanding the role of Zn2+in biology.

    Consequently,more and more researchers focus on the study of detection methods for Zn2+.The topical detection methods include atomic absorption spectrometry(AAS)[6],atomic emission spectrometry(AES)[7],electrochemical method[8]and fluorescent sensors,wherein fluorescent probes have attracted enormous interest because of their high sensitivity,operational simplicity and instantaneous response[9-22].Up to now,a number of fluorescent probes for detecting Zn2+have been designed based on rhodamine[23],coumarin[24],quinolone[25],fluorescein[26]and BODIPY[27].They have good binding affinity with Zn2+.However,there still exists some drawbacks among the reported fluorescence probes,e.g.the detection limit of probes is restricted[28], some of the sensors are hard to synthesize[29],and optical properties are interfered from other metal ions,such as Cd2+which exhibits highly similar chemical properties as Zn2+[30].Therefore,to develop the Zn2+fluorescence probes with low detection limit,high selectivity and high sensitivity are expected to remain challenging.

    Over the past few decades,various Zn2+fluorescence probes have been designed and synthesized to address the above challenge,wherein the probes based on C=N isomerization mechanism have outstanding performance and attracted extensive attention.As we know,the fluorescence probe containing C=N double bond with a lone electron pair has good ability to coordinate with metal ions.Compounds with an unbridged C=N structure are often nonfluorescent due to the C=N isomerization.In contrast,complexation with metal ions restricts the rotation of the C=N bond and produces a chelation-enhanced fluorescence(CHEF)effect.Based on the mechanism,we report two novel Zn2+fluorescence probes(BMO and NBMO)herein.Studies show that BMO and NBMO are highly selectivity for Zn2+over its family Cd2+and the other metal ions.The X-ray crystal structure of the NBMOZn2+complex exposes its coordination feature and the Job plots reveal a 1∶1 probe-Zn2+identification.Moreover,the cell images show that NBMO can be used to detect intracellular Zn2+.

    1 Experimental

    1.1 Reagent and apparatus

    Unless otherwise stated,all reagents were purchased from commercial suppliers and used without further purification.A549 cells were purchased from the Committee on type Culture Collection of Chinese Academy of Sciences.NMR spectra were collected on a Varian INOVA-400 spectrometer 400 MHz for1H NMR and 100 MHz for13C NMR.High-resolution mass spectra(HRMS)were obtained with an Ulti Mate 3000 Mass Spectrophotometer.FT-IR spectra were obtained in KBr pellets on a Bruker EQUIOX-55 FTIR spectrometer.The single crystal structure was determined by a Bruker Smart ApexIICCD X-ray crystallography.Absorption spectra were recorded on a UV-1700 spectrophotometer.Fluorescent spectra were recorded on a Hitachi F-4500 fluorescence spectrophotometer.Cell imaging was observed under a confocal laser scanning microscope(Olympus FV1000)with excitation at 405 nm.

    1.2 Sample preparation and measurements

    Stock solutions(1 mmol·L-1)of BMO and NBMO were prepared in DMSO.Stock solutions(10 mmol·L-1)of the chloride salts of Cd2+,Ca2+,Mg2+,Mn2+,Hg2+,Fe3+,Al3+,Cr3+,Co2+,Ni2+,Cu2+and Zn2+metal ions and acetate salts of Pb2+and Ag+metal ions were prepared in fresh deionized water.The spectra changes of BMO and NBMO towards Zn2+were evaluated in Tris-HCl buffer solution(10 mmol·L-1,pH=7.4)containing 20%DMSO.Unless otherwise noted,for all the measurements,the excitation wavelength was at 376 nm,the excitation slit was at 10 nm,and the emission slit was at 10 nm.

    1.3 Synthesis of BMO and NBMO

    Scheme 1 Synthesis of BMO and NBMO

    Synthesis of 1H-benzimidazole-2-methanamine(1):amino acetic acid(0.9 g,12 mmol)and o-Phenylenediamine (1.08 g,10 mmol)were dissolved in 6 mol·L-1HCl(14 mL).The reaction mixture was stirred at 120℃for two days.After being cooled to room temperature,the pH of the reaction liquid was adjusted to 7~8 with strong aqua ammonia,then the mixture was frozen till the solid no longer formation.The solid was collected and recrystallized by distilled water to afford the desired product as colorless needle-like crystals.1H NMR(400 MHz,DMSO-d6):δ2.03(br,2H),3.91(s,2H),7.10~7.12(m,2H),7.47~7.49(m,2H).

    Synthesis of 1-methyl-1H-benzimidazole-2-methanamine(2):N-methyl-o-phenylenediamine(1.22 g,10 mmol)and amino acetic acid (0.9 g,12 mmol)were dissolved in 6 mol·L-1HCl(14 mL).The reaction mixture was stirred at 120℃for two days.After being cooled to room temperature,the pH of the reaction liquid was adjusted to 7~8 with strong aqua ammonia,then the mixture was frozen till the solid no longer formation.The solid was collected and recrystallized by distilled water to afford the desired product as light pink needle-like crystals.1H NMR(400 MHz,DMSO-d6):δ1.93(br,2H),3.78(s,5H),3.95(s,4H),7.13~7.22(m,2H),7.50(d,J=7.8 Hz,1H),7.56(d,J=7.7 Hz,1H);13C NMR (100 MHz,DMSO-d6):δ161.31,147.05,141.24,126.76,126.27,123.63,114.86,43.63,34.62;HRMS(ESI):m/z,Calcd.for C9H11N3[M+H]+162.1031;Found 162.103 0.

