馮凈凈,陳家君,王盛美,揭志軍
復(fù)旦大學(xué)附屬上海市第五人民醫(yī)院呼吸科,上海 200240
·論著·
白細(xì)胞介素23在呼吸道合胞病毒感染致Th1、Th2及Th17細(xì)胞分化中的作用及機(jī)制
馮凈凈,陳家君,王盛美,揭志軍
復(fù)旦大學(xué)附屬上海市第五人民醫(yī)院呼吸科,上海 200240
本研究旨在探討白細(xì)胞介素23(interleukin 23,IL-23)在呼吸道合胞病毒(respiratory syncytial virus,RSV)感染支氣管上皮細(xì)胞BEAS-2B后對(duì)Th1、Th2和Th17細(xì)胞分化的影響及作用機(jī)制。將RSV感染BEAS-2B后的上清液與淋巴細(xì)胞共孵育,并分別阻斷IL-23受體(IL-23 receptor,IL-23R)、IL-23p19亞基及p38絲裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)信號(hào)通路。應(yīng)用酶聯(lián)免疫吸附試驗(yàn)(enzyme-linked immunosorbent assay,ELISA)檢測(cè)上清液中細(xì)胞因子γ干擾素(interferon γ,IFN-γ)、IL-4、IL-17的濃度。同時(shí),應(yīng)用實(shí)時(shí)聚合酶鏈反應(yīng)(polymerase chain reaction,PCR)檢測(cè)相關(guān)轉(zhuǎn)錄因子(t-bet、gata3、rorγt)和信號(hào)轉(zhuǎn)導(dǎo)子(stat4、stat6、stat3)的表達(dá)。結(jié)果顯示,RSV感染后IFN-γ、IL-4和IL-17蛋白表達(dá)上調(diào),轉(zhuǎn)錄因子及信號(hào)轉(zhuǎn)導(dǎo)子的表達(dá)也有所增加。阻斷IL-23和p38 MAPK信號(hào)通路后,Th1、Th2和Th7細(xì)胞分泌的細(xì)胞因子及轉(zhuǎn)錄因子表達(dá)均明顯下降。結(jié)果提示,阻斷IL-23后可在基因轉(zhuǎn)導(dǎo)層面抑制RSV感染上皮細(xì)胞后誘導(dǎo)的Th1、Th2和Th17細(xì)胞分化,此過(guò)程可能與p38 MAPK信號(hào)通路有關(guān)。
呼吸道合胞病毒;白細(xì)胞介素23受體;白細(xì)胞介素23 p19亞基;p38絲裂原活化蛋白激酶信號(hào)通路;T輔助細(xì)胞;轉(zhuǎn)錄因子
呼吸道合胞病毒(respiratory syncytial virus,RSV)屬副黏病毒科肺炎病毒屬[1]。RSV感染是兒童肺炎和毛細(xì)支氣管炎最常見(jiàn)的病因,也是5歲以下幼兒急性呼吸道感染的最重要病原體[2]。臨床研究發(fā)現(xiàn),嬰幼兒時(shí)期因RSV所致毛細(xì)支氣管炎住院的兒童,成年后發(fā)生哮喘的概率顯著增加[3]。但目前為止,其發(fā)病機(jī)制尚未完全明了。
Th17細(xì)胞亞群是近年來(lái)發(fā)現(xiàn)的一種CD4+輔助T細(xì)胞亞群,主要分泌白細(xì)胞介素17A (interleukin 17A,IL-17A)、IL-17F、IL-21、IL-22等炎性細(xì)胞因子,在防御胞外菌感染,介導(dǎo)慢性炎癥、自身免疫病和腫瘤等過(guò)程中發(fā)揮重要作用[4]。雖然眾多研究發(fā)現(xiàn)Th17細(xì)胞參與RSV感染導(dǎo)致的宿主免疫過(guò)程,但具體機(jī)制還不清楚,其既有促進(jìn)炎癥反應(yīng)的作用,又具備抑制炎癥反應(yīng)的功能[5-6]。IL-23是促進(jìn)Th17細(xì)胞亞群增殖和分化不可或缺的細(xì)胞因子,由一個(gè)新發(fā)現(xiàn)的蛋白 p19 與 IL-12 共用亞基 p40 組成[7]。隨著研究的深入,發(fā)現(xiàn)IL-23不僅參與Th17細(xì)胞的增殖和分化,還參與其他Th細(xì)胞的分化。如在潰瘍性結(jié)腸炎模型中,IL-23受體(IL-23 receptor,IL-23R)的缺失不僅導(dǎo)致Th17細(xì)胞減少,Th1細(xì)胞數(shù)量也有所減少[8]。在哮喘模型中,IL-23可通過(guò)調(diào)節(jié)Th2細(xì)胞發(fā)揮作用。Wakashin等[9]發(fā)現(xiàn),即使在IL-17缺乏的情況下,IL-23 也能介導(dǎo)Th2相關(guān)細(xì)胞因子的生成和氣道嗜酸性粒細(xì)胞的募集,提示IL-23無(wú)須依賴IL-17即可參與氣道過(guò)敏性炎癥。體外實(shí)驗(yàn)中,IL-23/IL-23R信號(hào)通路能增加Th2細(xì)胞的表達(dá)[10]。
