和君強(qiáng) 賀前鋒 劉代歡 黃 放 唐春敏
(湖南永清環(huán)保研究院有限責(zé)任公司,長沙 410330)
土壤鎘食品衛(wèi)生安全閾值影響因素及預(yù)測模型
——以長沙某地水稻土為例*
和君強(qiáng) 賀前鋒?劉代歡?黃 放 唐春敏
(湖南永清環(huán)保研究院有限責(zé)任公司,長沙 410330)
鎘(Cd)是我國農(nóng)田土壤首要污染物,在南方一些地區(qū)稻米Cd超標(biāo)嚴(yán)重,土壤Cd風(fēng)險評估十分必要。采用長沙某地稻田土壤—糙米Cd點對點數(shù)據(jù),通過生物富集系數(shù)(BCF)和Burr-Ⅲ物種敏感性分布(SSD)方程,構(gòu)建了基于稻米食品衛(wèi)生標(biāo)準(zhǔn)(GB2762-2012)和保護(hù)95%稻米品種的土壤Cd限值(HC5),探討了HC5與土壤性質(zhì)參數(shù)的量化關(guān)系和預(yù)測模型,并與我國土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)(GB15618-1995/2008)進(jìn)行了比較。結(jié)果表明,pH、有機(jī)質(zhì)(OM)和土壤全鎘(TCd)對HC5影響顯著,分別可控制HC5變異的62.2%、19.4%和18.3%?;谕寥纏H和OM(TCd)的兩因子模型能對HC5較為準(zhǔn)確地預(yù)測,決定系數(shù)R2可達(dá)0.817(0.802)。土壤pH、TCd與HC5呈正相關(guān),而OM與之呈負(fù)相關(guān)。隨著數(shù)值的增大,TCd和OM對HC5的影響降低,而pH影響相對穩(wěn)定。本研究可為科學(xué)合理地進(jìn)行稻田土壤風(fēng)險管控及產(chǎn)地土壤環(huán)境質(zhì)量基準(zhǔn)研究提供一定依據(jù)。
鎘;食品安全閾值;生物富集系數(shù);土壤性質(zhì);預(yù)測模型
土壤重金屬環(huán)境風(fēng)險按類型可分為兩類,其一為生態(tài)風(fēng)險,主要對陸地生物及關(guān)鍵的土壤生態(tài)功能造成危害,如銅(Cu)和鎳(Ni)等;另一類為健康風(fēng)險,主要對人體健康造成損害,如鎘(Cd)和鉛(Pb)等。Cd為農(nóng)田土壤最優(yōu)先控制元素之一,遷移活躍,且有較大生物毒性[1]。土壤是農(nóng)作物生產(chǎn)的基礎(chǔ),土壤污染與農(nóng)產(chǎn)品安全乃至人體健康息息相關(guān)。水稻作為易吸收Cd的作物之一,全國65%以上的人口以稻米為主食。在我國南方局部區(qū)域,受品種和土壤酸化等影響,稻米Cd超標(biāo)風(fēng)險十分嚴(yán)峻。據(jù)統(tǒng)計,我國2%~13%的稻米樣品Cd含量超過0.2 mg kg-1的安全限值[2-3],在湖南某市市售大米C d超標(biāo)率甚至高達(dá)4 6%(n=100)[4],由此可見,植稻土壤Cd安全風(fēng)險控制與預(yù)警十分必要。研究顯示,食物鏈途徑是農(nóng)田土壤Cd污染健康風(fēng)險評估的關(guān)鍵環(huán)節(jié)[5-6]。我國現(xiàn)有的土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)是基于總量控制原則,在參考國外基準(zhǔn)基礎(chǔ)上,由生態(tài)環(huán)境效應(yīng)推導(dǎo)的基于不同土地利用類型和pH的分段污染物限值。在實際應(yīng)用中已暴露出“土壤Cd超標(biāo)(不超標(biāo)),農(nóng)產(chǎn)品Cd不超標(biāo)(超標(biāo))”等問題[7],不利于實現(xiàn)對土壤中Cd食物鏈安全風(fēng)險的準(zhǔn)確識別和科學(xué)評價。
土壤農(nóng)產(chǎn)品安全閾值是保障生產(chǎn)的食品安全的土壤中污染物含量限值。近年來,我國雖在土壤重金屬農(nóng)產(chǎn)品安全閾值領(lǐng)域開展了一些工作[8],但基礎(chǔ)理論和系統(tǒng)性研究相對缺乏[9]。目前,土壤污染物風(fēng)險閾值確定方法中最常用的是物種敏感性分布法(Species sensitivity distribution,SSD),該方法假設(shè)生態(tài)系統(tǒng)中不同物種對某一污染物的敏感性能夠被一個累積概率分布曲線描述,依據(jù)不同的保護(hù)程度,獲取曲線上不同百分點所對應(yīng)的濃度值作為基準(zhǔn)值,其中農(nóng)業(yè)用地常選取5%毒害濃度(Hazardous concentration,HC5),即保護(hù)95%生物物種的限量值,這一閾值推導(dǎo)過程綜合考慮了物種敏感性、土壤性質(zhì)和生物有效性等因素的差異,具有科學(xué)性、基礎(chǔ)性和區(qū)域性的特點[10-11]。對于稻田土壤-植物系統(tǒng),土壤Cd通過食物鏈對人體的危害程度取決于稻米Cd含量。通過實驗室分析獲取稻米Cd含量既費時又耗費龐大資金,所以,通常基于大量的實驗數(shù)據(jù)和統(tǒng)計分析,通過構(gòu)建數(shù)學(xué)模型進(jìn)行估算[12],其核心為從土壤至食物的富集系數(shù)(Bioconcentration factors,BCF)這一經(jīng)驗因子[13],在國際上,BCF值也常作為評估污染物植物有效性和品種差異的一項重要參數(shù)[14]。目前,將SSD法用于稻田土壤中Cd健康風(fēng)險評價及農(nóng)產(chǎn)品安全閾值的研究尚鮮有報道。
當(dāng)前,土壤Cd農(nóng)產(chǎn)品安全閾值研究大多基于溫室盆栽試驗,基于大田試驗的研究較少。本研究擬應(yīng)用長沙某地稻田土壤—植株Cd點對點數(shù)據(jù),構(gòu)建基于水稻生物富集系數(shù)與顯著影響稻米Cd吸收的土壤性質(zhì)因子(pH、有機(jī)質(zhì)(OM)與全鎘(TCd))的多元回歸模型;對數(shù)據(jù)變量進(jìn)行歸一化處理,利用Burr-Ⅲ模型計算不同品種水稻對土壤Cd的富集效應(yīng)敏感性分布頻次,推導(dǎo)出基于保護(hù)研究區(qū)95%水稻品種和稻米食品衛(wèi)生標(biāo)準(zhǔn)的土壤中Cd的HC5值;探討了HC5與土壤性質(zhì)參數(shù)的量化關(guān)系和預(yù)測模型,并與我國現(xiàn)行土壤環(huán)境質(zhì)量二級標(biāo)準(zhǔn)進(jìn)行了比較,以期為農(nóng)產(chǎn)品產(chǎn)地土壤環(huán)境質(zhì)量基準(zhǔn)和膳食暴露途徑風(fēng)險評估研究提供一定參考和依據(jù)。
