王艷
(鐵電功能材料工程(技術(shù))研究中心寶雞文理學(xué)院化學(xué)與化工學(xué)院陜西省植物化學(xué)重點(diǎn)實(shí)驗(yàn)室,陜西寶雞721013)
Al摻雜對(duì)鈦酸鋇基陶瓷微觀形貌及性能的影響*
王艷
(鐵電功能材料工程(技術(shù))研究中心寶雞文理學(xué)院化學(xué)與化工學(xué)院陜西省植物化學(xué)重點(diǎn)實(shí)驗(yàn)室,陜西寶雞721013)
采用溶膠-凝膠一步法制備了Al摻雜鈦酸鋇基陶瓷。利用XRD、SEM等分析檢測手段對(duì)陶瓷樣品進(jìn)行表征。探討了Al摻雜量對(duì)鈦酸鋇基陶瓷相組成、微觀形貌、介電常數(shù)、介電損耗及介電弛豫的影響。研究表明:BaTiO3基陶瓷粉體樣品均為單一的鈣鈦礦結(jié)構(gòu);隨著Al摻雜量的增大,陶瓷的晶粒尺寸逐漸減小,室溫介電常數(shù)呈現(xiàn)出減小的變化趨勢,而居里溫度略有增加;當(dāng)Al摻雜量為0.03mol%時(shí),陶瓷的晶粒大小均勻,其室溫介電常數(shù)達(dá)到最大值3427,介電損耗小于4%。
溶膠-凝膠法;鈦酸鋇;鋁摻雜;介電性能
BaTiO3基陶瓷具有高的介電常數(shù),優(yōu)良的鐵電、壓電、絕緣性能及環(huán)境友好等特點(diǎn),因而被廣泛應(yīng)用于多層陶瓷電容器領(lǐng)域[1]。BaTiO3基陶瓷的制備方法主要包括傳統(tǒng)的固相法[2]和濕化學(xué)法[3]。相較于固相法,濕化學(xué)法的優(yōu)點(diǎn)是在液相前驅(qū)體中將反應(yīng)物以準(zhǔn)原子級(jí)別混合均勻,在較低的溫度下制備出亞微米級(jí)高純鈦酸鋇基粉體[4,5]。其中溶膠-凝膠法制備陶瓷粉體材料具有組成容易控制、燒結(jié)活性高、純度高等優(yōu)點(diǎn),而且陶瓷的燒結(jié)溫度較低[6]。文獻(xiàn)報(bào)道[7~10]Al2O3摻雜鈦酸鋇基陶瓷,能夠增強(qiáng)其絕緣性,進(jìn)而達(dá)到增強(qiáng)其耐壓強(qiáng)度、降低其介電損耗的目的。本文采用溶膠-凝膠法制備了Al摻雜鈦酸鋇基陶瓷,并研究了Al摻雜量的不同對(duì)鈦酸鋇基陶瓷微觀形貌及介電性能的影響規(guī)律。
D8型XRD粉末衍射儀(德國布魯克公司);TM3000掃描電子顯微鏡(日本日立公司);HP4284A精密LCR測試儀(美國惠普公司)。
Ba(CH3COO)2(CP),Al(NO3)3·9H2O(化學(xué)純),Ti(C4H9O)4(分析純),CH3CH2OH(分析純),CH3CH2OOH(分析純)。
室溫下,利用磁力攪拌將化學(xué)計(jì)量比的Ti(C4H9O)4與無水乙醇(10mL)和醋酸(15mL)混合均勻。接著,將一定量的Ba(CH3COO)2及Al(NO3)3· 9H2O用50mL蒸餾水溶解制備成無機(jī)混合溶液,將其緩慢滴加入上述的Ti(C4H9O)4體系中,攪拌2h形成均勻的溶膠。將溶膠置于80℃水浴中,經(jīng)40min后形成凝膠,陳化12h。將凝膠在80℃下經(jīng)過12h烘干,得到干凝膠。干凝膠在馬弗爐中經(jīng)900℃煅燒2h得到BTA基粉體。將所得粉體在水介質(zhì)中球磨12h,干燥后加入甘油和聚乙烯醇(PVA)造粒,6MPa壓力下壓片,500℃排膠,1300℃/2h燒成陶瓷圓片,制作銀電極后測試其介電性能。
