甄 峰,孫永明,孔曉英,牛紅志
?
雜交狼尾草厭氧發(fā)酵的物質(zhì)與能量轉(zhuǎn)化率分析
甄 峰,孫永明,孔曉英※,牛紅志
(1. 中國科學(xué)院廣州能源研究所,廣州 510640;2. 中國科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州 510640;3. 廣東省新能源和可再生能源研究開發(fā)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,廣州 510640)
為了解厭氧發(fā)酵過程中的C、N元素流動(dòng)狀況以及物質(zhì)和能量的轉(zhuǎn)化利用效率,以雜交狼尾草為原料,采用中溫(35±1)℃批式厭氧發(fā)酵工藝,研究了雜交狼尾草厭氧發(fā)酵制備沼氣的產(chǎn)氣性能,在此基礎(chǔ)上結(jié)合物質(zhì)流分析方法分析了發(fā)酵過程中C、N元素的分布情況以及物質(zhì)與能量的轉(zhuǎn)化率。研究結(jié)果表明:C/N 167和25下,雜交狼尾草鮮料的VS(揮發(fā)性固體)產(chǎn)氣量分別為280.02和242.33 mL/g,其中CH4體積分?jǐn)?shù)分別為59.96%和61.46%;C/N 137和25下,青貯料的VS產(chǎn)氣量分別為327.02和295.43 mL/g,其中CH4體積分?jǐn)?shù)分別為58.49%和61.05%;C元素的流向分布:沼氣33.1%,發(fā)酵液8.0%,發(fā)酵渣58.9%;N元素主要流入剩余物中:發(fā)酵液69.4%,發(fā)酵渣30.7%。雜交狼尾草厭氧發(fā)酵制備沼氣的物質(zhì)轉(zhuǎn)化率和能量轉(zhuǎn)化率分別為42.1%和33.1%。該研究為能源草本植物的資源管理和厭氧能源化利用提供了理論依據(jù)。
甲烷;發(fā)酵;沼氣;雜交狼尾草;物質(zhì)流分析;物質(zhì)與能量轉(zhuǎn)化率
隨著世界經(jīng)濟(jì)的快速發(fā)展,能源危機(jī)不斷加劇,化石能源造成的環(huán)境污染日益加重,尋找可再生能源植物替代能源的需求將越來越迫切[1-2]。能源草作為第二代能源作物,因其具有光合作用強(qiáng)、生物量產(chǎn)出高、耐酸堿環(huán)境、有效能源組分含量高等特點(diǎn)而成為最有應(yīng)用前景的替代能源原料之一[3-4],在世界各國的能源發(fā)展計(jì)劃中占據(jù)重要部分。中國生物質(zhì)資源儲(chǔ)存量非常豐富,未來10 a內(nèi)可開發(fā)的各類生物質(zhì)資源總量相當(dāng)于1.34×108t標(biāo)準(zhǔn)煤[5]。利用邊際土地資源種植能源草本植物,不僅有利于改善生態(tài)環(huán)境,而且對維護(hù)糧食安全也具有重要意義。
21世紀(jì)以來,中國政府對沼氣產(chǎn)業(yè)的扶持力度顯著增強(qiáng),在《可再生能源中長期發(fā)展規(guī)劃》中提出了2020年全國沼氣年利用量達(dá)到4.4×1010m3的發(fā)展目標(biāo)[6]。能源草青貯后通過厭氧發(fā)酵制備的沼氣,其CH4體積分?jǐn)?shù)可達(dá)到70%~80%[7],微量金屬元素的添加對新鮮草和青貯草的厭氧發(fā)酵產(chǎn)氣性能也有顯著影響[8]。能源草單獨(dú)發(fā)酵、混合發(fā)酵以及預(yù)處理后發(fā)酵的產(chǎn)氣效果均有報(bào)道研究[9-15]。目前能源草厭氧發(fā)酵研究主要在厭氧發(fā)酵工藝及產(chǎn)氣潛力方面,對于沼氣制備過程物質(zhì)和能量的流向分布研究報(bào)道偏少,而且缺乏統(tǒng)一的研究方法。生物燃料生產(chǎn)過程必須考慮能源投入產(chǎn)出比,以使原料轉(zhuǎn)化效益最大化,物質(zhì)利用和能源轉(zhuǎn)化率是影響生物質(zhì)能源工業(yè)化的關(guān)鍵。