研究區(qū)為湖南省長沙市轄區(qū),地處湘中東北部,湘江下游兩岸。全區(qū)現(xiàn)轄白箬鋪、靖港和喬口等5鎮(zhèn),烏山、銅官、丁字灣等10個街道,新康1個鄉(xiāng),位于112°35′48″~113°02′30″E和27°58′28″~28°33′45″N之間。屬中亞熱帶季風(fēng)濕潤氣候,年平均氣溫17℃,降水量1 370 mm,日照1 610 h,無霜期274 d。典型的農(nóng)業(yè)種植模式為稻—稻輪作。研究區(qū)土壤種類繁多,其中,黏化濕潤富鐵土(紅壤)面積占土地總面積的52.1%,其次為簡育/潛育水耕人為土(水稻土),占土地總面積的25.2%,淡色潮濕雛形土(潮土)占土地總面積的15.7%,其他零星分布有紫色常濕雛形土(紫色土)、鋁質(zhì)濕潤淋溶土(山地黃壤)、肥熟旱耕人為土(菜園土)和鐵質(zhì)濕潤淋溶土(黃棕壤)等。研究區(qū)主要成土母質(zhì)為第四紀(jì)紅土,其次為石英砂巖和花崗石,間或有紫色頁巖、板頁巖和湖中沉積物等。供試區(qū)稻田土壤主要以中低度Cd污染為主,詳見2.1。
在研究區(qū)采集早稻糙米樣品78份,以及其對應(yīng)的表層(0~20cm)土壤,樣點涵蓋5鄉(xiāng)鎮(zhèn)78個村組,包括15個早稻品種(矮子稻、金優(yōu)974、陵兩優(yōu)211、湘早秈11號、湘早秈13號、湘早秈143、湘早秈24號、湘早秈26號、湘早秈31號、湘早秈32號、湘早秈45號、湘早秈7號、中嘉早17、株兩優(yōu)02和株兩優(yōu)819),采集時間為2015年5月25—26日,具體樣點位置見圖1。
1.3.1土壤及稻米指標(biāo)測定 土壤樣品經(jīng)自然風(fēng)干后分別過10目和100目尼龍篩,檢測土壤pH、OM、TCd和汞(Hg)、鉛(Pb)、砷(As)、鉻(Cr)總量。收獲后的水稻籽粒經(jīng)去離子水反復(fù)沖洗干凈,70℃烘干,粉碎并檢測Cd、Hg、Pb、As和Cr含量。pH(水土比2.5∶1)采用酸度計(PHS-3C,上海儀電科學(xué)儀器股份有限公司)測定。土壤有機(jī)質(zhì)采用水合熱重鉻酸鉀氧化—比色法測定[15]。土壤和稻米中重金屬含量測定方法參照國家標(biāo)準(zhǔn)方法[16-19]。土壤樣品經(jīng)HNO3-HF-HClO4混合酸消化,稻米樣品經(jīng)HNO3-HClO4混合酸消化,消解液中Cd、Pb及Cr采用賽默飛電感耦合等離子體質(zhì)譜儀(ICP-MS,Element 2/XR,德國)測定,Hg、As采用雙道原子熒光光度計(APS-230E,北京海光儀器有限公司)檢測。樣品中重金屬測定過程中采用國家標(biāo)準(zhǔn)樣品作為內(nèi)標(biāo)進(jìn)行質(zhì)量控制,土壤和稻米標(biāo)樣分別選取GBW07406(GSS-6)和GBW10045(GSB-23),每測定10個樣品插入一個內(nèi)標(biāo),要求回收率90%以上。土壤Cd環(huán)境質(zhì)量評價參考文獻(xiàn)[20-21]二級標(biāo)準(zhǔn),稻米Cd質(zhì)量評價參考文獻(xiàn)[22]。內(nèi)梅羅綜合污染指數(shù)(Nemero pollution index,NPI)計算公式如下:
圖1 樣點分布、位置信息Fig. 1 Information about distribution and location of sampling sites
式中,Ci為土壤重金屬含量實測值,Si為GB15618-1995二級標(biāo)準(zhǔn)。
1.3.2鎘生物富集(BCF)數(shù)據(jù)歸一化 土壤中Cd向稻米中遷移,與土壤性質(zhì)有關(guān),且與植物體內(nèi)各種物理、化學(xué)和生物過程密切相關(guān)。BCF表征了土壤中Cd對稻米的有效性,本研究指稻米Cd含量(Cgrain)與TCd的比值。近年來,許多學(xué)者嘗試采用BCF均值、分位數(shù)等確定性方法直接表征和預(yù)測作物Cd吸收特征,表現(xiàn)出較大的局限性[23-24]。這是因為,影響稻米Cd富集過程的因子復(fù)雜多樣,除生物因子如品種、拮抗離子等,還有土壤因子如TCd、pH、OM等[25]。基于此,本文在土壤中Cd含量與作物可食部位濃度對數(shù)轉(zhuǎn)換基礎(chǔ)上,引入因子pH和OM構(gòu)建BCF多元回歸量化模型[26-27]。
在建模時,不可避免地需考慮如何消除土壤性質(zhì)及與品種因子之間的交互效應(yīng)。借鑒李波[28]和韋東普[29]構(gòu)建的銅生物毒性數(shù)據(jù)(EC10)歸一化原理,將本文15個早稻品種的大田BCF數(shù)據(jù)歸一化至不同土壤條件下,獲得對應(yīng)不同土壤條件的Cd生物富集數(shù)據(jù)組,操作方法參考文獻(xiàn)[30]。綜合考量調(diào)查區(qū)土壤性質(zhì)和污染特征,設(shè)定土壤歸一化條件:TCd 0.1~0.9 mg kg-1,pH 4.0~8.0,OM20~60 g kg-1,每個因子均設(shè)5個等間距梯度。
1.3.3物種敏感性(SSD)分布及HC5值推導(dǎo)利用歸一化后數(shù)據(jù)組,通過對不同品種水稻Cd的BCF值進(jìn)行倒數(shù)變換后,利用最新的分布函數(shù)模型(Burr-Ⅲ型方程)進(jìn)行特定土壤條件下(TCd、pH及OM)不同品種水稻Cd富集系數(shù)的SSD分布曲線擬合。利用澳大利亞聯(lián)邦科學(xué)和工業(yè)研究組織提供的軟件BurrlizO,從Burr-Ⅲ模型擬合得到不同土壤條件下基于95%保護(hù)水平的水稻Cd的BCF安全臨界值(BCF5)。結(jié)合我國稻米Cd食品衛(wèi)生標(biāo)準(zhǔn)(0.2 mg kg-1)和BCF5值,計算稻田土壤中Cd的食品安全閾值(HC5),即在此土壤條件下保護(hù)生境中95%的水稻品種相對安全的土壤TCd限值[31-32]。
Burr-Ⅲ型函數(shù)的參數(shù)方程為
式中,F(xiàn)(x)為累積概率,%;x為BCF的倒數(shù);b、c、k為函數(shù)的3個參數(shù);BCF5為式(2)中F(x)=0.05時1/x的取值;HC5為稻田土壤Cd農(nóng)產(chǎn)品安全閾值,mg kg-1。
1.3.4HC5預(yù)測模型構(gòu)建與驗證 利用HC5及其對應(yīng)的歸一化后的TCd、pH及OM數(shù)據(jù),構(gòu)建多元回歸模型(式(4)),即為稻田土壤Cd農(nóng)產(chǎn)品安全閾值預(yù)測模型。為了對本研究模型進(jìn)行驗證,選取70組大田土壤—稻米點對點樣品,檢測TCd 0.15~1.12 mg kg-1、pH4.08~6.94、OM 17.78~57.72 g kg-1及稻米Cd含量0.056~0.748 mg kg-1,構(gòu)建獨立數(shù)據(jù)庫,采樣方式及測定方法同1.3.1。大田驗證樣本取自研究區(qū)2014年早稻田,樣點涵蓋8鄉(xiāng)鎮(zhèn)(橋驛、白箬鋪、東城、格塘、靖港、喬口、烏山鎮(zhèn)及新康鄉(xiāng))和1街道(丁字灣),共計70個村組。
式中,TCd為土壤全鎘,mg kg-1;OM為土壤有機(jī)質(zhì)含量,g kg-1;m、n和p為函數(shù)參數(shù),分別表征土壤TCd、pH和OM對HC5的偏相關(guān)系數(shù),q為常數(shù)項。