    Synthesis of BMO:2-hydroxy-1-naphthaldehyde(0.86 g,5 mmol)and compound 1(0.88 g,6 mmol)were dissolved in 15 mL anhydrous methanol.The reaction mixture was stirred at room temperature for 5 h.The precipitated was filtered,washed with cold methanol,and dried in vacuum to afford the desired product as a yellow solid.(1.38 g,yield:92%).1H NMR(400 MHz,DMSO-d6):δ5.14 (s,2H),6.83 (d,J=9.1 Hz,1H),7.18~7.28(m,3H),7.48~7.55(m,3H),7.71(d,J=7.5 Hz,1H,),7.81(d,J=9.2 Hz,1H),8.17(d,J=8.2 Hz,1H),9.42(d,J=7.8 Hz,1H,),12.60(s,1H),14.37(s,1H);13C NMR (100 MHz,DMSO-d6):δ174.50,161.74,151.28,137.29,134.33,129.42,128.44,126.25,124.50,123.11,122.74,121.82,119.39,119.16,111.82,107.20,50.83;FT-IR(KBr,cm-1):3 446,3 014,2 924,2 739,1 750,1 629,1 546,1 432,1 359,1 319,1 267,1 190,1 145,1 032,990,837,745,621;HRMS(ESI):m/z,Calcd.for C19H15N3O[M+H]+302.129 3;Found 302.126 8.

    Synthesis of NBMO:To a mixture 2-hydroxy-1-naphthaldehyde (0.86 g,5 mmol)and compound 2(0.97 g,6 mmol)was added anhydrous methanol(15 mL).The mixture was stirred at room temperature for 5 h.The precipitated was filtered,washed with cold methanol,and dried in vacuum to afford the desired product as a yellow-green solid (1.46 g,yield:94%).1H NMR(400 MHz,DMSO-d6):δ3.38(s,3H),5.24(s,2H),6.82(d,J=8 Hz,1H),7.19~7.29(m,3H),7.45~7.66(m,3H),7.71(d,J=7.8 Hz,1H),7.81(d,J=9.3 Hz,1H),8.15(d,J=8.3 Hz,1H),9.45(d,J=8.1 Hz,1H),14.40(s,1H);13CNMR(100 MHz,DMSO-d6):δ174.63,161.45,151.35,142.43,137.31,136.45,134.30,129.43,128.48,126.23,124.56,123.12,122.72,122.11,119.30,110.62,107.18,99.98,49.09,30.24;FT-IR(KBr,cm-1):3 677,3 420,3 029,2 917,1 622,1 537,1 466,1 426,1 398,1 350,1 313,1 259,1 188,1 142,1 060,1 032,995,905,844,741;HRMS(ESI):m/z,Calcd.for C20H17N3O[M+H]+316.145 0;Found 316.143 0.

    1.4 X-crystallographic analysis

    Fig.1 (a)X-ray crystal structures of NBMO-Zn2+complex and(b)packing arrangement for NBMO-Zn2+

    Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of NBMO/ZnCl2in methanol at room temperature.The single crystal X-ray structure and packing diagram of the NBMO-Zn2+complex are shown in Fig.1.NBMO and Zn2+ion formed a 1∶1 stoichiometry.Single-crystal X-ray diffraction data was collected on a Bruker Smart Ape II CCD X-ray diffractometer.The structure was solved by direct methods and refined by full matrix least-square on F2using the SHELXTL-97 program[31].All non-hydrogen atoms were refined anisotropically.All the H atoms were positioned geometrically and refined using a riding model.The details of the crystal parameters,data collection,and refinements for complex NBMO-Zn2+were listed in Table S1.Selected bond lengths and bond angles were listed in Table S2 and Table S3 respectively.

    CCDC:1558816.

    1.5 Intracelluar Zn2+imaging with NBMO

    A549 cells were cultured in Roswell Park Memorial Institute 1640 (RPMI 1640)supplemented with 10%(V/V)fetal bovine serum(FBS),100 units per mL of penicillin and 100 units per mL of streptomycin at 37℃in a CO2incubator.The A549 cells were incubated with 20 μmol·L-1of probe NBMO for 30 min at 37 ℃.Then pretreated with 60 μmol·L-1Zn2+for 30 min at 37 ℃ and after added with 1 μmol·L-1TPEN(N,N,N′,N′-tetrakis(2-pyridylmethyl)-ethylenediamine)for 30 min at 37℃.The cells were washed three times with PBS buffer before cell fluorescence imaging experiments with confocal laser scanning microscopy[32].

    2 Results and discussion

    To get insight into fluorescence intensity changes with an increase of Zn2+concentration,the fluorescence spectra changes of BMO and NBMO towards Zn2+were evaluated.As shown in Fig.2,upon the addition of Zn2+to the solution of BMO or NBMO,the emission intensity at 450 nm clearly increased.Moreover,there was a good linear relationship between the fluorescence intensity of probes (BMO and NBMO)and the concentration of Zn2+in the range of 0 to 20 μmol·L-1(Inset in Fig.2).According to the reported definition(S/N=3),the detection limit of BMO and NBMO for Zn2+were found to be 30 and 21 nmol·L-1respectively.The results prove that NBMO has a higher sensitivity toward Zn2+than BMO.

    Fig.2 Fluorescence changes of(a)BMOand(b)NBMO(20 μmol·L-1)with different concentrations of Zn2+(0~20 μmol·L-1)in buffer solution with an excitation at 376 nm

    The binding constants K of BMO-Zn2+and NBMO-Zn2+were calculated by the Benesi-Hildebrand equation.Depending on the slope,the results obtained were KBMO=4.96×104L·mol-1and KNBMO=3.25×104L·mol-1,signifying that BMO and NBMO had a great binding affinity to Zn2+(Fig.S17). In order to further study the binding of probes with Zn2+,the Job plots were tested by using a total concentration of 20μmol·L-1probe and Zn2+,and the results indicate that the combination of probes and Zn2+is 1∶1 stoichiometry(Fig.3).