雜交狼尾草(hybrid)在目前已研究的能源草本植物中具有最高的生物質(zhì)量,在生長周期比林木短的情況下,可以提供木本植物2倍以上的生物產(chǎn)量,成本亦沒林木的高[16]。北京地區(qū)的干物質(zhì)產(chǎn)量能夠達(dá)到40.14~48.54 t/hm2,明顯高于相同生長環(huán)境條件下的柳枝稷、荻和蘆竹[17]。以雜交狼尾草為原料,采用批式中溫(35±1)℃厭氧發(fā)酵工藝(mesophilic anaerobic digestion,MAD),研究不同C/N比例的鮮料和青貯料厭氧發(fā)酵的產(chǎn)氣性能,應(yīng)用物質(zhì)流分析方法建立雜交狼尾草MAD制備沼氣過程的物質(zhì)流分析模型,評價(jià)原料的總物質(zhì)量、C和N元素以及能量的流向分布。
本文采用中溫厭氧發(fā)酵工藝,研究雜交狼尾草制備沼氣過程中的產(chǎn)氣特性,并結(jié)合物質(zhì)流分析方法研究厭氧發(fā)酵過程中的C、N元素流動(dòng)狀況以及物質(zhì)和能量的轉(zhuǎn)化利用效率,為能源植物的厭氧轉(zhuǎn)化利用提供參考。
試驗(yàn)用雜交狼尾草取自廣州市增城區(qū)能源草種植基地,刈割后制成鮮料和青貯料2種發(fā)酵原料:鮮料切碎至2 cm左右,保存于–20 ℃?zhèn)溆茫货r料切碎至2 cm左右,于室溫下青貯60 d,然后保存于–20 ℃作為青貯料備用,試驗(yàn)過程中按需取出,粉碎過篩(20目)作為發(fā)酵原料。
鮮料和青貯料的理化性質(zhì)見表1,工業(yè)、元素及物料分析顯示原料青貯前后理化性質(zhì)變化不顯著,青貯后N元素和半纖維素的相對含量略有上升。
表1 發(fā)酵原料的理化性質(zhì)
發(fā)酵接種物為本實(shí)驗(yàn)室長期馴化的中溫(35±1)℃厭氧發(fā)酵產(chǎn)甲烷菌種(沼液),pH值7.51、氨氮285 mg/L、TS(總固體)質(zhì)量分?jǐn)?shù)1.18%、VS/TS為54.39%。C/N調(diào)節(jié)劑為尿素CO(NH2)2(純度≥99%)和碳酸氫銨NH4HCO3(純度≥99%);NH4HCO3(純度≥99%)同時(shí)作為緩沖劑使用。
試驗(yàn)裝置見圖1,2 500 mL厭氧反應(yīng)器,置于(35±1)℃的水浴鍋中,側(cè)壁上有2個(gè)出口,上出口為取氣樣口,下出口為取液樣口,上部連接集氣瓶,集氣瓶后連通集液瓶,通過排飽和鹽水法測定沼氣產(chǎn)量。添加2.5%的NH4HCO3(雜交狼尾草原料總質(zhì)量計(jì))作為pH值調(diào)節(jié)劑,調(diào)節(jié)發(fā)酵液初始pH值在7.2以上。充入高純N2排出反應(yīng)器頂部的空氣。試驗(yàn)期間每天手動(dòng)攪拌2次。以VS日產(chǎn)氣量持續(xù)5 d低于1 mL/(g?d)為結(jié)束試驗(yàn)的指標(biāo)依據(jù),共運(yùn)行50 d。發(fā)酵剩余物稱量后過濾,濾渣60 ℃烘干用于沼渣(biogas residue)分析,濾液–20 ℃保存用于沼液(biogas slurry)分析。
圖1 厭氧發(fā)酵試驗(yàn)裝置圖
TS、VS采用電熱鼓風(fēng)干燥箱、箱式電阻爐,并根據(jù)標(biāo)準(zhǔn)方法測定[18]。固體中的C、H、N和S元素含量采用Vario EL cube元素分析儀測定[19];液體中的總碳(total carbon,TC)、總無機(jī)碳(total inorganic carbon,TIC)和總氮(total nitrogen,TN)采用Vario TOC分析儀測定;纖維素(cellulose,CL)、半纖維素(hemicellulose,HCL)和木質(zhì)素(lignin,LG)測定參考美國可再生能源實(shí)驗(yàn)室標(biāo)準(zhǔn)測定方法(NREL,LAP)[20-21]。熱值(calorific value,CV)由量熱儀C2000(德國IKA@公司)測定。
沼氣中CH4、CO2和N2等氣體含量由島津GC2014型高效氣相色譜測定,TCD檢測器,Porapak Q色譜柱,載氣為Ar,柱箱50 ℃,檢測器120 ℃,保留時(shí)間5 min。標(biāo)準(zhǔn)氣體N25%、CH460%、CO235%。