實驗數(shù)據(jù)均采用Excel 2007和SAS 9.0分析處理,采用Origin 8.5和AutoCAD 2016制圖,鄧肯新復(fù)極差法(Duncan法)進(jìn)行差異顯著性分析(p=0.05)。
如圖2所示,研究區(qū)土壤TCd和稻米Cd含量均呈極顯著正態(tài)分布,具有統(tǒng)計學(xué)意義。土壤TCd集中分布于區(qū)間0.2~0.6 mg kg-1,占全部點位的83.3%;未超標(biāo)土壤(<0.3 mg kg-1)、超標(biāo)1倍以內(nèi)(0.3~0.6 mg kg-1)、超標(biāo)1倍~2倍(0.6~0.9 mg kg-1)及超標(biāo)2倍以上(>0.9 mg kg-1)分別占比21.8%、62.8%、12.8%和2.6%,調(diào)查區(qū)土壤Cd呈典型中輕度污染。稻米Cd含量未超標(biāo)(<0.2 mg kg-1)、超標(biāo)1倍以內(nèi)(0.2~0.4 mg kg-1)及超標(biāo)1倍以上(>0.4 mg kg-1)點位占比分別為62.82%、33.33%和3.85%,同樣呈現(xiàn)輕度污染趨勢。土壤內(nèi)梅羅污染指數(shù)(NPI)可用來表征土壤整體污染趨勢(Cd、Hg、Pb、As和Cr),NPI<1和NPI∈(1,2)分別表征安全警戒級和輕污染級。研究顯示,NPI∈(1,2)和NPI<1點位占比分別為44.6%和56.4%,這表明,研究區(qū)土壤重金屬污染風(fēng)險集中于輕度污染。
對生物富集(BCF)數(shù)據(jù)歸一化處理能體現(xiàn)因子間及其與BCF的交互作用(表1)。未歸一化處理,土壤TCd與pH、OM均呈顯著正相關(guān),OM與pH、BCF均不相關(guān)。歸一化后,OM、TCd及pH間的交互作用得以消除,三因子相互獨立且均與BCF呈顯著正相關(guān),這有益于多因子回歸模型構(gòu)建。由相關(guān)系數(shù)可得,各因子對BCF的影響程度表現(xiàn)為pH(-0.5223)>TCd(-0.2891)≈OM(0.2859),其中,隨著pH的提高,稻米Cd富集能力顯著降低;隨著TCd的提高,同等土壤條件下,同一品種稻米Cd富集能力也相對降低。
圖2 土壤全鎘、稻米鎘及土壤內(nèi)梅羅污染指數(shù)區(qū)間頻率分布Fig. 2 Frequency distributions of TCd,Cgrain andNPI
表1 水稻鎘生物富集因子(BCF)與土壤性質(zhì)的相關(guān)性Table 1 Relationships of biological concentration factor(BCFs)of Cd in rice with soil properties
此外,土壤OM與BCF呈負(fù)相關(guān),同等土壤條件下,同一品種水稻在較高有機(jī)質(zhì)土壤中更易富集Cd。有研究表明,土壤有機(jī)物表面吸附或螯合態(tài)Cd受生物活動影響較大,且在低pH和Eh時可重新釋放出來,從而提高植物有效性;而有關(guān)Cd的生物有效性研究則表明,Cd與有機(jī)質(zhì)形態(tài)密切相關(guān),大分子量腐殖質(zhì)(如胡敏酸)可與Cd形成高穩(wěn)性絡(luò)合物[33],另一方面,可溶性有機(jī)質(zhì)(如富里酸)可與Cd形成可溶態(tài)絡(luò)合物以增加土壤中Cd的移動性和有效性[34]。由于淹水和地域等因素,本研究土壤pH和Eh普遍較低,有機(jī)質(zhì)腐熟度可能偏高,從而提高了其植物有效性,具體機(jī)理有待進(jìn)一步求證。以上研究結(jié)果可為Cd污染稻田土壤改良和風(fēng)險管控提供一定參考。
通過相關(guān)分析(表2)可知,土壤性質(zhì)與HC5值間存在顯著的相關(guān)關(guān)系。HC5與pH的相關(guān)系數(shù)最高,可達(dá)0.761 1,與OM和TCd相關(guān)系數(shù)分別為-0.438 9和0.381 9。由此可見,土壤性質(zhì)可以影響稻米中Cd的富集,故在評價農(nóng)產(chǎn)品Cd安全風(fēng)險時,需要考慮土壤性質(zhì)之間的分異,其中,pH為最主要因子,其次為OM,此外,TCd對HC5值的影響也不容忽視。
表2 土壤Cd食品安全閾值(HC5)與土壤性質(zhì)的相關(guān)性Table 2 Relationships of hazardous concentrations(HC5)for rice with soil properties
由于作物品種顯著影響稻米中Cd的富集,本文對歸一化至不同土壤條件下不同品種的HC5進(jìn)行了SSD分布曲線擬合。不同土壤條件下(pH、TCd、OM)的SSD曲線(圖3)表明:隨著pH升高或TCd的增大,TCd的SSD曲線向X軸數(shù)值大的方向(右)移動,HC5值隨著pH升高和TCd增高而增大,但變化趨勢有顯著差別;隨著數(shù)量的增加,TCd對HC5的影響程度降低,而pH的影響則表現(xiàn)出一定的持續(xù)性。OM對稻田土壤中Cd的SSD曲線有一定影響,隨著OM的增加,SSD曲線向著X軸數(shù)值小的方向移動,但隨OM增大,其影響程度降低;3個因子均在低累計概率分布范圍內(nèi)影響程度小(<10%),而在中軸(50%~80%)影響程度較大。調(diào)查區(qū)稻田土壤OM分布相對集中,且TCd集中分布于0.2~0.6 mg kg-1的中低度水平,故在進(jìn)行長株潭稻田土壤Cd風(fēng)險管控與預(yù)警時,需強(qiáng)調(diào)TCd對HC5值的影響,并重視pH調(diào)節(jié),降低稻米Cd安全風(fēng)險。
利用SAS 9.0多元回歸模塊,量化HC5與對應(yīng)的土壤性質(zhì)(pH、OM和TCd)之間的關(guān)系,獲得HC5的量化預(yù)測模型(表3)。由單因子模型(a~c)可再次證明,pH為HC5主控因子,決定系數(shù)可達(dá)62.2%,其次為OM和TCd,決定系數(shù)分別為19.4%和18.3%,且模型均達(dá)到極顯著水平(p<0.01)。使用雙因子模型和三因子模型均能很好地預(yù)測HC5,模型決定系數(shù)>80.2%。Ding等[35-40]對土壤—胡蘿卜中Cd轉(zhuǎn)移的模型預(yù)測顯示,pH和OM是影響Cd吸收的兩個最顯著因子,使用土壤TCd、pH和OM可以很好地預(yù)測胡蘿卜中的Cd濃度(R2=0.90)。Fran?ois等[41]、Liu等[42]構(gòu)建的小麥中Cd含量的SPT(Soil-to-planttransfer models)模型同樣表明,土壤pH、CEC和土壤重金屬活性等因素是模型主控因素。南方稻田土壤CEC普遍較低、差異較小且更受制于土壤有機(jī)質(zhì)含量,故本研究模型只考慮了pH、OM和TCd對HC5的影響。