在本課題組前期研究中,用RSV感染支氣管上皮細(xì)胞BEAS-2B,收集感染及未感染RSV的BEAS-2B上清液,與正常人淋巴細(xì)胞共孵育,通過(guò)流式細(xì)胞術(shù)檢測(cè)Th1、Th2、Th17細(xì)胞,發(fā)現(xiàn)RSV感染后Th1、Th2及Th17細(xì)胞均增加。同時(shí)還發(fā)現(xiàn),阻斷淋巴細(xì)胞表面IL-23R后,不僅Th17細(xì)胞分化受抑制,Th1和Th2細(xì)胞分化也顯著受抑制[11]。IL-23通過(guò)何種途徑影響Th1和Th2細(xì)胞分化,猜測(cè)阻斷IL-23R后,Th1和Th2細(xì)胞分化的信號(hào)途徑被抑制,導(dǎo)致Th1和Th2細(xì)胞數(shù)量降低。本研究同時(shí)阻斷IL-23p19,觀察其對(duì)后續(xù)Th細(xì)胞系信號(hào)轉(zhuǎn)錄因子的影響。
p38絲裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)是MAPK家族成員之一,通過(guò)對(duì)細(xì)胞內(nèi)信號(hào)的傳遞,參與細(xì)胞對(duì)外界刺激的調(diào)節(jié)反應(yīng),是細(xì)胞外多種刺激傳向胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)通路的交匯點(diǎn),抑制MAPK信號(hào)轉(zhuǎn)導(dǎo)通路能減少炎性細(xì)胞因子的釋放。本研究采用p38 MAPK通路抑制劑(SB203580),探討該信號(hào)通路在RSV感染后Th1、Th2和Th17細(xì)胞系轉(zhuǎn)錄因子及所分泌的細(xì)胞因子γ干擾素(interferon γ,IFN-γ)、IL-4、IL-17變化中的作用。
1.1 材料
1.1.1試劑DMEM培養(yǎng)基、杜氏磷酸鹽緩沖液(Dulbecco’s phosphate buffered saline,DPBS)購(gòu)自Hyclone公司,胎牛血清(fetal bovine serum,F(xiàn)BS)購(gòu)自美國(guó)Gibco公司,RNA抽提試劑盒Qiagen RNeasy Min Kit、反轉(zhuǎn)錄-聚合酶鏈反應(yīng)(reverse transcriptase-polymerase chain reaction,RT-PCR)試劑盒 One Step PrimeScript RT-PCR Kit購(gòu)自寶生物工程(大連)有限公司,p38 MAPK 抑制劑SB203580購(gòu)自Sigma Aldrich公司,IL-23R及對(duì)照抗體購(gòu)自Santa Cruz Biotechnology公司,IL-23p19及對(duì)照抗體購(gòu)自eBioscience公司,刺激劑佛波酯(phorbol-12-myristate-13-acetate,PMA)和離子霉素(ionomycin)購(gòu)自美國(guó)BD公司,人細(xì)胞因子INF-γ、IL-4和IL-17檢測(cè)用酶聯(lián)免疫吸附試驗(yàn)(enzyme-linked immunosorbent assay,ELISA)試劑盒購(gòu)自欣博盛生物科技有限公司。
1.1.2病毒和細(xì)胞RSV A2 株由上海中醫(yī)藥大學(xué)喻曉惠贈(zèng),來(lái)自美國(guó)標(biāo)準(zhǔn)生物品收藏中心(American Type Culture Collection,ATCC);人喉癌上皮細(xì)胞Hep-2、永生型人支氣管上皮細(xì)胞BEAS-2B由復(fù)旦大學(xué)附屬上海市公共衛(wèi)生臨床中心保存。 Hep-2細(xì)胞于含10% FBS的DMEM培養(yǎng)基中,37 ℃、5% CO2培養(yǎng)。待細(xì)胞長(zhǎng)滿單層,將RSV接種于Hep-2細(xì)胞,繼續(xù)在含2% FBS的DMEM維持液中培養(yǎng),3~5 d后細(xì)胞可出現(xiàn)病變,待病變達(dá)80%時(shí)收獲病毒,測(cè)半數(shù)組織培養(yǎng)感染劑量(50% tissue culture infective dose,TCID50)為1×107/mL時(shí),凍存于-80 ℃?zhèn)溆肹12]。
1.2 方法