分析原料中總物質(zhì)量和C、N元素以及能量在整個(gè)系統(tǒng)中的流向分布。物質(zhì)流分析方法參見《Practical Handbook of Material Flow Analysis》[22],物質(zhì)流分析系統(tǒng)模型應(yīng)用Stan2.5軟件建立,數(shù)據(jù)應(yīng)用IAL-IMPL2013算法優(yōu)化[23],物質(zhì)流分析結(jié)果應(yīng)用e!Sankey軟件繪圖呈現(xiàn)。
發(fā)酵原料分為鮮料和青貯料2類,C/N分未調(diào)節(jié)和人為調(diào)節(jié)2種,反應(yīng)器容積2 500 mL,共包括4組試驗(yàn):鮮料未調(diào)節(jié)C/N(鮮料C/N=167),鮮料調(diào)節(jié)C/N(鮮料C/N=25),青貯料未調(diào)節(jié)C/N(青貯C/N=137)和青貯料調(diào)節(jié)C/N(青貯C/N=25)。每組試驗(yàn)設(shè)置2個(gè)平行。VSadded負(fù)荷為3.0%(包括原料、CO(NH2)2和NH4HCO3的VS),接種物的體積為1 900 mL,其他參數(shù)具體試驗(yàn)設(shè)計(jì)見表2。
表2 試驗(yàn)反應(yīng)物配比表
注:CO(NH2)2調(diào)節(jié)C/N;NH4HCO3調(diào)節(jié)發(fā)酵液的pH值。
Note: CO(NH2)2regulates C/N; NH4HCO3regulates pH value of fermentation broth.
厭氧發(fā)酵前后TS、VS、纖維素、半纖維素、木質(zhì)素、C和N元素的去除率情況見表3。厭氧發(fā)酵過程中,纖維素和半纖維素的降解是厭氧消化的限速步驟,而降解速率是影響厭氧消化過程生物質(zhì)轉(zhuǎn)化效率的重要因素[24-25]。發(fā)酵系統(tǒng)中VS去除率在51.68%~57.56%之間,C元素的去除率在16.90%~34.11%之間,纖維素的去除率在36.51%~56.78%之間,半纖維素的去除率在34.12%~47.69%之間。
沼氣和CH4的制備狀況分別見圖2和表4。鮮料(C/N=167)和青貯料(C/N=137)厭氧發(fā)酵的VS累積產(chǎn)氣量分別為280.02和327.02 mL/g,VS日產(chǎn)氣量最大值分別為19.59和42.12 mL/(g?d),沼氣中CH4體積分?jǐn)?shù)分別為59.96%和58.49%,相比鮮料,青貯料的沼氣及CH4的VS累積產(chǎn)氣量分別提高了16.78%和13.92%。鮮料(C/N=25)和青貯料(C/N=25)厭氧發(fā)酵的VS累積產(chǎn)氣量分別為242.33和295.43 mL/g,最大VS日產(chǎn)氣量分別為24.33和37.18 mL/(g?d),沼氣中CH4體積分?jǐn)?shù)分別為61.46%和61.05%,相比鮮料,青貯料的沼氣及CH4的VS累積產(chǎn)量分別提高了21.91%和21.10%。青貯過程能夠預(yù)降解VS,原料厭氧發(fā)酵的產(chǎn)氣效果得到明顯提升。
表3 發(fā)酵前后不同物質(zhì)的去除率
圖2 LAB-2 500 mL反應(yīng)器厭氧發(fā)酵產(chǎn)氣情況
表4 雜交狼尾草制備沼氣的產(chǎn)氣結(jié)果
注:BP,沼氣產(chǎn)量;MDBP,沼氣的最大日產(chǎn)氣量;MP,甲烷產(chǎn)量;MDMP,最大日產(chǎn)甲烷量;MP/BP,沼氣中甲烷體積分?jǐn)?shù)。
Note: BP, biogas production; MDBP, max daily biogas production; MP, methane production; MDMP, max daily methane production; MP/BP, methane content in biogas.