本研究中,預(yù)測模型土壤性質(zhì)適用區(qū)間為pH 4.0~8.0、OM 20~60 g kg-1、TCd 0.1~0.9 mg kg-1,且可以解釋HC5預(yù)測模型變異的95%以上,但在極端土壤性質(zhì)條件下,可能在應(yīng)用中造成較大誤差。此處建立的HC5預(yù)測模型綜合考慮了品種的影響(SSD分布),也體現(xiàn)了土壤性質(zhì)對Cd食品安全閾值的影響,量化了土壤性質(zhì)參數(shù)(pH、OM與TCd)與Cd農(nóng)產(chǎn)品安全閾值的數(shù)值關(guān)系,也說明了建立基于物種敏感性分布和土壤性質(zhì)對應(yīng)的污染物食品安全閾值的必要性。本研究基于大田數(shù)據(jù),構(gòu)建的稻田土壤Cd食品安全閾值(HC5)量化預(yù)測模型,可為稻田土壤實際污染的安全風(fēng)險評價提供科學(xué)依據(jù),同時也為制定適用性更強(qiáng)的稻田土壤Cd環(huán)境質(zhì)量標(biāo)準(zhǔn)提供科學(xué)依據(jù)。
圖3 不同土壤條件下物種敏感性分布曲線Fig. 3 Species sensitivity distribution(SSD)curves relative to soil properties
表3 不同土壤條件下土壤Cd的HC5預(yù)測模型Table 3 HC5 prediction models for Cd in soil relative to soil properties
為了對本研究中構(gòu)建HC5預(yù)測模型進(jìn)行驗證,探究是否可應(yīng)用大田條件下土壤Cd安全預(yù)警,選取2014年某地70個村組的早稻樣品對模型進(jìn)行獨立數(shù)據(jù)驗證。樣點涵蓋某地8鄉(xiāng)鎮(zhèn)和1街道,共計70個樣點,土壤性質(zhì)變異區(qū)間為:TCd0.15~1.12 mg kg-1,pH 4.08~6.94,OM17.78~57.72 g kg-1,稻米Cd含量變化區(qū)間為0.056~0.748 mg kg-1。利用三因子模型(f)將本研究建立的HC5預(yù)測模型(方程f)的計算值與對應(yīng)TCd進(jìn)行比較,其結(jié)果如圖4。當(dāng)TCd低于其對應(yīng)的HC5(坐標(biāo)點位于1∶1線上方)時,稻米Cd均不超過食品衛(wèi)生標(biāo)準(zhǔn)(100%保護(hù)率),這與本閾值基于保護(hù)95%物種(品種)安全的目標(biāo)相一致;當(dāng)TCd>HC5時(坐標(biāo)點位于1∶1線下方)時,稻米Cd含量不一定超標(biāo),這與品種差異有關(guān),但這一部分的超標(biāo)點位率(64.7%)遠(yuǎn)大于未超標(biāo)點位率(35.3%)。這表明,本研究閾值模型能夠?qū)崿F(xiàn)稻田土壤Cd食品安全預(yù)警目標(biāo),但模型推導(dǎo)值可能偏嚴(yán)格且有待進(jìn)一步校正。
圖4 預(yù)測模型HC5推導(dǎo)值判別稻米Cd安全風(fēng)險Fig. 4 Use of HC5 derived from prediction models to determine Cd safety risk of rice
我國現(xiàn)行土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)GB15618-1995和GB15618-2008,其中,二級標(biāo)準(zhǔn)針對分段土壤pH進(jìn)行了TCd限定值。將模型f預(yù)測值分別與這兩個標(biāo)準(zhǔn)的推導(dǎo)值進(jìn)行比較,如圖5所示。與兩標(biāo)準(zhǔn)相比,在土壤pH>6.5的情況下,在本研究TCd 0.2~0.9 mg kg-1和OM 20~40 g kg-1變異區(qū)間下,現(xiàn)行標(biāo)準(zhǔn)推導(dǎo)值均高于模型預(yù)測值,說明現(xiàn)行標(biāo)準(zhǔn)可能比較寬松,保護(hù)度不足,易造成土壤TCd不超標(biāo),稻米Cd濃度超標(biāo)的情況。在pH<6.5的情況下,現(xiàn)行標(biāo)準(zhǔn)推導(dǎo)值介于不同OM和TCd下的模型預(yù)測值之間,即當(dāng)OM>30 g kg-1時,現(xiàn)行標(biāo)準(zhǔn)推導(dǎo)值高于模型預(yù)測值,說明標(biāo)準(zhǔn)過于嚴(yán)格;當(dāng)OM<30 g kg-1,TCd取不同值時(0.2~0.9 mg kg-1),隨著TCd和OM的增加,原本低于現(xiàn)行標(biāo)準(zhǔn)值的情況可能逐漸變?yōu)槌制交蚋哂诂F(xiàn)行標(biāo)準(zhǔn)值。
以上結(jié)果表明,由土壤理化性質(zhì)不同而導(dǎo)致土壤Cd食品安全風(fēng)險臨界值的差異,會使以單一分段式來控制TCd的現(xiàn)行標(biāo)準(zhǔn)可能同時存在保護(hù)不足與保護(hù)過度的問題。此外,這也表明了,構(gòu)建基于不同土壤性質(zhì)參數(shù)的動態(tài)、量化的風(fēng)險閾值預(yù)測模型的重要性,同時證明了基于單一因子(pH)分段確定目標(biāo)污染物的總量以控制農(nóng)產(chǎn)品產(chǎn)地食物鏈安全風(fēng)險的不科學(xué)性。表4為基于食品衛(wèi)生安全標(biāo)準(zhǔn)的稻田土壤Cd風(fēng)險閾值在不同土壤性質(zhì)參數(shù)下的分段基準(zhǔn)建議值以及連續(xù)標(biāo)準(zhǔn)計算公式。
本研究建立的稻田土壤Cd食品安全HC5值預(yù)測模型,綜合考量了生物因子即品種和土壤性質(zhì)因子對稻米Cd富集特征的影響。由于受研究區(qū)地
域限制,土壤性質(zhì)分異區(qū)間較窄(TCd<1.0;pH 4~7),水稻品種相對集中(n=15),且模型推導(dǎo)中僅考量了pH、OM和TCd三個土壤性質(zhì)因子,因而,預(yù)測模型一定程度上有適用局限性,但基本上可根據(jù)不同的土壤條件較為準(zhǔn)確地預(yù)測土壤Cd基于稻米食品衛(wèi)生安全風(fēng)險的安全閾值。本閾值模型可應(yīng)用于我國南方尤其是長株潭地區(qū)稻田土壤Cd風(fēng)險預(yù)警和管控,可能對北方偏堿性土壤適用性較差。盡管本研究利用獨立數(shù)據(jù)對預(yù)測模型進(jìn)行了田間驗證,但驗證區(qū)域較窄,模型參數(shù)仍需大量的田間試驗進(jìn)一步修正。本研究閾值模型基于污染物全量構(gòu)建,在污染物含量極低(極高)的情況下,使用全量往往會明顯高估(低估)植物體內(nèi)的重金屬含量,僅根據(jù)全量不能對其生物有效性進(jìn)行很好預(yù)測。土壤有效態(tài)或提取態(tài)而非全量對污染物在生物體內(nèi)的富集效應(yīng)的響應(yīng)起決定性因素,國外一些機(jī)構(gòu)也更傾向于使用土壤有效態(tài)進(jìn)行污染風(fēng)險評估。
圖5 模型f的HC5預(yù)測值與我國土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)的比較Fig. 5 Comparison of HC5 predicted with Model f with the standard of China for soil environment quality