1.2.1RSV感染BEAS-2B細(xì)胞BEAS-2B細(xì)胞于含10% FBS的DMEM培養(yǎng)基中,5% CO2、37 ℃培養(yǎng)。將BEAS-2B細(xì)胞接種于24孔板,每孔2×105個(gè),每孔培養(yǎng)體積1 mL;次日觀察上皮細(xì)胞貼壁達(dá)60%~70%,棄培養(yǎng)基,用DPBS洗2次;加入感染復(fù)數(shù)(multiplicity of infection,MOI)為5的RSV懸液300 μL,輕輕搖勻,置37 ℃培養(yǎng)箱中吸附2 h(每30 min輕搖培養(yǎng)瓶1次);棄去未吸附的病毒液,用DPBS洗細(xì)胞2次,加入細(xì)胞培養(yǎng)液,72 h后收集細(xì)胞培養(yǎng)上清液,800g離心5 min去除細(xì)胞雜質(zhì)。
1.2.2RSV感染BEAS-2B細(xì)胞的上清液與淋巴細(xì)胞共孵育分離健康人外周血單核細(xì)胞,培養(yǎng)箱中靜置3 h。因巨噬細(xì)胞為貼壁細(xì)胞,懸浮的細(xì)胞即為淋巴細(xì)胞,3 h后輕輕收取懸浮的淋巴細(xì)胞。用正常和感染RSV 72 h的BEAS-2B細(xì)胞上清液分別處理淋巴細(xì)胞,分為6組進(jìn)行以下干預(yù)。①淋巴細(xì)胞組(L組):用1 mL正常BEAS-2B細(xì)胞上清液重懸淋巴細(xì)胞,調(diào)整細(xì)胞密度為2×106/mL;②RSV+淋巴細(xì)胞組(RL組):用1 mL感染RSV的BEAS-2B細(xì)胞上清液重懸淋巴細(xì)胞,調(diào)整細(xì)胞密度為2×106/mL;③RSV+淋巴細(xì)胞+anti-IL-23R組(RL+aIL-23R組):先將抗anti-IL-23R(5 μg/孔)加入淋巴細(xì)胞作用1 h,后加至1 mL感染RSV的BEAS-2B細(xì)胞上清液中,調(diào)整細(xì)胞密度為2×106個(gè)/mL;④RSV+淋巴細(xì)胞+anti-IL-23R對(duì)照抗體組(RL+aIL-23R cab組):先將抗anti-IL-23R(5 μg/孔)對(duì)照抗體anti-rabbit IgG加入淋巴細(xì)胞中作用1 h,后加至1 mL感染RSV的BEAS-2B細(xì)胞上清液中,調(diào)整細(xì)胞密度為2×106個(gè)/mL;⑤RSV+淋巴細(xì)胞+anti-IL-23p19組(RL+aIL-23p19組):先將抗anti-IL-23p19(0.5 μg/孔)加入BEAS-2B細(xì)胞上清液中作用1 h,后加入淋巴細(xì)胞,調(diào)整細(xì)胞密度為2×106個(gè)/mL;⑥RSV+淋巴細(xì)胞+anti-IL-23p19對(duì)照抗體組(RL+aIL-23p19 cab組):先將抗anti-IL-23p19(0.5 μg/孔)對(duì)照抗體mouse IgG1加入BEAS-2B細(xì)胞上清液中作用1 h,后加入淋巴細(xì)胞,調(diào)整細(xì)胞密度為2×106個(gè)/mL。
干預(yù)淋巴細(xì)胞時(shí),各組同時(shí)加入PMA(50 ng/mL)和離子霉素(1 μg/mL)以激活淋巴細(xì)胞,培養(yǎng)箱中作用12 h,然后收集淋巴細(xì)胞及上清液。
1.2.3阻斷p38MAPK信號(hào)通路后Th細(xì)胞相關(guān)轉(zhuǎn)錄因子的變化淋巴細(xì)胞的獲取步驟同前,實(shí)驗(yàn)分兩組:RSV+淋巴細(xì)胞組(RL組)和RSV+淋巴細(xì)胞+SB203580組(RL+SB203580組)。先將20 μmol/L[13]SB203580加入淋巴細(xì)胞中作用1 h,后加至1 mL感染RSV的BEAS-2B細(xì)胞上清液中。后續(xù)步驟同前。
1.2.4ELISA檢測(cè)各組上清液中IL-17、IL-4、IFN-γ的變化按ELISA試劑盒說(shuō)明書(shū)檢測(cè)細(xì)胞培養(yǎng)上清液中IFN-γ、IL-4、IL-17表達(dá)水平。
1.2.5實(shí)時(shí)PCR檢測(cè)淋巴細(xì)胞中Th1、Th2和Th17細(xì)胞分化相關(guān)轉(zhuǎn)錄因子根據(jù)說(shuō)明書(shū)步驟抽提各組淋巴細(xì)胞總RNA,實(shí)時(shí)定量PCR檢測(cè)Th1、Th2、Th17細(xì)胞亞群分化相關(guān)轉(zhuǎn)錄因子(t-bet、gata3、rorγt)和信號(hào)轉(zhuǎn)導(dǎo)子(stat4、stat6、stat3)的變化,GAPDH作為管家基因。反應(yīng)體系共25 μL,包括2×Buffer 12.5 μL、ExTaqHS 0.5 μL、Enzyme Mix 0.5 μL、上下游引物各0.75 μL、H2O 6.25 μL、RNA模板2.5 μL,用VII7擴(kuò)增儀進(jìn)行。