在C/N調(diào)節(jié)對厭氧系統(tǒng)的影響效果方面,對比以上數(shù)據(jù),鮮料(C/N=167)的沼氣及CH4的VS累積產(chǎn)量較鮮料(C/N=25)分別高出15.55%和12.74%;青貯(C/N=137)的沼氣及CH4的VS累積產(chǎn)量較青貯(C/N=25)分別高出10.69%和6.05%。本試驗(yàn)過程C/N調(diào)節(jié)不但沒有提高雜交狼尾草的產(chǎn)氣率,反而有所降低,原因可能是木質(zhì)纖維素等不易被厭氧微生物代謝利用的碳源物質(zhì)中的C元素,參與到C/N計(jì)算中,導(dǎo)致評估物料厭氧發(fā)酵特性的C/N結(jié)果出現(xiàn)偏差,而以此為依據(jù)進(jìn)行人為調(diào)節(jié),就會(huì)加入過量N源,甚至使NH4-N濃度進(jìn)入抑制厭氧系統(tǒng)的范圍[26-28]。
2.2.1 沼氣制備過程的物質(zhì)流分析模型
以雜交狼尾草青貯料(C/N=137)在LAB-2 500 mL反應(yīng)器中的發(fā)酵過程作為模型,建立開放型的物質(zhì)流分析系統(tǒng)(MFA System),如圖3所示,系統(tǒng)空間邊界(system space boundary)包含粉碎混合和厭氧發(fā)酵2個(gè)過程(process),系統(tǒng)時(shí)間邊界(system time boundary)選定為一個(gè)發(fā)酵試驗(yàn)周期(cycle,cy),系統(tǒng)涉及8條物質(zhì)流(flow)。系統(tǒng)輸入有4條物質(zhì)流(goods flow):原料、C/N調(diào)節(jié)劑、pH值調(diào)節(jié)劑和發(fā)酵接種物作為輸入流(import flow);系統(tǒng)輸出有3條物質(zhì)流:沼氣、發(fā)酵液和發(fā)酵渣作為輸出流(export flow);系統(tǒng)內(nèi)部有一條物質(zhì)流:混合原料即作為粉碎混合過程的流出流(output flow),又作為厭氧發(fā)酵過程的流入流(input flow)。根據(jù)建立的物質(zhì)流分析模型,對能源草厭氧發(fā)酵制備沼氣過程的物質(zhì)和能量流動(dòng)分布進(jìn)行分析[29]。
2.2.2 沼氣制備過程的物質(zhì)流動(dòng)分析
能源草厭氧發(fā)酵過程的物質(zhì)流動(dòng)分析對象包括系統(tǒng)內(nèi)的總物質(zhì)及C、N元素流。青貯原料(C/N=137)的物質(zhì)流動(dòng)分析數(shù)據(jù)表見表5。數(shù)據(jù)輸入建立的物質(zhì)流分析模型(見圖3)中,經(jīng)過95%置信優(yōu)化[30]計(jì)算得到物質(zhì)流分析結(jié)果見圖4。接種物和發(fā)酵剩余物的密度(liquid)近似為1.05 g/mL,沼氣的密度(biogas)按氣體成分CH461.1%和CO238.9%推算為1.21 g/L。
注:Import: ∑ Import為總輸入流;Export: ∑ Export為總輸出流;dStock:DStock為存量流:總輸入流與總輸出流之差;I,輸入;E,輸出;F1-F8,物質(zhì)流1-8。
Note: Import: ∑ Import is total import flow; Export: ∑ Export is total export flow; dStock:DStock is stock flow: the difference between the total import flow and the total export flow: I, Import; E, Export; F1-F8, Flow 1-8.
圖3 雜交狼尾草批式中溫厭氧發(fā)酵制備沼氣物質(zhì)流分析模型
Fig.3 MFA model of energy grass producing biogas by mesophilic anaerobic digestion
表5 能源草厭氧發(fā)酵過程的物質(zhì)流動(dòng)分析數(shù)據(jù)表
注:cy,發(fā)酵試驗(yàn)周期;C(N)含量= TC(TN)/liquid;biogas= TVbiogas×biogas, C含量=c/m/biogas,m=22.4 L·mol-1,C=12 g·mol-1,沼氣的N元素含量忽略;元素流量=總物質(zhì)流量×元素含量。
Note: cy, cycle; C(N) content= TC(TN)/liquid;biogas= TVbiogas×biogas, C content=c/(m·biogas),m=22.4 L·mol-1,C= 12 g·mol-1, Biogas N element content ignored; Element flow = total material flow × element content.