    The kinetic studies were conducted by monitoring the fluorescence intensity changes of BMO and NBMO at 450 nm in the presence of Zn2+.The results show that the chelation process can be completed within 30 s (Fig.4).The pH value of the system is often considered as a significant factor for the properties of fluorescent probe.The effect of pH on the fluorescence response of BMO and NBMO to Zn2+ions was studied by adjusting the pH value ranging from 3.0 to 9.0.As shown in Fig.5,no noticeable fluorescence emission of pure BMO and NBMO were observed in a wide range of pH values.Upon the addition of Zn2+,a significant increase in the fluorescence intensity were observed in the range of 4.0 to 9.0,which clearly indicated the compatibility of BMO and NBMO for biological applications under physiological conditions.

    To further understand the fluorescent properties of BMOand NBMOwith Zn2+,thefluorescenceresponse behavior of BMO and NBMO to various metal ions was systematically investigated(Fig.6).As expected,there were no obvious changes in the fluorescence intensity after adding other metal ions to BMO and NBMO solution,including Cd2+,Ca2+,Mg2+,Pb2+,Mn2+,Hg2+,Ag+,Fe3+,Al3+and Cr3+.However,the presence of Co2+,Ni2+and Cu2+quench the fluorescence possibly because of the heavy metal effect.Moreover,the competitive experiments confirmed that the presence of metal ions,such as Cd2+,Ca2+,Mg2+,Pb2+,Mn2+,Hg2+,Ag+,Fe3+and Al3+,did not interfere with the enhanced fluorescence (Fig.7).However,the presence of Cr3+would seriously weaken the enhanced fluorescence and Co2+,Ni2+and Cu2+totally quenched the fluorescence,possibly because the complex formed between these metals and the probes was too stable to be replaced by Zn2+.These results indicate that BMO and NBMO,have good selectivity toward Zn2+,which facil-itates the accurate detection under complex biosystem.

    Fig.3 Job plots of(a)BMO-Zn2+and(b)NBMO-Zn2+

    Fig.4 Time-course fluorescence response spectra of(a)BMO and(b)NBMO(20 μmol·L-1)towards Zn2+(60 μmol·L-1)

    Fig.5 Effect of pH value on the fluorescence intensity of(a)BMO and(b)NBMO(20 μmol·L-1)upon the addition of Zn2+(20 μmol·L-1)

    Fig.6 Fluorescence emission spectra of(a)BMOand(b)NBMO(20 μmol·L-1)in the presence of different ions such as Cd2+,Ca2+,Mg2+,Pb2+,Mn2+,Hg2+,Ag+,Fe3+,Al3+,Cr3+,Co2+,Ni2+,Cu2+and Zn2+in Tris-HCl buffer(10 mmol·L-1,pH=7.4)

    Fig.7 Metal ion selectivity of(a)BMOand(b)NBMO(20 μmol·L-1)in Tris-HCl buffer(10 mmol·L-1,pH=7.4);Concentration of Zn2+was 20 μmol·L-1,and that of the other metal ions 40 μmol·L-1.Black bars represent the addition of the appropriate metal ions to the solution of BMOor NBMO.Red bars represent the subsequent addition of Zn2+to the solution

    On the basis of the fluorescence response of BMO and NBMO toward Zn2+,the recognition mechanism is proposed as shown in Fig.8.The weak fluorescence of BMO and NBMO are due to the free rotation around C=N bond.In contrast,complexation with Zn2+inhibits the rotation of the C=N bond and produces a chelationenhanced fluorescence(CHEF)effect.To confirm the supposed recognition mechanism,1H NMR titration experiment was carried out in DMSO-d6/D2O.Fig.9(a)shows1H NMR spectrum of NBMO.The peaks at 14.43 and 9.45 were assigned to-OH(Ha)and-CH=N-(Hb)of NBMO,respectively.Fig.9(b)shows the1H NMR spectra of NBMO upon the addition of Zn2+with 3.0 equiv.concentrations.It was clearly found that the peak of Haat 14.43 disappeared,demonstrating that-OH(Ha) was involvs in the complexation of Zn2+and NBMO.The peak shape of-CH=N-(Hb)was changed from double peak to single peak after complexation,which further proved inhibition of the rotation of the C=N bond in the complex molecule.The1H NMR titration result supports the binding of Zn2+with NBMO through a chelation reaction via phenolic-O atoms and the imine-N atoms.

    The aforementioned favorable properties of BMO and NBMO in chemical system encouraged us to investigate their practical utilities in living cells.Taking into account the better spectral properties of NBMO,application of NBMO for cellular imaging was measured using A549 cells.Prior to being applied in cell imaging,MTT assay was first performed to assess its biocompatibility.Cytotoxicity experiments demonstrated minimal cytotoxicity of NBMO toward A549 cells at 25 μmol·L-1(80% viability,Fig.S18).Next,we further investigated its potential utility for the detection of Zn2+in living cells by using the confocal fluorescence microscope.As shown in Fig.10,the A549 cells displayed the weakly fluorescence after incubated with the probe NBMO for 30 min at 37℃.After addition of Zn2+for 10 min at 37℃,the fluorescence clearly increased,indicating that the NBMO could combine Zn2+to form complex NBMOZn2+and then enhance the fluore-scence intensity.After following addition TPEN for 10 min at 37℃,the strong fluorescence was decreased greatly.Thus,above results clearly document the applicability of NBMO as a fluorescent probe to detect intracellular Zn2+ions.