反應(yīng)條件為:反轉(zhuǎn)錄42 ℃ 30 min,預(yù)變性95 ℃ 1 min,然后變性95 ℃ 5 s,退火延伸60 ℃ 30 s,40個(gè)循環(huán)。于退火延伸溫度時(shí)收集熒光信號(hào),繪制溶解曲線。引物序列見(jiàn)表1。將每個(gè)反應(yīng)管內(nèi)熒光信號(hào)達(dá)設(shè)定域值時(shí)所經(jīng)歷的循環(huán)數(shù)(cycle threshold,CT),經(jīng)2-ΔΔCT計(jì)算,獲得相對(duì)表達(dá)量。實(shí)驗(yàn)技術(shù)路線見(jiàn)圖1。
1.3 統(tǒng)計(jì)學(xué)分析
采用 GraphPad Prism 5 統(tǒng)計(jì)軟件處理數(shù)據(jù),數(shù)據(jù)以mean±SEM表示,兩組間比較用獨(dú)立樣本t檢驗(yàn)。組間數(shù)據(jù)為非正態(tài)分布或方差不齊時(shí),采用多個(gè)獨(dú)立樣本的Kruskal-WallisH檢驗(yàn),P<0.05為有顯著性差異。
表1PCR引物
Tab.1PrimersusedforPCR
PrimerSequence(5'-3')Size(bp)GAPDHF5'-ACGGATTTGGTCGTATTGGG-3'218R5'-ATCTCGCTCCTGGAAGATGG-3'T-betF5'-CCTGTTGTGGTCCAAGTTCA-3'129R5'-GAAGGACAGGAATGGGAACA-3'GATA3F5'-GGGCAATCAGTGTTACCGTT-3'278R5'-ACCACCTTAGGCCAACTGAA-3'STAT4F5'-AATCAGCAAATGGGAGCCTGTC-3'116R5'-CTGCGTTTCAAAGCTGATGGAG-3'STAT3F5'-ACCAGCAGTATAGCCGCTTC-3'106R5'-GCCACAATCCGGGCAATCT-3'RORγtF5'-CCAGTCCACTGATCTTGGGT-3'278R5'-CAAGAGAGGTTCTGGGCAAG-3'STAT6F5'-GCACTGACTGGAAGGGAAGT-3'145R5'-AACCTGTGCTCTTACCCAGC-3'
圖1實(shí)驗(yàn)技術(shù)路線
Fig.1Schemeoftheexperimentalroute
2.1 上清液中IFN-γ、IL-4、IL-17的變化
ELISA結(jié)果顯示,RSV感染BEAS-2B細(xì)胞的上清液能使淋巴細(xì)胞分泌IFN-γ、IL-4、IL-17增多,但阻斷IL-23受體及亞基p19后,IFN-γ、IL-4、IL-17表達(dá)均有所下降,不同阻斷劑之間無(wú)明顯差異(圖2)。
2.2Th1、Th2和Th17細(xì)胞分化相關(guān)轉(zhuǎn)錄因子的變化
與對(duì)照組相比,RNA水平上RSV感染的BEAS-2B細(xì)胞上清液使Th1、Th2和Th17細(xì)胞分化相關(guān)轉(zhuǎn)錄因子(t-bet、gata3、rorγt)和信號(hào)轉(zhuǎn)導(dǎo)子(stat4、stat6、stat3)表達(dá)均有不同程度的升高。不論阻斷IL-23受體還是阻斷亞基p19,Th1、Th2和Th17細(xì)胞的信號(hào)轉(zhuǎn)導(dǎo)途徑均被不同程度抑制,不同阻斷劑之間Th1、Th17細(xì)胞相關(guān)轉(zhuǎn)錄因子(t-bet、rorγt)和信號(hào)轉(zhuǎn)導(dǎo)子(stat4、stat3)的表達(dá)無(wú)顯著差異。但阻斷IL-23p19后,Th2細(xì)胞分化相關(guān)轉(zhuǎn)錄因子gata3及信號(hào)轉(zhuǎn)導(dǎo)子stat6較阻斷IL-23R有更明顯的下降趨勢(shì)(圖3)。
2.3阻斷p38MAPK信號(hào)通路后Th1、Th2、Th17細(xì)胞分泌細(xì)胞因子及相關(guān)轉(zhuǎn)錄因子的變化阻斷p38 MAPK信號(hào)通路后,Th1、Th2和Th17細(xì)胞分泌IFN-γ、IL-4、IL-17均有不同程度下降。Th1、Th2和Th17細(xì)胞亞群分化相關(guān)轉(zhuǎn)錄因子(t-bet、gata3、rorγt)和信號(hào)轉(zhuǎn)導(dǎo)子(stat4、stat6、stat3)mRNA的表達(dá)也均有不同程度下降(圖4)。
#P<0.05,##P<0.01 compared with L group;*P<0.05,**P<0.01 compared with RL group.