能源草厭氧發(fā)酵制備沼氣過程的物質(zhì)流動(dòng)分析結(jié)果:1)原料約42.1%物質(zhì)降解轉(zhuǎn)化為沼氣。2)原料中C元素有33.1%以CH4和CO2的形式流入沼氣,其余流入發(fā)酵剩余物中:發(fā)酵液8.0%,發(fā)酵渣58.9%。3)原料中N元素主要流入剩余物中:發(fā)酵液69.4%,發(fā)酵渣30.7%。能源草原料厭氧發(fā)酵制備沼氣的物質(zhì)轉(zhuǎn)化率較低,原料中超過60%的C和80%的N仍停留在發(fā)酵剩余物中,如何合理利用這部分資源是進(jìn)一步提高能源草沼氣工程資源利用效率和經(jīng)濟(jì)效益的重要手段。
本研究的物質(zhì)流分析是基于試驗(yàn)數(shù)據(jù)得出,考慮到電能和熱能統(tǒng)計(jì)存在較大誤差,因此系統(tǒng)的能量流動(dòng)分析僅以各物質(zhì)蘊(yùn)含的化學(xué)能為依據(jù),單位物質(zhì)能量以物質(zhì)干基熱值計(jì)算。能源草厭氧發(fā)酵制備沼氣的能量流動(dòng)分析數(shù)據(jù)見表6,接種物和發(fā)酵液中的液體部分能量不計(jì),并假設(shè)固體部分熱值相同且等于沼渣的熱值,數(shù)據(jù)輸入物質(zhì)流分析模型,經(jīng)95%優(yōu)化計(jì)算得能量流分析結(jié)果見圖5。
圖4 能源草批式中溫厭氧發(fā)酵過程的物質(zhì)流動(dòng)分析結(jié)果
表6 能源草厭氧發(fā)酵過程的能量流動(dòng)分析
注:假設(shè)接種物和發(fā)酵液的總固體熱值與沼渣相同;能量含量為TS的熱值;能量流量=總物質(zhì)流量×TS×能量含量。
Note: Assume that the total solid calorific value of the inoculum and the fermentation broth is the same as that of the biogas residue; The energy content is the calorific value of TS; Energy flow = Total material flow × TS × Energy content.
能量流動(dòng)分析結(jié)果顯示:能源草原料中的能量有33.1%進(jìn)入沼氣中,原料61.3%能量保留在發(fā)酵渣中??梢?,雜交狼尾草中溫厭氧發(fā)酵制備沼氣過程中,需要注意發(fā)酵渣中能量的二次轉(zhuǎn)化利用,提高資源的能量轉(zhuǎn)化率。
圖5 能源草批式中溫厭氧發(fā)酵過程的能量流動(dòng)分析結(jié)果
本研究基于雜交狼尾草的厭氧發(fā)酵試驗(yàn),通過對轉(zhuǎn)化過程的物質(zhì)流和能量流分析,得到以下結(jié)論:
1)厭氧發(fā)酵前后有機(jī)物(VS)的去除率在51.68%~57.56%之間,去除的成分主要是纖維素和半纖維素。因此,規(guī)?;l(fā)展能源草生物燃?xì)夤こ虝r(shí),應(yīng)選擇能源草中纖維素和半纖維素含量相對較高的生長階段進(jìn)行刈割;同時(shí),對沼渣中難降解有機(jī)物如木質(zhì)素進(jìn)行高值化利用,以提升能源草生物燃?xì)夤こ痰木C合效益;
2)雜交狼尾草鮮料(C/N=167)和青貯料(C/N=137)厭氧發(fā)酵的VS累積產(chǎn)氣量分別為280.02和327.02 mL/g,青貯過程可預(yù)降解VS,從而提高原料的累積產(chǎn)氣量,但對沼氣中CH4的含量影響不大。厭氧發(fā)酵體系的C/N調(diào)至25,VS累積產(chǎn)氣量有所下降,原因可能是木質(zhì)纖維素等不易被厭氧微生物代謝利用的碳源物質(zhì)中的C元素,參與到C/N計(jì)算中,導(dǎo)致評估物料厭氧發(fā)酵特性的C/N結(jié)果出現(xiàn)偏差,而以此為依據(jù)進(jìn)行人為調(diào)節(jié),就會(huì)加入過量N源,甚至使NH4-N濃度進(jìn)入抑制厭氧系統(tǒng)的范圍;
3)對轉(zhuǎn)化過程的物質(zhì)流分析結(jié)果為:原料約42.1%物質(zhì)降解轉(zhuǎn)化為沼氣;C元素的流向分布:沼氣33.1%,發(fā)酵液8.0%,發(fā)酵渣58.9%;N元素主要流入剩余物中:發(fā)酵液69.4%,發(fā)酵渣30.7%;能量有33.1%進(jìn)入沼氣中,61.3%保留在發(fā)酵渣中。能源草厭氧發(fā)酵制備沼氣的物質(zhì)轉(zhuǎn)化率偏低,原料中超過60%C、80% N的資源以及60%的能源仍留在剩余物中,進(jìn)一步合理開發(fā)利用發(fā)酵液中的N和發(fā)酵渣中的C,是進(jìn)一步提高能源草沼氣工程資源利用效率和經(jīng)濟(jì)效益的重要手段。
[1] 婁喜艷,丁錦平. 生物質(zhì)能源發(fā)展現(xiàn)狀及應(yīng)用前景[J].中國農(nóng)業(yè)文摘-農(nóng)業(yè)工程,2017,29(2):12-14. Lou Xiyan, Ding Jinping. Biomass energy development status and application prospects[J]. Chinese Agricultural Diges- Agricultural Engineering, 2017, 29(2): 12-14. (in Chinese with English abstract)
[2] 袁振宏,雷廷宙,莊新姝,等. 我國生物質(zhì)能研究現(xiàn)狀及未來發(fā)展趨勢分析[J]. 太陽能,2017(2):12-19. Yuan Zhenhong, Lei Tingzhou, Zhuang Xinshu, et. al. Characteristics and future development trend of biomass energy in China[J]. Solar Energy, 2017(2): 12-19. (in Chinese with English abstract)
[3] 溫海峰,范希峰,朱毅,等. 雜交狼尾草作為能源植物的研究進(jìn)展[J]. 中國農(nóng)學(xué)通報(bào),2017,33(3):99-104. Wen Haifeng, Fan Xifeng, Zhu Yi, et al. Progress of hybrid Pennisetum as an energy plant[J]. Chinese Agricultural Science Bulletin, 2017, 33(3): 99-104. (in Chinese with English abstract)