表4 稻田土壤中Cd的食品衛(wèi)生安全基準(zhǔn)建議值Table 4 Recommended food health safety standards for Cd in paddy soil
稻田土壤Cd污染根本上講是一個健康風(fēng)險問題,最終受體為人體健康,且典型暴露途徑為手—口膳食過程。在農(nóng)田Cd膳食暴露評估中,有兩個相互關(guān)聯(lián)的重要環(huán)節(jié):1)Cd從土壤到可食部位(稻米)的過程,其核心在于土壤Cd生物有效性預(yù)測;2)稻米中Cd經(jīng)膳食途徑進(jìn)入人體并產(chǎn)生危害的過程,其關(guān)鍵在于食品Cd健康風(fēng)險評估。本文基于土壤—植物中鎘傳輸過程,以富集系數(shù)(BCF)為主要參數(shù)構(gòu)建的土壤Cd食品衛(wèi)生安全閾值模型,主要立足于上述第一環(huán)節(jié),尚未涉及稻米Cd膳食暴露健康風(fēng)險評估。農(nóng)田土壤Cd健康風(fēng)險評估需要對不同環(huán)節(jié)環(huán)境風(fēng)險進(jìn)行識別、分級和預(yù)測,以便指導(dǎo)安全生產(chǎn)實踐。近年來,應(yīng)用一些新技術(shù)和新手段構(gòu)建農(nóng)田土壤重金屬有效性機(jī)理或半機(jī)理模型,并進(jìn)行風(fēng)險預(yù)警預(yù)測已成為風(fēng)險評估領(lǐng)域熱點之一。張廈等[43]基于Cd、Pb在土壤—溶液中的形態(tài)分布和分配機(jī)理,構(gòu)建了農(nóng)田土壤Cd、Pb有效性預(yù)測模型;宋金茜等[44]比較了傳統(tǒng)標(biāo)準(zhǔn)方法、農(nóng)產(chǎn)品產(chǎn)地評估標(biāo)準(zhǔn)方法和改進(jìn)的累積綜合指數(shù)法,并運用GIS地統(tǒng)計學(xué)方法對某農(nóng)業(yè)土壤重金屬風(fēng)險水平、空間分布以及生態(tài)風(fēng)險特征進(jìn)行了評價;蔣紅群等[45]利用地統(tǒng)計學(xué)與土壤重金屬累積通量模型,對北京市土壤重金屬潛在風(fēng)險進(jìn)行了預(yù)警。在稻田Cd膳食暴露評估方面,楊敏等[46]、蔣逸駿等[47]借鑒美國環(huán)境保護(hù)總局(EPA)風(fēng)險評估模型分別對石門雄黃礦、湘北某鎮(zhèn)硫鐵礦周邊重金屬污染農(nóng)田土壤的健康風(fēng)險進(jìn)行了評估。
土壤中Cd的SSD曲線隨著pH和TCd的增大向濃度值(X軸)增大方向移動;OM和TCd對SSD曲線的影響程度均隨數(shù)值的增大而減弱;三個因子(pH、OM與TCd)均在累積概率較低范圍內(nèi)對曲線影響程度較小。HC5受土壤pH、OM及TCd等因子的共同影響,其中,pH是最主要影響因子,可控制HC5變異的60%以上,其次為OM和TCd,且后兩因子影響程度均隨因子數(shù)量的增大而減弱。通過BCF的SSD方程構(gòu)建了基于保護(hù)95%品種的稻田土壤Cd食品安全閾值(HC5)模型,探討了品種及pH、OM和TCd對HC5的影響,可為我國南方尤其是長株潭稻田土壤Cd污染風(fēng)險評估和基準(zhǔn)研究提供一定參考。
[1] McLaughlin M J,Singh B R E. Cadmium in soils and plants. Dordrecht:Kluwer Academic,1999
[2] Qian Y,Chen C,Zhang Q,et al. Concentrations of cadmium,lead,mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control,2010,21(12):1757—1763
[3] Zhen Y H,Cheng Y J,Pan G X,et al. Cd,Zn and Se content of the polished rice samples from some Chinese open markets and their relevance to food safety. Journal of Safety &Environment,2008,8:119—122
[4] 謝燕湘,郭志忠,李兆敏,等. 南方某市2012年市售大米鎘污染狀況及膳食暴露評估. 海峽預(yù)防醫(yī)學(xué)雜志,2014,20(1):5—6,11 Xie Y X,Guo Z Z,Li Z M,et al. Analysis on Cadmium contamination in rice and assessment of dietary exposure of residents in a southern city in 2012(In Chinese). Strait Journal of Preventive Medicine,2014,20(1):5—6,11
[5] Agency for Toxic Substances and Disease Registry(ATSDR). Toxicological profile for Cadmium.U.S. Department of Health and Human Services.Washington,D. C,2007
[6] 李丹,高陽俊,耿春女. 食物鏈途徑人體健康風(fēng)險評估的關(guān)鍵內(nèi)容探討. 環(huán)境化學(xué),2015,34(3):431—441 Li D,Gao Y J,Geng C N. Discussions on the human health risk assessment by food-chain exposure pathways(In Chinese). Environmental Chemistry,2015,34(3):431—441
[7] Fang Y,Sun X,Yang W,et al. Concentrations and health risks of lead,cadmium,arsenic,and mercury in rice and edible mushrooms in China. Food Chemistry,2014,147(6):147—151
[8] 周啟星,滕涌,林大松. 污染土壤修復(fù)基準(zhǔn)值推導(dǎo)和確立的原則與方法. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2013,32(2):205—214 Zhou Q X,Teng Y,Lin D S. The principles and methods of deriving and determining remediation criteria for contaminated soils(In Chinese).Journal of Agro-Environment Science,2013,32(2):205—214