    Fig.8 Recognition mechanism of BMO and NBMO to Zn2+

    Fig.9 1H NMR spectra in DMSO-d6/D2Oof(a)NBMO only,(b)NBMO with 3.0 equiv.of Zn2+

    Fig.10 (a)First row:Images of living A549 cells incubated with NBMO(20 μmol·L-1)for 30 min;the second row:Images of living A549 cells incubated with NBMO(20 μmol·L-1)for 30 min,and further incubated with Zn2+(60 μmol·L-1)for 10 min;the third row:Images of living A549 cells incubated with NBMO(20 μmol·L-1)for 30 min,and further incubated with Zn2+(60 μmol·L-1)for 10 min,then incubated with TPEN(1 μmol·L-1)for 10 min;(b)Relative pixel intensity of fluorescence images row 1,2 and 3

    3 Conclusions

    We have successfully developed two novel probes,BMO and NBMO,as efficient chemical sensors for the highly selective detection of Zn2+in aqueous media.Towards this aim,the two probes were designed and synthesized through a simple condensation of 2-aminomethylbenzimidazole derivatives and 2-hydroxy-1-naphthaldehyde based on C=N isomerization and chelation-enhanced fluorescence (CHEF)mechanism.Their kinetic study towards Zn2+displayed a fast response time (both less than 30 s).Selective and competitive experiments were performed to exhibit an excellent selectivity of Zn2+ions over its family Cd2+and other metal ions.Moreover,the detection limit of BMO and NBMO were found to be 30 nmol·L-1and 21 nmol·L-1respectively,which exhibited an excellent sensitivity of the two probes.Meanwhile,NBMO has been used to image intracellular Zn2+ions in living A549 cells with a good performance.

    Supporting information isavailable at http://www.wjhxxb.cn

    [1]Bouain N,Shahzad Z,Rouached A,et al.J.Exp.Bot.,2014,65:5725-5741

    [2]El-Hallag I S.J.Chil.Chem.Soc.,2010,55:67-73

    [3]Frommer G,Vorbruggen G,Pasca G,et al.EMBO J.,1996,15:1642-1649

    [4]WAN Dan-Dan(萬丹丹),SU Guang-Yu(蘇光余),XU Zi-Hua(許子華),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2008,24:1253-1260

    [5]Chen JR,Teo K C.Anal.Chim.Acta,2001,450:215-222

    [6]Monasterios C V,Jones A M,Salin E D,et al.Anal.Chem.,1986,58:780-785

    [7]Oliveira P R D,Lamy-Mendes A C,Gogola J L,et al.Electrochim.Acta,2015,151:525-530

    [8]Zhang L L,Zhu H K,Zhao C C,et al.Chin.Chem.Lett.,2017,28:218-221

    [9]WANGWei-Na(王維娜),ZHENGYuan-Mei(鄭元梅),CHEN Xue-Mei(陳雪梅).Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2014,30:872-878

    [10]Liu J,Lin Q,Yao H,et al.Chin.Chem.Lett.,2014,25:35-38

    [11]WU Yu-Fang(吳玉防),CUI Ying-Na(崔穎娜),LI Shen-Min(李慎敏),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2012,28:910-914

    [12]Gan X P,Sun P,Li H,et al.Biosens.Bioelectron.,2016,86:393-397

    [13]Liu H Y,Dong Y S,Zhang B B,et al.Sens.Actuators,B,2016,234:616-624

    [14]Jia M Y,Wang Y,Liu Y,et al.Biosens.Bioelectron.,2016,85:515-521

    [15]LIU Min(劉敏),TAN Hui-Long(譚慧龍),LIU Zhi-Guo(劉治國(guó)),et al.Chin.J.Org.Chem.(有機(jī)化學(xué)),2013,33:1655-1667

    [16]Qin J C,Wang B D,Yang Z Y,et al.Sens.Actuators,B,2016,224:892-898

    [17]Chen Y C,Bai Y,Han Z,et al.Chem.Soc.Rev.,2015,44:4517-4546

    [18]Roy N,Nath S,Dutta A,et al.RSC Adv.,2016,6:63837-63847

    [19]LI Chang-Wei(李 長(zhǎng) 偉),YANG Dong(楊 棟),YIN Bing(尹兵),et al.Chin.J.Org.Chem.(有機(jī)化學(xué)),2016,36:787-794

    [20]Nie J,Li N,Ni Z H,et al.Tetrahedron Lett.,2017,58:1980-1984

    [21]Zhu J L,Zhang Y H,Chen Y H,et al.Tetrahedron Lett.,2017,58:365-370

    [22]ZHANG Chang-Li(張長(zhǎng)麗),TIAN Jia-Jin(田佳津),SHAO Yang(邵陽(yáng)),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2016,32:2069-2074

    [23]Erdemir S,Yuksekogul M,Karakurt S,et al.Sens.Actuators,B,2017,241:230-238

    [24]Gao Y,Liu H M,Li P,et al.Tetrahedron Lett.,2017,58:2193-2198

    [25]Ponnuvel K,Kumar M,Padmini V.Sens.Actuators,B,2016,227:242-247

    [26]An JM,Yan M H,Yang Z Y,et al.Dyes Pigm.,2013,99:1-5

    [27]Cao J,Zhao C C,Wang X Z,et al.Chem.Commun.,2012,48:9897-9899

    [28]Ye J,Xiong J,Sun R C.Carbohydr.Polym.,2012,88:1420-1424

    [29]Chen X Q,Pradhan T,Wang F,et al.Chem.Rev.,2012,112:1910-1956

    [30]FAN Jiang-Li(樊江 莉),XU Qun-Li(徐群 利),ZHU Hao(朱浩),et al.Chin.J.Org.Chem.(有機(jī)化學(xué)),2014,34:1623-1629

    [31]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

    [32]QIU Lin(邱琳),JI Yi-Fan(季一凡),ZHU Cheng-Cheng(朱成成),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2014,30:169-178

    Naphthol-Based Shiff Base as a Selective Fluorescent Probe for Detecting Zn2+in Living Cells