圖2阻斷淋巴細(xì)胞表面IL-23R、培養(yǎng)體系IL-23p19后IFN-γ、IL-4、IL-17分泌的變化
Fig.2ConcentrationsofIFN-γ,IL-4andIL-17insupernatantsafterblockageofIL-23RandIL-23p19
#P<0.05,##P<0.01 compared with L group;*P<0.05,**P<0.01 compared with RL group;△P<0.05,△△△P<0.001.
圖3阻斷淋巴細(xì)胞表面IL-23R、培養(yǎng)體系IL-23p19后Th1、Th2和Th17細(xì)胞相關(guān)轉(zhuǎn)錄因子的變化
Fig.3RelativeexpressionsoftranscriptionfactorsinlymphocytesafterblockageofIL-23RandIL-23p19
*P<0.05,**P<0.01,***P<0.001 compared with RL group.
圖4阻斷p38MAPK信號(hào)通路后Th1、Th2和Th17細(xì)胞分泌細(xì)胞因子及相關(guān)轉(zhuǎn)錄因子的變化
Fig.4ConcentrationsofIFN-γ,IL-4andIL-17insupernatantsandrelativeexpressionsoftranscriptionfactorsinlymphocytesafterblockageofp38MAPKsignalpathway
人支氣管上皮細(xì)胞受感染后能分泌前炎性細(xì)胞因子,從而激活宿主的免疫防御機(jī)制。RSV無(wú)論感染原代氣道上皮細(xì)胞(primary airway epithelial cell,AEC)還是氣道上皮細(xì)胞系BEAS-2B,均能產(chǎn)生IL-8、IL-6、粒細(xì)胞-巨噬細(xì)胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)等介質(zhì)[14]。本課題組前期研究發(fā)現(xiàn),RSV感染BEAS-2B細(xì)胞后,能刺激細(xì)胞分泌Th1和Th17分化相關(guān)的細(xì)胞因子IL-12、IL-23、IL-6、轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor β, TGF-β),在這些細(xì)胞因子的作用下引起Th細(xì)胞亞群的異常漂移。Qin 等[15]建立RSV持續(xù)感染人氣道上皮細(xì)胞(human bronchial epithelial cell,HBEC)模型,其上清液能促使Th細(xì)胞亞群向Th1、Th2、Th17方向分化。本課題組前期研究也發(fā)現(xiàn),RSV感染BEAS-2B細(xì)胞的上清液使Th1、Th2、Th17細(xì)胞分化增加,但阻斷IL-23/IL-23R通路后,三細(xì)胞系的比例均下降。本研究沿用以前建立的實(shí)驗(yàn)體系,即通過(guò)建立體外RSV感染BEAS-2B細(xì)胞模型,將RSV感染的上皮細(xì)胞上清液與人外周淋巴細(xì)胞共孵育,分別阻斷淋巴細(xì)胞表面IL-23R和IL-23p19,檢測(cè)Th細(xì)胞分化相關(guān)調(diào)控基因的變化,以探討阻斷IL-23后三細(xì)胞系下降的原因。
結(jié)果顯示,RSV感染后三細(xì)胞系分泌的細(xì)胞因子IFN-γ、IL-4和IL-17均有不同程度升高。相應(yīng)地,相關(guān)轉(zhuǎn)錄因子在RSV刺激下表達(dá)較對(duì)照組有所增加。阻斷IL-23后,三細(xì)胞系分化相關(guān)轉(zhuǎn)錄因子均有不同程度下降,表明IL-23可在基因轉(zhuǎn)導(dǎo)層面影響三細(xì)胞系的分化。很多研究證實(shí),Th1與Th17細(xì)胞關(guān)系密切,且IL-23在其中起重要作用。Ahern等[8]發(fā)現(xiàn),缺失IL-23R信號(hào)后,炎癥性腸病中Th1和Th17細(xì)胞數(shù)量有所減少。近期動(dòng)物實(shí)驗(yàn)證實(shí),Th17有向Th1細(xì)胞轉(zhuǎn)化的可塑性[16]。人Th17細(xì)胞表面不但表達(dá)CCR6和IL-23R,還表達(dá)IL-12Rβ2和CD161,以及Th1和Th17細(xì)胞相關(guān)轉(zhuǎn)錄因子t-bet和rorc。一部分細(xì)胞同時(shí)能產(chǎn)生IFN-γ和IL-17A,稱為Th1/Th17細(xì)胞[17]。本研究結(jié)果也顯示,阻斷IL-23后Th1和Th17細(xì)胞相關(guān)轉(zhuǎn)錄因子(t-bet、rorγt)和信號(hào)轉(zhuǎn)導(dǎo)子(stat4、stat3)的基因表達(dá)有所下降。不同的阻斷途徑,即阻斷IL-23R與IL-23p19之間,兩系細(xì)胞轉(zhuǎn)錄因子的表達(dá)無(wú)顯著差異。