圖1為鈦酸鋇粉體的XRD圖譜。從圖中可以看出,BaTiO3基陶瓷粉體樣品均為單一的鈣鈦礦結(jié)構(gòu),沒有發(fā)現(xiàn)第二相的存在,說明Al已經(jīng)完全進(jìn)入了BaTiO3的晶格形成固溶體。從2θ=45°角附近的衍射峰可知,隨著Al2O3摻雜量的增加衍射峰向高角度方向移動(dòng),表明鈣鈦礦晶格常數(shù)逐漸減小。這是因?yàn)锳l3+(0.535?)的離子半徑相比于Ba2+(1.35 ?)的離子半徑更加接近于Ti4+(0.605?)的離子半徑,所以Al3+取代B位上的Ti4+而進(jìn)行受主摻雜,又因?yàn)锳l3+的離子半徑相比與Ti4+離子半徑略小,所以Al3+離子的B位摻雜會(huì)導(dǎo)致晶格常數(shù)減小,會(huì)引起鈦氧八面體骨架收縮[11],從而導(dǎo)致XRD圖中的衍射峰向高角度方向移動(dòng)。
同時(shí),也可以從容差因子公式(1)得出相似的結(jié)論:
圖1 不同的鋁摻雜量的鈦酸鋇粉體XRD圖Fig.1 XRD patterns of BT-based ceramics with different Al-doped contents
當(dāng)t值在0.771.1范圍內(nèi)變化時(shí),鈣鈦礦結(jié)構(gòu)比較穩(wěn)定。當(dāng)Al3+進(jìn)入鈣鈦礦晶格進(jìn)行B位上的Ti4+離子取代時(shí),容差因子t約為1.023。假設(shè)當(dāng)Al3+進(jìn)入鈣鈦礦晶格進(jìn)行A位上的Ba2+離子取代時(shí),容差因子t約為0.646。因此,Al3+進(jìn)入鈣鈦礦晶格后趨向于取代B位,這與Jiansirisomboon S.[12]和Fisher J. G.[13]等人的研究結(jié)果一致。
圖2為燒結(jié)溫度在1300℃下?lián)诫s不同量Al3+的BaTiO3基陶瓷樣品的SEM圖。由圖可知,陶瓷樣品都非常致密,無細(xì)小氣孔出現(xiàn);當(dāng)Al3+摻雜量逐漸增加時(shí),陶瓷晶粒尺寸逐漸減小,說明Al摻雜能夠抑制BaTiO3基陶瓷晶粒的生長,這可能是因?yàn)锳l2O3在燒結(jié)的過程中阻礙了BaTiO3晶界的移動(dòng)[14],從而抑制了晶粒的長大。
圖3為BaTiO3基陶瓷的介溫圖譜。由圖3(a)中可知,當(dāng)Al摻雜量為0.01mol%與0.03mol%時(shí),二者介電常數(shù)無顯著變化,但明顯高于其它兩個(gè)組分的。
圖2 不同Al摻雜量對(duì)鈦酸鋇基陶瓷微觀形貌性能的影響(1300℃/2h)(a.0.01mol%b.0.03mol%c.0.05mol%d.0.07mol%)Fig.2 SEM micrographs of BTA ceramics with different Al-doped contents(a.0.01mol%b.0.03mol%c.0.05mol%d.0.07mol%)
這與晶粒的大小有關(guān),晶粒明顯大于其它兩個(gè)組分的。由于BaTiO3基陶瓷晶粒分布在連續(xù)晶界中,晶粒同晶界形成并聯(lián),然后與其它的晶體串聯(lián);晶界是非鐵電相,介電常數(shù)遠(yuǎn)小于鐵電相晶粒的,因?yàn)榫Ы缑娣e隨著晶粒尺寸的增大而減小,使得BaTiO3基陶瓷的介電常數(shù)隨晶粒尺寸的增大而升高。圖3(b)是BaTiO3基陶瓷樣品的介電損耗與溫度的關(guān)系圖。從圖中可以看出,隨著Al摻雜量逐漸增加,BaTiO3基陶瓷樣品的室溫介電損耗呈現(xiàn)出先增大后減小的變化趨勢,且均小于4%。