[9] 王波,劉曉青,馮昌偉. 蕪湖市部分市售蔬菜重金屬含量及其健康風(fēng)險研究. 中國農(nóng)學(xué)通報,2011,27(31):143—146 Wang B,Liu X Q,F(xiàn)eng C W. Concentration and health risk of heavy metals in vegetables from the markets of wuhucity(In Chinese). Chinese Agricultural Science Bulletin,2011,27(31):143—146
[10] 王小慶,韋東普,黃占斌,等. 物種敏感性分布法在土壤中銅生態(tài)閾值建立中的應(yīng)用研究. 環(huán)境科學(xué)學(xué)報,2014,33(6):1787—1794 Wang X Q,Wei D P,Huang Z B,et al. Application of species sensitivity distribution in deriving of ecological thresholds for copper in soils(In Chinese). Acta Scientiae Circumstantiae,2014,33(6):1787—1794
[11] 王小慶,韋東普,黃占斌,等. 物種敏感性分布在土壤中鎳生態(tài)閾值建立中的應(yīng)用研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2012,31(1):92—98 Wang X Q,Wei D P,Huang Z B,et al. Application of species sensitivity distribution in deriving of ecological thresholds for nickel in soils(In Chinese). Journal of Agro-Environment Science,2012,31(1):92—98
[12] 李志博,駱永明,宋靜,等. 基于稻米攝入風(fēng)險的稻田土壤鎘臨界值研究:個案研究. 土壤學(xué)報,2008,45(1):76—81 Li Z B,Luo Y M,Song J,et al. Critical values for Cd in paddy field based on Cd risk of rice consumption:Acase study(In Chinese). Acta Pedologica Sinica,2008,45(1):76—81
[13] 陳夢舫,駱永明,宋靜,等. 場地基準(zhǔn)建立的理論、方法和常用模型. 環(huán)境監(jiān)測與管理技術(shù),2011,23(3):14—18 Chen M F,Luo Y M,Song J,et al. Theory and commonly used models for the derivationof soil generic assessment criteria for contaminated sites(In Chinese).The Administration and Technique of Environmental Monitoring,2011,23(3):14—18
[14] 周啟星,王毅. 我國農(nóng)業(yè)土壤質(zhì)量基準(zhǔn)建立的方法體系研究. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報,2012,20(S1):38—44 Zhou Q X,Wang Y. Methodological systems of building agricultural soil quality criteria in China(In Chinese).Journal of Basic Science and Engineering,2012,20(S1):38—44
[15] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京:中國農(nóng)業(yè)科技出版社,2000 Lu R K. Analytical methods for soil and agro-chemistry(In Chinese). Beijing:China Agricultural Science and Technology Press,2000
[16] 中國環(huán)境監(jiān)測總站. 土壤質(zhì)量鉛、鎘的測定石墨爐原子吸收分光光度法:GB/T 17141-1997. 北京:中國環(huán)境科學(xué)出版社,1998 China National Environmental Monitoring Centre.Soil quality-determination of lead and cadmium-graphite furnace atomic absorption spectrometric method:GB/T 17141-1997. Beijing:China Environmental Science Press,1998
[17] 國家質(zhì)量監(jiān)督檢驗檢疫總局,國家標(biāo)準(zhǔn)化管理委員會.土壤質(zhì)量總汞、總砷、總鉛的測定原子熒光法:GB/T 22105.2-2008. 北京:中國標(biāo)準(zhǔn)出版社,2008 General Administration of Quality Supervision,Inspection and Quarantine of P.R.China,Standardization Administration of China(SAC). Soil quality-Determination of total mercury,total arsenic,total lead-atomic fluorescence spectrometry:GB/T 22105.2-2008. Beijing:China Standards Press,2008
[18] 國家質(zhì)量監(jiān)督檢驗檢疫總局,國家標(biāo)準(zhǔn)化管理委員會. 食品安全國家標(biāo)準(zhǔn)食品中鎘的測定:GB 5009.15-2014. 北京:中國標(biāo)準(zhǔn)出版社,2014 General Administration of Quality Supervision,Inspection and Quarantine of P.R.China,Standardization Administration of China(SAC). National standard for food safety-Determination of cadmium in foods:GB 5009.15-2014.Beijing:China Standards Press,2014