    Two fluorescent probes BMO and NBMO were developed for the highly selective detection of Zn2+based on C=N isomerization and chelation-enhanced fluorescence (CHEF)mechanism.Structure identification of the probes was confirmed by1H NMR,13CNMR,1H-1H COSY,HSQC,IR and HRMSspectroscopy.The results of spectral analysis show that BMO and NBMO are sensitive and highly selective to Zn2+.The detection limit of BMO and NBMO are found to be 30 and 21 nmol·L-1respectively.There is a good linear relationship between the fluorescence intensity of probes (BMO and NBMO)and the concentration of Zn2+in the range of 0 to 20 μmol·L-1.The X-ray crystal structure of the NBMO-Zn2+complex exposes its coordination feature and the Job plots reveal a 1∶1 probe-Zn2+identification.Thecell imagesshow that NBMOcan beused to detect intracellular Zn2+.

    fluorescent probe;C=N isomerization;chelation-enhanced fluorescence;zinc ion;living cell imaging

    O626.23

    A

    1001-4861(2017)10-1722-09

    10.11862/CJIC.2017.227

    CHEN Bang WANG Shao-Jing SONG Zhan-Ke GUOYuan*
    (Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education,College of Chemistry and Materials Science,Northwest University,Xi′an 710127,China)

    2017-05-23。收修改稿日期:2017-09-01。

    國(guó)家自然科學(xué)基金(No.21472148,21072158),陜西省留學(xué)人員科技活動(dòng)擇優(yōu)資助項(xiàng)目(No.20151190)和西北大學(xué)優(yōu)秀青年學(xué)術(shù)骨干支持計(jì)劃資助。