IL-23與Th2細(xì)胞亞群的關(guān)系也非常密切。Wakashin等[9]研究顯示,不論是正常小鼠還是IL-17缺乏小鼠,IL-23均能介導(dǎo)抗原誘導(dǎo)的Th2細(xì)胞因子產(chǎn)生和氣道嗜酸性粒細(xì)胞募集,提示IL-23可能不依賴IL-17途徑調(diào)節(jié)過(guò)敏性氣道炎癥。Peng等[10]的研究也證明,IL-23缺乏可通過(guò)減少嗜酸性粒細(xì)胞募集和Th2細(xì)胞產(chǎn)生來(lái)減輕氣道炎癥反應(yīng),T細(xì)胞特異性IL-23R 的過(guò)度表達(dá)能加重Th2樣反應(yīng)和氣道炎癥,缺乏IL-23能部分抑制Th2細(xì)胞的分化,IL-23敲除小鼠脾細(xì)胞中Th2細(xì)胞亞群的量也顯著減少;體外實(shí)驗(yàn)表明,IL-23能獨(dú)立調(diào)控Th2細(xì)胞的致病作用,而不通過(guò)它促進(jìn)Th17細(xì)胞的作用,IL-23/IL-23R信號(hào)能促使GATA-3和Th2細(xì)胞因子的表達(dá)。Cosmi等[18]發(fā)現(xiàn),有少部分細(xì)胞能同時(shí)分泌IL-17A和IL-4,即Th17/Th2細(xì)胞,其表面可少量表達(dá)IL-23R。因此,阻斷IL-23后,Th2細(xì)胞相關(guān)轉(zhuǎn)錄因子gata3、stat6及特異分泌因子IL-4的表達(dá)也降低。本研究還顯示,相對(duì)于阻斷IL-23R,阻斷IL-23p19后IL-4分泌有更下降的趨勢(shì),但無(wú)統(tǒng)計(jì)學(xué)意義,而轉(zhuǎn)錄因子和信號(hào)轉(zhuǎn)導(dǎo)子gata3及stat6明顯下降??赡芟鄬?duì)于蛋白層面,基因?qū)用姹憩F(xiàn)得更突出、更敏感。但阻斷IL-23p19導(dǎo)致Th2細(xì)胞轉(zhuǎn)錄因子進(jìn)一步下降的原因還不清楚,是否IL-23p19的阻斷影響其他途徑的Th2細(xì)胞產(chǎn)生方式,還需進(jìn)一步研究。
MAPK是多種細(xì)胞外刺激傳向胞內(nèi)信號(hào)通路的交匯處。p38 MAPK是MAPK家族成員之一,抑制MAPK信號(hào)通路能減少炎性細(xì)胞因子的釋放。Janus激酶/信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄活化因子(Janus kinase/signal transducer and activator of transcription, JAK/STAT)信號(hào)通路在多種炎癥性疾病中也發(fā)揮重要作用。Shan等[19]研究發(fā)現(xiàn),胸腺基質(zhì)淋巴細(xì)胞生成素(thymic stromal lymphopoietin, TSLP)可通過(guò)MAPK和STAT3信號(hào)通路刺激人氣道平滑肌細(xì)胞表達(dá)炎性細(xì)胞因子。Wang等[20]研究發(fā)現(xiàn),人肺微血管內(nèi)皮細(xì)胞在組織缺氧情況下分泌IL-6,IL-6激活JAK/STAT途徑,抑制p38 MAPK信號(hào)通路,可抑制IL-6產(chǎn)生,從而使p-STAT3減少。這些研究提示,STAT3與 p38 MAPK信號(hào)通路可能相關(guān)。Choi等[21]研究表明,p38 MAPK信號(hào)通路的激活與RSV和甲型流感病毒的感染及復(fù)制關(guān)系密切,抑制該信號(hào)通路后可抑制兩種病毒復(fù)制。Migita等[22]發(fā)現(xiàn),血清類淀粉樣蛋白A能刺激類風(fēng)濕關(guān)節(jié)炎患者滑膜細(xì)胞分泌IL-23p19,該過(guò)程可被p38 MAPK抑制劑完全抑制,推測(cè)RSV感染引起的IL-23分泌可能是通過(guò)p38 MAPK信號(hào)途徑。本研究通過(guò)阻斷淋巴細(xì)胞中p38 MAPK信號(hào)通路,觀察其對(duì)RSV感染導(dǎo)致Th細(xì)胞系分泌細(xì)胞因子及轉(zhuǎn)錄因子升高的影響。結(jié)果顯示,三系細(xì)胞分泌的細(xì)胞因子及分化相關(guān)轉(zhuǎn)錄因子在SB203580作用下均表達(dá)下降,與阻斷IL-23的結(jié)果一致,提示阻斷IL-23信號(hào)導(dǎo)致的三系細(xì)胞分泌細(xì)胞因子下降可能與p38 MAPK信號(hào)通路有關(guān)。
綜上所述,本研究發(fā)現(xiàn)RSV感染支氣管上皮細(xì)胞后,能促進(jìn)Th1、Th2和Th17相關(guān)細(xì)胞因子及轉(zhuǎn)錄因子的表達(dá),而阻斷IL-23或使用p38 MAPK抑制劑能顯著抑制這些因子的表達(dá)。因此,IL-23在調(diào)控RSV感染上皮細(xì)胞后誘導(dǎo)的Th1、Th2和Th17細(xì)胞分化過(guò)程中起重要作用,這可能與p38 MAPK信號(hào)通路有關(guān)。本研究有助于闡明RSV感染后的宿主免疫反應(yīng)和免疫調(diào)控機(jī)制。