圖3 BTA基陶瓷樣品的介電特性:(a)介電常數(shù);(b)介電損耗Fig.3 Dielectric properties of the BZT-based ceramics samples(a)dielectric constant,(b)dielectric loss
圖4 BaTiO3基陶瓷在不同頻率下的介電溫譜Fig.4 Dielectric constant of BaTiO3-based ceramics under different frequency
圖4為陶瓷在不同頻率下的介電溫譜。從圖中可以看出,陶瓷樣品的介電常數(shù)隨著溫度的變化發(fā)生頻率色散與彌散相變。對(duì)于陶瓷來說,其介電常數(shù)的峰值隨著頻率的增加而下降,且居里峰變平坦。由于Al3+(0.535 ?)的離子半徑相比于Ba2+(1.35?)的離子半徑更加接近于Ti4+(0.605?)的離子半徑,所以Al3+(0.535?)進(jìn)入鈣鈦礦晶格后均進(jìn)入B位對(duì)Ti4+進(jìn)行取代。也就是說,Al3+及Ti4+同時(shí)占據(jù)鈣鈦礦結(jié)構(gòu)的B位。對(duì)于鈣鈦礦型復(fù)合物來說,當(dāng)至少有兩種離子同時(shí)占據(jù)A位或B位時(shí),該復(fù)合物就會(huì)表現(xiàn)出弛豫行為。由于Al3+離子與B位上Zr4+離子擁有不同的化合價(jià)和離子半徑,引起了局域無規(guī)場,導(dǎo)致了離子的無序分布,阻礙了遠(yuǎn)程偶極排列,從而破壞了陶瓷晶體的長程有序性,產(chǎn)生了彌散相變,最終導(dǎo)致弛豫行為的發(fā)生。
采用溶膠-凝膠一步法制備了Al摻雜鈦酸鋇陶瓷。研究了Al摻雜量對(duì)鈦酸鋇陶瓷相組成、微觀形貌與介電性能的影響。結(jié)果表明:BaTiO3基陶瓷粉體均為單一的鈣鈦礦結(jié)構(gòu);隨著Al摻雜量的增大,陶瓷的晶粒尺寸逐漸減小,室溫介電常數(shù)呈現(xiàn)出減小的變化趨勢;當(dāng)Al摻雜量為0.03mol%時(shí),陶瓷的晶粒大小均勻,其室溫介電常數(shù)達(dá)到最大值3427,介電損耗小于4%。
[1]LEE B W,CHO S B.Preparation of BaZrxTi1-xO3by the Hydrothermal Process from Peroxo-precursors[J].Journal of the European Ceramic Society,2008,195:171~177.
[2]LU D Y,SUN X Y,TODA M,et al.A Novel High-k‘Y5V’Barium Titanate Ceramics Co-doped with Lanthanum and Cerium[J].Journal of Physics and Chemistry of Solids,2007,68: 650~664.
[3]BOULOS M,GUILLEMET-FRITSCH S,MATHIEU F,et al.Hydrothermal Synthesis of Nanosized BaTiO3Powders and Dielectric Properties of Corresponding Ceramics[J].Solid State Ionics,2005, 176:1301~1309.