    *通信聯(lián)系人。 E-mail:guoyuan@nwu.edu.cn

    猜你喜歡
    萘酚席夫堿西北大學(xué)
    西北大學(xué)木香文學(xué)社
    《西北大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
    《我們》、《疑惑》
    西北大學(xué)博物館
    萘酚異構(gòu)體在碳納米管/鐵氰化銅修飾電極上的電化學(xué)行為及同時(shí)測(cè)定
    席夫堿基雙子表面活性劑的制備及緩蝕應(yīng)用
    稀土釤鄰香草醛縮甘氨酸席夫堿配合物的合成及表征
    碳納米粒子:合成及可見光催化降解萘酚綠
    含吡啶的大環(huán)席夫堿錳(Ⅱ)配合物:合成、表征及抗菌性質(zhì)
    高分子擔(dān)載席夫堿及其Cr(Ⅲ)配合物:合成、表征、抗菌和抗真菌性能評(píng)價(jià)
    欧美日韩国产mv在线观看视频| 亚洲成人手机| 久久青草综合色| 美女福利国产在线| 日韩免费高清中文字幕av| 成年动漫av网址| 宅男免费午夜| 亚洲精品粉嫩美女一区| 大陆偷拍与自拍| 亚洲av熟女| 亚洲五月婷婷丁香| 国产麻豆69| 国产激情久久老熟女| 人人澡人人妻人| 欧美最黄视频在线播放免费 | 成人18禁高潮啪啪吃奶动态图| 亚洲色图综合在线观看| 欧美人与性动交α欧美软件| 欧美 亚洲 国产 日韩一| 在线国产一区二区在线| 欧美日韩瑟瑟在线播放| 国产亚洲一区二区精品| 午夜精品国产一区二区电影| 欧美精品高潮呻吟av久久| 精品国产美女av久久久久小说| 成年人免费黄色播放视频| 中文字幕另类日韩欧美亚洲嫩草| 久久天躁狠狠躁夜夜2o2o| 午夜精品久久久久久毛片777| 欧美丝袜亚洲另类 | 淫妇啪啪啪对白视频| 国产激情欧美一区二区| 欧美日韩瑟瑟在线播放| 老汉色∧v一级毛片| 精品亚洲成国产av| 国产精品国产av在线观看| 国产一区二区激情短视频| 男女之事视频高清在线观看| 十八禁人妻一区二区| 国产成人一区二区三区免费视频网站| 人妻久久中文字幕网| 午夜免费鲁丝| 老司机深夜福利视频在线观看| 亚洲精品成人av观看孕妇| 中文字幕制服av| 亚洲精品中文字幕在线视频| 精品亚洲成a人片在线观看| 在线永久观看黄色视频| 亚洲av日韩精品久久久久久密| 人成视频在线观看免费观看| 久久久国产成人免费| 精品久久蜜臀av无| 久久热在线av| 国产成+人综合+亚洲专区| 久久久精品区二区三区| 色在线成人网| 中文字幕人妻丝袜一区二区| 欧美日韩乱码在线| 成人手机av| 中文字幕色久视频| 黄色怎么调成土黄色| 人人澡人人妻人| 亚洲专区字幕在线| 亚洲专区国产一区二区| 黄色 视频免费看| 啦啦啦免费观看视频1| 黄色视频不卡| 高清黄色对白视频在线免费看| 一级作爱视频免费观看| av网站在线播放免费| 窝窝影院91人妻| 老熟妇乱子伦视频在线观看| 久久久久久久国产电影| 久久久精品免费免费高清| 久久精品人人爽人人爽视色| 视频在线观看一区二区三区| x7x7x7水蜜桃| 最近最新中文字幕大全电影3 | 在线十欧美十亚洲十日本专区| 国产99白浆流出| 午夜精品国产一区二区电影| 午夜影院日韩av| 一进一出好大好爽视频| 国产亚洲精品久久久久5区| 中文欧美无线码| 91麻豆av在线| 久久 成人 亚洲| 一二三四在线观看免费中文在| 91字幕亚洲| 日韩欧美一区视频在线观看| 91成年电影在线观看| 欧美亚洲 丝袜 人妻 在线| 女人被狂操c到高潮| 淫妇啪啪啪对白视频| 欧美日韩精品网址| 两性夫妻黄色片| 国产区一区二久久| 精品国产乱子伦一区二区三区| 色婷婷久久久亚洲欧美| 午夜精品国产一区二区电影| 1024香蕉在线观看| 少妇裸体淫交视频免费看高清 | 日韩欧美一区二区三区在线观看 | 99久久综合精品五月天人人| 日日爽夜夜爽网站| 国产精品亚洲一级av第二区| 精品国产一区二区三区四区第35| 精品一区二区三卡| 欧美激情 高清一区二区三区| 在线看a的网站| 人人妻人人澡人人看| 久久久久久久久免费视频了| 757午夜福利合集在线观看| 亚洲专区中文字幕在线| 亚洲视频免费观看视频| 51午夜福利影视在线观看| 日本一区二区免费在线视频| 欧美精品av麻豆av| 两性午夜刺激爽爽歪歪视频在线观看 | 嫁个100分男人电影在线观看| 中文字幕色久视频| 成人18禁在线播放| 免费一级毛片在线播放高清视频 | 国产亚洲欧美精品永久| 精品卡一卡二卡四卡免费| 妹子高潮喷水视频| 热99久久久久精品小说推荐| 黄频高清免费视频| 国产成人一区二区三区免费视频网站| 我的亚洲天堂| 欧美日韩av久久| 精品人妻1区二区| 老汉色av国产亚洲站长工具| 久久久久国内视频| 人妻久久中文字幕网| 亚洲一区二区三区不卡视频| a级毛片黄视频| 自线自在国产av| 午夜免费观看网址| 一夜夜www| 精品无人区乱码1区二区| 夜夜躁狠狠躁天天躁| 成年版毛片免费区| 巨乳人妻的诱惑在线观看| 露出奶头的视频| 波多野结衣一区麻豆| 国产高清videossex| 欧美日韩瑟瑟在线播放| 欧美av亚洲av综合av国产av| 国产亚洲欧美在线一区二区| 两性夫妻黄色片| 国产精品一区二区在线不卡| 手机成人av网站| 天天躁夜夜躁狠狠躁躁| 99re在线观看精品视频| 99国产综合亚洲精品| 欧美人与性动交α欧美精品济南到| 亚洲欧洲精品一区二区精品久久久| 欧美精品啪啪一区二区三区| 女人高潮潮喷娇喘18禁视频| 露出奶头的视频| 女警被强在线播放| av国产精品久久久久影院| 日本黄色视频三级网站网址 | 91大片在线观看| 9热在线视频观看99| 色在线成人网| 欧美日韩亚洲综合一区二区三区_| 在线观看免费午夜福利视频| 黄色怎么调成土黄色| 国产精品一区二区精品视频观看| 女人被躁到高潮嗷嗷叫费观| 欧美黄色片欧美黄色片| 在线观看午夜福利视频| 国产精品久久电影中文字幕 | 日韩欧美一区视频在线观看| cao死你这个sao货| 欧美一级毛片孕妇| 9191精品国产免费久久| 91字幕亚洲| 亚洲av日韩精品久久久久久密| 国产欧美日韩综合在线一区二区| 日日夜夜操网爽| 久久久久久人人人人人| 十八禁网站免费在线| 国产精品偷伦视频观看了| av一本久久久久| 色婷婷久久久亚洲欧美| 男人舔女人的私密视频| 久久久水蜜桃国产精品网| 