[4] 石元春. 生物質(zhì)能源主導(dǎo)論:為編制國家“十二五”規(guī)劃建言獻(xiàn)策[J]. 能源與節(jié)能,2011(1):1-7. Shi Yuanchun. Biomass Energy dominant theory for the preparation of the national “Twelfth Five-Year Plan” suggestions[J] Energy and Energy Conservation, 2011(1): 1-7. (in Chinese with English abstract)
[5] 劉衛(wèi)東. 我國低碳經(jīng)濟(jì)發(fā)展框架與科學(xué)基礎(chǔ)[M]. 北京:商務(wù)印書館,2010.
[6] 侯新村,范希峰,朱毅,等. 能源草沼氣發(fā)酵應(yīng)用潛力及應(yīng)用前景[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2014(3):426-434. Hou Xincun, Fan Xifeng, Zhu Yi, et al. Application potential and application prospect of biogas fermentation in energy plants[J]. Journal of Applied Basic and Engineering Sciences, 2014(3): 426-434. (in Chinese with English abstract)
[7] Abu-Dahrieh J, Orozco A, Groom E, et al. Batch and continuous biogas production from grass silage liquor[J]. Bioresource Technology, 2011, 102(23): 10922-10928.
[8] Brule M, Bolduan R, Seidelt S, et al. Modified batch anaerobicdigestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops[J]. Environmental Technology, 2013, 34(13/14): 2047-2058.
[9] 李連華,孫永明,袁振宏,等. 能源草單獨(dú)厭氧發(fā)酵產(chǎn)氣性能研究[J]. 中國沼氣,2014,32(1):18-22.Li Lianhua, Sun Yongming, Yuan Zhenhong, et al, Mono-diges-tion of different energy grass and biogas Production[J].China Biogas, 2014, 32(1): 18-22.(in Chinese with English abstract)
[10] 陳廣銀,鄭正,鄒星星,等. 牛糞與互花米草混合厭氧消化產(chǎn)沼氣的試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(3):179-183.Chen Guangyin, Zheng Zheng, Zou Xingxing, et al. Experiment on producing biogas by anaerobic co-digestion of cow feces and[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 179-183. (in Chinese with English abstract)
[11] 宋籽霖,李軼冰,楊改河,等. 溫度及總固體濃度對糞稈混合發(fā)酵產(chǎn)氣特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(7):260-265. Song Zilin, Li Yibing, Yang Gaihe, et al. Effect of total solid concentration and temperature on biogas yields of mixture of chicken manure and corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 260-265. (in Chinese with English abstract)
[12] 李連華,孫永明,丁翠花,等. 預(yù)處理方式對多年生王草厭氧消化性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(11):278-282. Li Lianhua, Sun Yongming, Ding Cuihua, et al. Effect of pretreatment methods on biogas production from anaerobic digested King grass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 278-282. (in Chinese with English abstract)
[13] 張毅,孔曉英,李連華,等. 能源草厭氧發(fā)酵產(chǎn)氣性能與動(dòng)力學(xué)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(5):191-196. Zhang Yi, Kong Xiaoying, Li Lianhua, et al, Biogas production performance and dynamics of anaerobic digestion of different energy grasses[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 191-196. (in Chinese with English abstract)
[14] 汪輝,周禾,高鳳芹,等. 能源草的研究與應(yīng)用進(jìn)展[J]. 草業(yè)與畜牧,2013(1):50-53. Wang Hui, Zhou He, Gao Fengqin, et al. Progress in research and application of energy herbs[J]. Prataculture& Animal Husbandry, 2013(1): 50-53. (in Chinese with English abstract)