[4]GIJP S,EMOND M H J,WINNUBST A J A,et al.Preparation of BaTiO3by Homogeneous Precipitation[J].Journal of the European Ceramic Society,1999,19:1683~1690.
[5]ZHANG Q L,WU F,YANG H,et al.Preparation and Dielectric Properties of(Ca0.61,Nd0.26)TiO3Nanoparticles by a Sol-gel Method[J].Journal of Materials Chemistry,2008,18:5339~5343.
[6]ROGACH A L,TALAPIN D V,SHEVCHENKO E V,et al.Organization of Matter on Different Size Scales:Monodisperse Nanocrystals and Their Superstructures[J].Advanced Functional Materials,2002,12:653~664.
[7]王通,高峰,胡國辛,等.Al2O3包覆Ba0.6Sr0.4TiO3復(fù)合粉體制備及表征[J].無機(jī)化學(xué)學(xué)報(bào),2010,26(5):811~816.
[8]王婳懿,喬鳳斌.BaTiO3表面包裹氧化鋁的改性研究[J].電子元件與材料,2012,31(2):8~10.
[9]ZYWITZKI O,HOETZSCH G.Correlation between Structure and Properties of Reactively Deposited Al2O3Coatings by Pulsed Magnetron Sputtering[J].Surface and Coatings Technology, 1997,95:303~308.
[10]HEUER H A.Oxygen and Aluminum Diffusionin Al2O3:How much do We Really Understand[J].Journal of the European Ceramic Society,2008,28:1495~1507.
[11]LEE S J,PARK S M,HAN Y H.Dielectric relaxation of Aldoped BaTiO3[J].Japanese Journal of Applied Physic,2009, 48:031403~031407.
[12]JIANSIRISOMBOON S,WATCHARAPASORN A.Effects of A-lumina Nano-particulates Addition on Mechanical and Electrical Properties of Barium Titanate Ceramics[J].Current Applied Physics,2008,8(1):48~52.
[13]FISHER J G,CHOI S Y,KANG S J L.Abnormal Grain Growth in Barium Titanate doped with Alumina[J].Journal of the American Ceramic Society,2006,89(7):2206~2212.
[14]HILLERT M.Inhibition of Grain Growth by Second-Phase Particles[J].Acta Metallurgica,1988,36(12):3177~3181.
Influence on Microstructure and Performance of Al-doping Barium Titanate Ceramic
WANG yan
(Engineering Research Center of Advanced Ferroelectric Functional Materials,College of Chemistry and Chemical Engineering,Baoji University of Arts and Sciences,Key Laboratory of Phytochemistry of Shanxi Province,Baoji 721013,China)
In this paper,the powders and ceramics of Al-doping barium titanate were obtained by using sol-gel method.Samples of the phase and microstructure were analyzed by using X-ray diffraction and scanning electron microscopy.The effect of Al-doping account on barium titanate phase composition,microscopic morphology,dielectric coefficient,dielectric loss and dielectric relaxation were discussed.The result showed that the sample of BaTiO3base ceramic powder contained a perovskite structure,and with a uniform particle size.As the Al-doped concentrations increased, the grain sizes and maximum dielectric constant decreased;The dielectric constant of ceramic was 3427 and a dielectric loss(at 25℃)of less than 4%was found when the Al-doped concentration was 0.06 mol%.
Sol-gel method;BaTiO3;aluminium-doping;dielectric property
TB34
A
1001-0017(2017)04-0255-03
2017-04-10*基金項(xiàng)目:陜西省教育廳項(xiàng)目(編號(hào):16JK1040);寶雞市科技局(編號(hào):16RKX1-4);寶雞文理學(xué)院校級(jí)重點(diǎn)項(xiàng)目(編號(hào)ZK16054,ZK16128,ZK11149)
王艷(1983-),女,陜西蒲城人,博士,研究方向:功能陶瓷材料的制備與性能研究。