如日韩欧美国产精品一区二区三区| 国产精品一区二区免费欧美| 精品一区二区三区视频在线观看免费 | 国产在视频线精品| 极品少妇高潮喷水抽搐| 俄罗斯特黄特色一大片| 在线av久久热| 国产成+人综合+亚洲专区| 波多野结衣av一区二区av| 久久中文字幕人妻熟女| 在线av久久热| 两性午夜刺激爽爽歪歪视频在线观看 | 日本vs欧美在线观看视频| 久久久久久久久免费视频了| 亚洲成人免费电影在线观看| 亚洲成人免费av在线播放| 另类亚洲欧美激情| 麻豆av在线久日| 国产aⅴ精品一区二区三区波| 亚洲五月色婷婷综合| 国产精品久久久人人做人人爽| 电影成人av| 久久ye,这里只有精品| 欧美成人午夜精品| 亚洲精品一二三| 欧美日韩成人在线一区二区| 人人澡人人妻人| 国产高清视频在线播放一区| 在线天堂中文资源库| 69精品国产乱码久久久| 窝窝影院91人妻| 老熟女久久久| 天天添夜夜摸| 国产亚洲欧美98| 真人做人爱边吃奶动态| 亚洲伊人色综图| 欧美日韩亚洲综合一区二区三区_| 亚洲精品乱久久久久久| 老司机亚洲免费影院| 国产不卡一卡二| 母亲3免费完整高清在线观看| 亚洲精品国产色婷婷电影| 建设人人有责人人尽责人人享有的| 91精品三级在线观看| 国产精品美女特级片免费视频播放器 | 悠悠久久av| av有码第一页| 老司机午夜十八禁免费视频| 一本大道久久a久久精品| 身体一侧抽搐| 国产精品二区激情视频| 午夜精品久久久久久毛片777| 成人精品一区二区免费| 新久久久久国产一级毛片| 日韩欧美免费精品| 自拍欧美九色日韩亚洲蝌蚪91| 激情在线观看视频在线高清 | 9色porny在线观看| 国产成人欧美| 亚洲av电影在线进入| 亚洲精品乱久久久久久| 亚洲色图av天堂| 在线永久观看黄色视频| 亚洲色图 男人天堂 中文字幕| 真人做人爱边吃奶动态| 日韩成人在线观看一区二区三区| 男女下面插进去视频免费观看| 午夜久久久在线观看| 国产在视频线精品| 欧美在线黄色| 久久精品91无色码中文字幕| 精品第一国产精品| 一进一出抽搐gif免费好疼 | 国产精品 国内视频| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 99精国产麻豆久久婷婷| 精品午夜福利视频在线观看一区| 九色亚洲精品在线播放| 99re6热这里在线精品视频| 亚洲人成电影免费在线| 美国免费a级毛片| 一a级毛片在线观看| 国产精品成人在线| 国产1区2区3区精品| 日本五十路高清| 99精品欧美一区二区三区四区| 国产色视频综合| 丝袜美足系列| 丁香欧美五月| 亚洲一区二区三区欧美精品| 黄色怎么调成土黄色| 十八禁高潮呻吟视频| 啪啪无遮挡十八禁网站| 国产人伦9x9x在线观看| 精品电影一区二区在线| 香蕉丝袜av| 欧美国产精品一级二级三级| 999久久久精品免费观看国产| 日韩熟女老妇一区二区性免费视频| 可以免费在线观看a视频的电影网站| 亚洲专区国产一区二区| 日韩三级视频一区二区三区| 两人在一起打扑克的视频| 国产精品国产高清国产av | 精品久久久久久久久久免费视频 | 久久精品国产综合久久久| 啦啦啦免费观看视频1| 一区二区三区精品91| 国产成人精品久久二区二区免费| 国产精品久久久av美女十八| a在线观看视频网站| 亚洲成人手机| 久热这里只有精品99| 亚洲色图 男人天堂 中文字幕| 女人爽到高潮嗷嗷叫在线视频| 久热这里只有精品99| 欧美日韩福利视频一区二区| 亚洲自偷自拍图片 自拍| 宅男免费午夜| aaaaa片日本免费| 国产乱人伦免费视频| 国产一区二区三区综合在线观看| 国产成人欧美在线观看 | 超色免费av| 亚洲精品国产色婷婷电影| 午夜视频精品福利| 91av网站免费观看| 正在播放国产对白刺激| www.自偷自拍.com| 欧美在线一区亚洲| 国精品久久久久久国模美| 亚洲国产精品sss在线观看 | 久久中文字幕一级| 男女高潮啪啪啪动态图| 午夜精品国产一区二区电影| 久久久久久久精品吃奶| 精品一区二区三区av网在线观看| 精品人妻1区二区| 这个男人来自地球电影免费观看| 啦啦啦视频在线资源免费观看| 亚洲欧美色中文字幕在线| 嫁个100分男人电影在线观看| 在线观看舔阴道视频| 欧美精品高潮呻吟av久久| 欧美精品人与动牲交sv欧美| 黄色毛片三级朝国网站| 欧美在线黄色| 精品熟女少妇八av免费久了| 免费日韩欧美在线观看| 欧美黄色片欧美黄色片| 精品国产亚洲在线| 国产精品自产拍在线观看55亚洲 | 一区福利在线观看| 女警被强在线播放| 一二三四在线观看免费中文在| 色94色欧美一区二区| 法律面前人人平等表现在哪些方面| 三上悠亚av全集在线观看| 啪啪无遮挡十八禁网站| 热re99久久国产66热| 国产欧美日韩一区二区三| 99久久国产精品久久久| 变态另类成人亚洲欧美熟女 | 少妇粗大呻吟视频| 亚洲av日韩在线播放| 9色porny在线观看| 一级a爱片免费观看的视频| 久久精品亚洲av国产电影网| 夫妻午夜视频| 成人特级黄色片久久久久久久| 国产av精品麻豆| 成人18禁高潮啪啪吃奶动态图| 天天躁狠狠躁夜夜躁狠狠躁| 成人手机av| a级毛片黄视频| 亚洲精品国产精品久久久不卡| 成人三级做爰电影| 一进一出抽搐gif免费好疼 | 18禁黄网站禁片午夜丰满| 一级a爱视频在线免费观看| 色94色欧美一区二区| 91大片在线观看| 在线观看一区二区三区激情| 男人操女人黄网站| 色老头精品视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看舔阴道视频| 日韩欧美一区视频在线观看| 国产麻豆69| 亚洲精品在线美女| 欧美在线一区亚洲| 王馨瑶露胸无遮挡在线观看| 午夜免费观看网址| 久久草成人影院| 久久久久久人人人人人| 久久精品成人免费网站| 女人爽到高潮嗷嗷叫在线视频| www.999成人在线观看| 成熟少妇高潮喷水视频| 91字幕亚洲| 国产精华一区二区三区| 老司机亚洲免费影院| 久久精品人人爽人人爽视色| 两个人看的免费小视频| 国产精品香港三级国产av潘金莲| 国产麻豆69| 国产99白浆流出| 精品久久久久久久毛片微露脸| 成人影院久久| 亚洲 国产 在线| 亚洲国产欧美一区二区综合| 免费观看精品视频网站| 99久久人妻综合| 欧美日韩成人在线一区二区| 欧美激情久久久久久爽电影 | 热re99久久精品国产66热6| 