[19] 國家質(zhì)量監(jiān)督檢驗檢疫總局,國家標(biāo)準(zhǔn)化管理委員會.食品安全國家標(biāo)準(zhǔn)食品中總砷及無機(jī)砷的測定:GB 5009. 11-2014. 北京:中國標(biāo)準(zhǔn)出版社,2014 General Administration of Quality Supervision,Inspection and Quarantine of P.R.China,Standardization Administration of China(SAC). National standard for food safety-Determination of total arsenic and inorganic arsenic in food:GB 5009.11-2014. Beijing:China Standards Press,2014
[20] 國家環(huán)境保護(hù)局,國家技術(shù)監(jiān)督局. 土壤環(huán)境質(zhì)量標(biāo)準(zhǔn):GB 15618-1995. 北京:中國標(biāo)準(zhǔn)出版社,1995 National Environmental Protection Agency,State Bureau of Technology Supervision. Environmental quality standard for soilsof China:GB 15618-1995.Beijing:China Standards Press,1995
[21] 國家環(huán)境保護(hù)部,國家質(zhì)量監(jiān)督檢驗檢疫總局. 土壤環(huán)境質(zhì)量標(biāo)準(zhǔn):GB 15618-2008. 北京:中國標(biāo)準(zhǔn)出版社,2008 Ministry of Environmental Protection of the P. R.China,General Administration of Quality Supervision,Inspection and Quarantine of P.R.China. Environmental quality standard for soils of China:GB 15618-2008.Beijing:China Standards Press,2008
[22] 國家質(zhì)量監(jiān)督檢驗檢疫總局,國家標(biāo)準(zhǔn)化管理委員會. 食品安全國家標(biāo)準(zhǔn)食品中污染物限量:GB 2726-2012. 北京:中國標(biāo)準(zhǔn)出版社,2012 General Administration of Quality Supervision,Inspection and Quarantine of P.R.China,Standardization Administration of China(SAC). National standard for food safety-limit of pollutants in foods:GB 2726-2012.Beijing:China Standards Press,2012
[23] Fryer M,Collins C D,F(xiàn)errier H. Human exposure modeling for chemical risk assessment:A review of current approaches and research and policy implications.Environment Science &Policy,2006,9(3):261—274
[24] Meyer J S. The utility of the terms“bioavailability”and“bio-available fraction”for metals. Marine Environmental Research,2002,53(4):417—423
[25] Ma Y B,Mclaughlin M J,Zhu Y G,et al. Final report for metals management 200990 8 2524-2530 in Asia.CSIRO Land and Water,Beijing,2009
[26] 程韻韻,周其文,趙玉杰,等. 基于蒙特卡洛模擬技術(shù)的杭嘉湖平原稻田土壤Cd安全閾值研究. 科學(xué)技術(shù)與工程,2014,14(7):88—93 Cheng Y Y,Zhou Q W,Zhao Y J,et al. The study on Cd safety benchmarks of paddy soil based on monte carlo simulation technology on Hangjiahu Plain(In Chinese).Science Technology and Engineering,2014,14(7):88—93
[27] 張紅振,駱永明,章海波,等. 水稻、小麥籽粒砷、鎘、鉛富集系數(shù)分布特征及規(guī)律. 環(huán)境科學(xué),2010,31(2):488—495 Zhang H Z,Luo Y M,Zhan H B,et al. Characterizing the plant uptake factor of As,Cd and Pb for rice and wheat cereal(In Chinese). Environmental Science,2010,31(2):488—495
[28] 李波. 外源重金屬銅,鎳的植物毒害及預(yù)測模型研究.北京:中國農(nóng)業(yè)科學(xué)院,2010 Li B. Plant toxicity and prediction model of exogenous heavy metal copper and nickel(In Chinese). Beijing:Chinese Academy of Agricultural Sciences,2010
[29] 韋東普. 應(yīng)用發(fā)光細(xì)菌法測定中國土壤中銅、鎳毒性的研究. 北京:中國農(nóng)業(yè)科學(xué)院,2010:75—76 Wei D P. Application of bioluminescent bacteria bioassay on determination the toxicity of copper and nickel in Chinese soils(In Chinese). Beijing:Chinese Academy of Agricultural Sciences,2010:75—76
[30] 王小慶. 中國農(nóng)業(yè)土壤中銅和鎳的生態(tài)閾值研究. 北京:中國礦業(yè)大學(xué),2012 Wang X Q. Ecological thresholds for copper and nickel in Chinese agricultural soils(In Chinese).Beijing:China University of Mining and Technology,2012