[15] 汪輝,周禾,高鳳芹,等. 能源草發(fā)酵產(chǎn)沼氣的研究進(jìn)展[J].山東農(nóng)業(yè)科學(xué),2014(3):135-139. Wang Hui, Zhou He, Gao Fengqin, et al. Research progress of biogas production by energy grass fermentation[J]. Shandong Agricultural Sciences, 2014(3): 135-139. (in Chinese with English abstract)
[16] 尹俊,張美艷. 我國南方草地能源草固C潛能初探[J]. 草業(yè)與畜牧,2013(5):43-49. Yin Jun, Zhang Meiyan. Study on C potential of grassland in South China[J]. Science and Animal Husbandry, 2013(5): 43-49. (in Chinese with English abstract)
[17] 范希蜂,侯新村,朱毅,等. 雜交狼尾草作為能源植物的產(chǎn)量和品質(zhì)特性[J]. 中國草地學(xué)報(bào),2012,34(1):48-52. Fan Xifeng, Hou Xincun, Zhu Yi, et al. as the yield and quality of hybrid pennisetum[J]. Characteristics of Energy Plant Chinese Agrestia Sinica, 2012, 34(1): 48-52. (in Chinese with English abstract)
[18] 國家環(huán)境保護(hù)總局,水和廢水監(jiān)測分析方法編委會(huì). 水和廢水監(jiān)測分析方法[M]. 北京:中國環(huán)境科學(xué)出版社,2002.
[19] 孫琪娟,徐軍禮,孫長順. 元素分析儀法測定氧含量的研究[J]. 當(dāng)代化工,2015(10):2503-2505.Sun Qijuan, Xu Junli, Sun Changshun. Study on the determination of oxygen content by elemental analyzer[J]. Chemical Engineering, 2015(10): 2503-2505. (in Chinese with English abstract)
[20] Li Lianhua, Li Dong, Sun Yongming, et al. Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China[J]. International Journal of Hydrogen Energy, 2010, 35: 7261-7266.
[21] Yu Qiang, ZhuangXinshu, Lü Shuangliang. Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methdes for the sugar recovery and structural hanges[J]. Bioenergy Research, 2013, 129: 592-598.
[22] Brunner P H, Rechberger H. Practical Handbook for Material Flow Analysis[M]. Boca Raton Fla, London: CRC, 2004.
[23] Elisa A, Alberto M, Mikael E O, et al. Quanti?cation of the resource recovery potential of municipal solid waste incineration bottom ashes[J]. Waste Management, 2014, 34: 1627-1636.
[24] 王明,李文哲,殷麗麗,等. 高固體含量進(jìn)料提高餐廚廢棄物連續(xù)厭氧發(fā)酵性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):283-287. Wang Ming, Li Wenzhe, Yin Lili, et al. High solid concentration feedstock improving performance of continuous anaerobic digestion of food waste[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 283-287. (in Chinese with English abstract)
[25] 楊富裕,吳春會(huì),周禾,等. 一種提高能源草厭氧發(fā)酵產(chǎn)沼氣效能的方法:CN105177051A[P]. 2015.
[26] Rajinikanth Rajagopal, Daniel I Massé, Gursharan Singh. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143: 632–641.
[27] Wang Ming, Li Wenzhe, Li Pengfei. An alternative parameter to characterize biogas materials: Available Carbon-nitrogen ratio[J]. Waste Management, 2017, 62: 76-83.
[28] 溫博婷. 木質(zhì)纖維素原料的酶解糖化及厭氧發(fā)酵轉(zhuǎn)化機(jī)理研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2015.Wen Boting. Study on Enzymatic Hydrolysis of Lignocellulosic Raw Materials and Mechanism of Anaerobic Fermentation [D]. Beijing: China Agricultural University, 2015.