[1] Hacking D, Hull J. Respiratory syncytial virus—viral biology and the host response [J]. J Infect, 2002, 45(1): 18-24.
[2] Bezerra PG, Britto MC, Correia JB, Duarte Mdo C, Fonceca AM, Rose K, Hopkins MJ, Cuevas LE, McNamara PS. Viral and atypical bacterial detection in acute respiratory infection in children under five years [J]. PLoS One, 2011, 6(4): e18928.
[3] Sigurs N, Aljassim F, Kjellman B, Robinson PD, Sigurbergsson F, Bjarnason R, Gustafsson PM. Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life [J]. Thorax, 2010, 65(12): 1045-1052.
[4] Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties [J]. Immunity, 2006, 24(6): 677-688.
[5] Mukherjee S, Lindell DM, Berlin AA, Morris SB, Shanley TP, Hershenson MB, Lukacs NW. IL-17-induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease [J]. Am J Pathol, 2011, 179(1): 248-258.
[6] Newcomb DC, Boswell MG, Reiss S, Zhou W, Goleniewska K, Toki S, Harintho MT, Lukacs NW, Kolls JK, Peebles RS. IL-17A inhibits airway reactivity induced by respiratory syncytial virus infection during allergic airway inflammation [J]. Thorax, 2013, 68(8): 717-723.
[7] Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA. Novel p19 protein engages IL-12p40 to form a cytokine,IL-23,with biological activities similar as well as distinct from IL-12 [J]. Immunity, 2000, 13(5): 715-725.
[8] Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, Powrie F. Interleukin-23 drives intestinal inflammation through direct activity on T cells [J]. Immunity, 2010, 33(2): 279-288.
[9] Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, Saito Y, Hatano M, Tokuhisa T, Iwakura Y, Puccetti P, Iwamoto I, Nakajima H. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice [J]. Am J Respir Crit Care Med, 2008, 178(10): 1023-1032.
[10] Peng J, Yang XO, Chang SH, Yang J, Dong C. IL-23 signaling enhances Th2 polarization and regulates allergic airway inflammation [J]. Cell Res, 2010, 20(1): 62-71.
[11] Feng J, Hu Y, Song Z, Liu Y, Guo X, Jie Z. Interleukin-23 facilitates Th1 and Th2 cell differentiation in vitro following respiratory syncytial virus infection [J]. J Med Virol, 2015, 87(4): 708-715.
[12] 馮凈凈, 胡蕓文, 宋志剛, 揭志軍, 郭雪君.呼吸道合胞病毒感染小鼠Th17細(xì)胞亞群的變化 [J].中國(guó)呼吸與危重監(jiān)護(hù)雜志, 2013, 12(1): 49-54.