狠狠婷婷综合久久久久久88av| 亚洲在线自拍视频| 两个人免费观看高清视频| 国产成人欧美在线观看 | 性少妇av在线| 久久久久久人人人人人| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品合色在线| 成在线人永久免费视频| 亚洲欧美日韩高清在线视频| 在线观看免费视频网站a站| 亚洲七黄色美女视频| 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲熟妇少妇任你| 免费在线观看影片大全网站| 91精品国产国语对白视频| 三上悠亚av全集在线观看| 亚洲精品粉嫩美女一区| 免费看十八禁软件| 久久久国产成人精品二区 | 国产片内射在线| 精品一区二区三区视频在线观看免费 | 中文字幕制服av| 欧美午夜高清在线| 免费看十八禁软件| 黄色a级毛片大全视频| 国产乱人伦免费视频| 天天影视国产精品| a级毛片在线看网站| 国产1区2区3区精品| 亚洲美女黄片视频| 满18在线观看网站| 两个人看的免费小视频| 99久久人妻综合| 一a级毛片在线观看| 成人亚洲精品一区在线观看| 欧美黄色淫秽网站| 热99国产精品久久久久久7| 在线永久观看黄色视频| 亚洲色图 男人天堂 中文字幕| 看黄色毛片网站| videos熟女内射| 男女免费视频国产| 久久ye,这里只有精品| 免费在线观看影片大全网站| 亚洲欧美色中文字幕在线| 亚洲九九香蕉| 欧美另类亚洲清纯唯美| 午夜两性在线视频| 老司机影院毛片| www.精华液| 一进一出抽搐gif免费好疼 | 国产精品久久久人人做人人爽| 无人区码免费观看不卡| 又黄又爽又免费观看的视频| 亚洲熟妇熟女久久| 校园春色视频在线观看| 欧美 日韩 精品 国产| 国产精品 国内视频| 色播在线永久视频| 国产欧美日韩一区二区三| x7x7x7水蜜桃| 亚洲欧美日韩另类电影网站| 女人久久www免费人成看片| 精品午夜福利视频在线观看一区| 亚洲熟女毛片儿| 久久精品人人爽人人爽视色| 亚洲综合色网址| 身体一侧抽搐| 高清黄色对白视频在线免费看| 免费一级毛片在线播放高清视频 | 国产精品电影一区二区三区 | 日韩一卡2卡3卡4卡2021年| 女同久久另类99精品国产91| 亚洲av第一区精品v没综合| 免费在线观看日本一区| 国产av一区二区精品久久| 久久久精品国产亚洲av高清涩受| 激情在线观看视频在线高清 | 在线播放国产精品三级| 成人国产一区最新在线观看| 亚洲av欧美aⅴ国产| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| 精品一区二区三区四区五区乱码| 欧美精品亚洲一区二区| 国产一区二区激情短视频| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| 亚洲黑人精品在线| 亚洲午夜理论影院| 人妻 亚洲 视频| 久久这里只有精品19| 亚洲欧美日韩另类电影网站| 国产av精品麻豆| 91老司机精品| 啦啦啦免费观看视频1| 亚洲成a人片在线一区二区| 老司机靠b影院| 丝袜人妻中文字幕| 亚洲专区字幕在线| 亚洲精品美女久久久久99蜜臀| 夫妻午夜视频| 国产精品影院久久| 69精品国产乱码久久久| 成年版毛片免费区| 久久中文字幕一级| 免费在线观看日本一区| 欧美老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 亚洲国产毛片av蜜桃av| 操出白浆在线播放| 亚洲欧美激情在线| 狠狠狠狠99中文字幕| 脱女人内裤的视频| 国产91精品成人一区二区三区| 精品午夜福利视频在线观看一区| 成人av一区二区三区在线看| 母亲3免费完整高清在线观看| 亚洲专区字幕在线| 国产精品一区二区在线观看99| xxxhd国产人妻xxx| 亚洲第一青青草原| 美女扒开内裤让男人捅视频| 亚洲美女黄片视频| 日本一区二区免费在线视频| 丰满饥渴人妻一区二区三| 电影成人av| 亚洲国产精品合色在线| 国产av精品麻豆| 少妇猛男粗大的猛烈进出视频| 亚洲熟妇中文字幕五十中出 | 性少妇av在线| 纯流量卡能插随身wifi吗| 国产成人影院久久av| 欧美精品啪啪一区二区三区| 亚洲性夜色夜夜综合| 看免费av毛片| 亚洲精品一二三| 国产亚洲欧美精品永久| 亚洲精品在线观看二区| 欧美成狂野欧美在线观看| 国产精品一区二区精品视频观看| 俄罗斯特黄特色一大片| 国产精品电影一区二区三区 | 大片电影免费在线观看免费| 新久久久久国产一级毛片| 视频区图区小说| 国产无遮挡羞羞视频在线观看| 国产精品 国内视频| 色婷婷久久久亚洲欧美| 久久国产精品大桥未久av| 99久久99久久久精品蜜桃| 国产一区二区三区综合在线观看| 久久久久久久久免费视频了| 另类亚洲欧美激情| 国产男女内射视频| 精品亚洲成国产av| 亚洲欧美激情综合另类| ponron亚洲| 久9热在线精品视频| 欧美日韩黄片免| 国产精华一区二区三区| 动漫黄色视频在线观看| 在线观看免费日韩欧美大片| 亚洲色图av天堂| 一级片免费观看大全| 欧美不卡视频在线免费观看 | 9191精品国产免费久久| 午夜福利免费观看在线| 99精品在免费线老司机午夜| 99久久国产精品久久久| 男人舔女人的私密视频| 女警被强在线播放| 日韩免费av在线播放| 午夜精品久久久久久毛片777| 美女视频免费永久观看网站| 中文欧美无线码| 黄网站色视频无遮挡免费观看| 18在线观看网站| 丰满饥渴人妻一区二区三| 男人的好看免费观看在线视频 | 国产极品粉嫩免费观看在线| 久久人人97超碰香蕉20202| 国产欧美日韩综合在线一区二区| 婷婷成人精品国产| 香蕉国产在线看| 国产亚洲一区二区精品| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美日韩在线播放| 久99久视频精品免费| 大型黄色视频在线免费观看| 无人区码免费观看不卡| av中文乱码字幕在线| 色婷婷av一区二区三区视频| 精品久久久久久,| 自拍欧美九色日韩亚洲蝌蚪91| 久久狼人影院| 国产成人啪精品午夜网站| 精品人妻在线不人妻| 国产高清国产精品国产三级| 亚洲,欧美精品.| 高潮久久久久久久久久久不卡| 99热只有精品国产| 50天的宝宝边吃奶边哭怎么回事| 男女床上黄色一级片免费看| 亚洲色图综合在线观看| 国产亚洲欧美在线一区二区|