[29] 牛紅志,孔曉英,李連華,等. 厭氧發(fā)酵制備生物燃?xì)膺^程的物質(zhì)與能量轉(zhuǎn)化效率[J]. 化工學(xué)報(bào),2015,66(2):723-729. Niu Hongzhi, Kong Xiaoying, Li Lianhua, et al. Material and energy conversion efficiency of biogas preparation process by anaerobic fermentation[J]. CIESC Journal, 2015, 66(2): 723-729. (in Chinese with English abstract)
[30] Contreras L M, Schelle H, Sebrango C R, et al. Methane potentialand biodegradability of rice straw, rice husk and rice residues fromthe drying process[J]. Water Science and Technology, 2012, 65: 1142-1149.
甄 峰,孫永明,孔曉英,牛紅志. 雜交狼尾草厭氧發(fā)酵的物質(zhì)與能量轉(zhuǎn)化率分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(19):236-241. doi:10.11975/j.issn.1002-6819.2017.19.031 http://www.tcsae.org
Zhen Feng, Sun Yongming, Kong Xiaoying, Niu Hongzhi. Material and energy conversion efficiency of anaerobic fermentation process ofhybrid for biogas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 236-241. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.19.031 http://www.tcsae.org
Material and energy conversion efficiency of anaerobic fermentation process ofhybrid for biogas
Zhen Feng, Sun Yongming, Kong Xiaoying※, Niu Hongzhi
(1.510640,;2.510640,;3.510640,)
Energy grass, as the second generation of new energy crop, has a bright development prospect. Hybridpenisetum was selected as the raw material. Silage is a well-developed technology, which can preserve the nutrient component to a large extent. Ensiling is a process in which water-solution carbohydrates (WSC) are converted into lactic acid by lactic acid bacteria (LAB) in anaerobic condition. We investigated the physicochemical characteristics of silage grass raw material, and explored the biogas production performances by laboratory batch anaerobic digestion at mesophilic temperature (35±1)℃. The results showed that the biogas production of silage grass with the C/N ratios of 137 and 25 (adjusted by urea and ammonium bicarbonate) was 327.02 and 295.43 mL/g respectively, and the corresponding methane content (volume fraction) was 58.49% and 61.05%, while the biogas production of untreated energy grass was 280.02 and 242.33 mL/g, and the methane was 59.96% and 61.46%, respectively. The volatile solid (VS) removal rate of substrate was in the range of 51.68%-57.56%, and it mainly attributed to the degradation of cellulose and hemicellulose. Therefore, the energy grass with high cellulose and hemicellulose content should be selected as the feedstock in the development of energy grass biogas project. In addition, lignin, and organic matter difficult to degrade should be used to enhance the comprehensive benefits of energy grass biogas project. We also established an open material flow analysis system by the anaerobic digestion of silage grass in the LAB-2 500 mL reactor and analyzed the distribution of carbon and nitrogen elements in different material throughout all the digestion process. According to the material flow analysis of silage grass in the anaerobic digestion process, 33.1% and 8% carbon in the raw material entered into the biogas and fermentation broth, respectively, and the other was still in the raw material. The distribution of nitrogen was that 69.4% was in the fermentation broth, and 30.7% was still in the raw material. Moreover, according to the energy flow analysis of silage grass in the anaerobic digestion process, the energy yield of 33.1% entered into the biogas, while the energy yield of 61.3% was still unused in the raw material. The mass conversion rate of energy biomass was low, 60% carbon, 80% nitrogen and 60% energy were still in the digestion residue. Therefore, the use of carbon and nitrogen elements in the energy grass biomass was greatly important in the anaerobic digestion process, and it can be beneficial to improve the efficiency of energy grass biogas project in the future. This study provides a reference for the development and utilization of different energy grasses.
methane; fermentation; biogas;; material flow analysis; material and energy conversion efficiency
10.11975/j.issn.1002-6819.2017.19.031
TK6
A
1002-6819(2017)-19-0236-06
2017-05-03
2017-09-04
國家科技支撐計(jì)劃(2015BAD21B03);中國科學(xué)院技術(shù)服務(wù)網(wǎng)絡(luò)計(jì)劃(KFJ-Ew-STS-138);廣東省科技計(jì)劃項(xiàng)目(2015B020215011);廣州市科技計(jì)劃項(xiàng)目(201508020098);中國科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(Y707j21001)
甄 峰,男,山東德州人,工程師,主要從事生物質(zhì)生化轉(zhuǎn)化研究。Email:zhenfeng@ms.giec.ac.cn
※通信作者:孔曉英,女,四川人,研究員,博士,博士生導(dǎo)師,主要從事生物質(zhì)能源化利用研究。Email:kongxy@ms.giec.ac.cn