[13] 蘭愛(ài)平, 梅衛(wèi)義, 孟金蘭, 胡芬, 楊春濤, 楊戰(zhàn)利, 陳培熹, 馮鑒強(qiáng).硫化氫通過(guò)抑制p38 MAPK保護(hù)PC12細(xì)胞對(duì)抗化學(xué)性缺氧損傷 [J].中國(guó)藥理學(xué)通報(bào), 2010, 26(10): 1339-1343.
[14] Fonceca AM, Flanagan BF, Trinick R, Smyth RL, McNamara PS. Primary airway epithelial cultures from children are highly permissive to respiratory syncytial virus infection [J]. Thorax, 2012, 67(1): 42-48.
[15] Qin L, Hu CP, Feng JT, Xia Q. Activation of lymphocytes induced by bronchial epithelial cells with prolonged RSV infection [J]. PLoS One, 2011, 6(12): e27113.
[16] Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, Weaver CT. Late developmental plasticity in the T helper 17 lineage [J]. Immunity, 2009, 30(1): 92-107.
[17] Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Filì L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S. Phenotypic and functional features of human Th17 cells [J]. J Exp Med, 2007, 204(8): 1849-1861.
[18] Cosmi L, Maggi L, Santarlasci V, Capone M, Cardilicchia E, Frosali F, Querci V, Angeli R, Matucci A, Fambrini M, Liotta F, Parronchi P, Maggi E, Romagnani S, Annunziato F. Identification of a novel subset of human circulating memory CD4+T cells that produce both IL-17A and IL-4 [J]. J Allergy Clin Immunol, 2010, 125(1): 222-230.e1-e4.
[19] Shan L, Redhu NS, Saleh A, Halayko AJ, Chakir J, Gounni AS. Thymic stromal lymphopoietin receptor-mediated IL-6 and CC/CXC chemokines expression in human airway smooth muscle cells: role of MAPKs (ERK1/2, p38, and JNK) and STAT3 pathways [J]. J Immunol, 2010, 184(12): 7134-7143.
[20] Wang G, Qian P, Jackson FR, Qian G, Wu G. Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells [J]. Int J Biochem Cell Biol, 2008, 40(3): 461-470.
[21] Choi MS, Heo J, Yi CM, Ban J, Lee NJ, Lee NR, Kim SW, Kim NJ, Inn KS. A novel p38 mitogen activated protein kinase (MAPK) specific inhibitor suppresses respiratory syncytial virus and influenza A virus replication by inhibiting virus-induced p38 MAPK activation [J]. Biochem Biophys Res Commun, 2016, 477(3): 311-316.
[22] Migita K, Koga T, Torigoshi T, Motokawa S, Maeda Y, Jiuchi Y, Izumi Y, Miyashita T, Nakamura M, Komori A, Ishibashi H. Induction of interleukin-23 p19 by serum amyloid A (SAA) in rheumatoid synoviocytes [J]. Clin Exp Immunol, 2010, 162(2): 244-250.
. JIE Zhijun, E-mail: jiezjlxh@163.com
Roleofinterleukin23infacilitatingTh1,Th2andTh17differentiationafterrespiratorysyncytialvirusinfection
FENG Jingjing, CHEN Jiajun, WANG Shengmei, JIE Zhijun
DepartmentofRespiratoryMedicine,ShanghaiFifthPeople’sHospital,FudanUniversity,Shanghai200240,China
The present paper aims to investigate the role of interleukin 23 (IL-23) in facilitating Th1, Th2 and Th17 differentiation during respiratory syncytial virus (RSV) infection of epithelial cells (BEAS-2B). Lymphocytes were treated by supernatants from BEAS-2B cells with RSV or mock infection. Then they were blocked by specific anti-IL-23R antibody, anti-IL-23p19 antibody and p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580). The concentrations of cytokines such as interferon γ (IFN-γ), IL-4 and IL-17 were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of transcription factors (t-bet,gata3,rorγt), signal transducers (stat4,stat6,stat3) were determined by real-time polymerase chain reaction (PCR). The results showed that the concentrations of cytokines (IFN-γ, IL-4 and IL-17) were significantly increased after RSV infection, accompanied with the enhanced expressions of transcription factors. However, these cytokines and transcription factors were significantly decreased when IL-23 pathway was blocked by antibodies. The blockage of p38 MAPK signal pathway showed the same results. The results suggest that IL-23 could facilitate Th1, Th2 and Th17 differentiation in RSV-infected BEAS-2B cells, which might be associated with p38 MAPK signal pathway.
Respiratory syncytial virus; Interleukin 23 receptor;Interleukin 23 p19 subunit; p38 mitogen-activated protein kinase signal pathway; T helper cell; Transcription factor
上海市閔行區(qū)自然科學(xué)基金(2014MHZ056),上海市衛(wèi)生和計(jì)劃生育委員會(huì)科研課題(20164Y0264)
揭志軍
2017-02-10)