[31] Lock K,Janssen C R. Influence of aging on copper bioavailability in soils. Reviews of Environmental Contamination and Toxicology,2003,22(5):1162—1166
[32] Newman M C,Ownby D R,Mezin L C A,et al.Applying species-sensitivity distributions in ecological risk assessment:Assumptions of distribution type and sufficient numbers of species. Reviews of Environmental Contamination and Toxicology,2000,19(2):508—515
[33] 熊雄,李艷霞,韓杰,等. 堆肥腐殖質(zhì)的形成和變化及其對重金屬有效性的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2008,27(6):2137—2142 Xiong X,Li Y X,Han J,et al. Formation and transformation of humus in composting and its impacts on bioavailability of toxic metals(In Chinese). Journal of Agroenvironment Science,2008,27(6):2137—2142
[34] Garcia-Mina J M. Stability,solubility and maximum metal binding capacity in metal-humic complexes involving humic substances extracted from peat and organic compost.Organic Geochemistry,2006,37(12):1960—1972
[35] Ding C F,Zhang T L,Wang X X,et al. Prediction model for Cadmium transfer from soil to carrot(Daucus carotaL.)and its application to derive soil thresholds for food safety. Journal of Agricultural and Food Chemistry,2013,61(43):10273—10282
[36] Ding C F,Zhang T L,Li X G,et al. Major controlling factors and prediction models for mercury transfer from soil to carrot. Journal of Soils and Sediments,2014,14(6):1136—1146
[37] Ding C F,Li X G,Zhang T L,et al. Phy-to-toxicity and accumulation of chromium in carrot plants and the derivation of soil thresholds for Chinese soils.Ecotoxicology and Environmental Safety,2014,108(2):179—186
[38] Ding C F,Zhou F,Li X G,et al. Modeling the transfer of arsenic from soil to carrot(Daucus carotaL.)-A greenhouse and field-based study. Environmental Science and Pollution Research,2015,22(14):10627—10635
[39] Ding C F,Li X G,Zhang T L,et al. Transfer model of lead in soil-carrot(Daucus carotaL.)system and its food safety thresholds in soil. Environmental Toxicology and Chemistry,2015,34(9):2078—2086
[40] Ding C F,Ma Y B,Li X G,et al. Derivation of soil thresholds for Lead applying species sensitivity distribution:A case study for root vegetables. Journal of Hazardous Materials,2016,303:21—27
[41] Fran?ois M,Grant C,Lambert R,et al. Prediction of Cadmium and zinc concentration in wheat grain from soils affected by the application of phosphate fertilizers varying in Cd concentration. Nutrient Cycling in Agroecosystems,2009,83(2):125—133
[42] Liu K,Lü J L,Dai Y C,et al. Cross-species extrapolation of models for predicting lead transfer from soil to wheat grain. PLoS One,2016,11(8):e0160552
[43] 張廈,宋靜,高慧,等. 貴州鉛鋅冶煉區(qū)農(nóng)田土壤鎘鉛有效性評價與預(yù)測模型研究. 土壤,2017,49(2):328—336 Zhang X,Song J,Gao H,et al. Assessment and modeling of Cd and Pb availability in contaminated arable soils in mining area of Guizhou(In Chinese).Soils,49(2):328—336
[44] 宋金茜,朱權(quán),姜小三,等. 基于GIS的農(nóng)業(yè)土壤重金屬風(fēng)險評價研究——以南京市八卦洲為例. 土壤學(xué)報,2017,54(1):81—91 Song J Q,Zhu Q,Jiang X S,et al. GIS-based heavy metals risk assessment of agricultural soils-acase study of Baguazhou,Nanjing(In Chinese). Acta Pedologica Sinica,2017,54(1):81—91
[45] 蔣紅群,王彬武,劉曉娜,等. 北京市土壤重金屬潛在風(fēng)險預(yù)警管理研究. 土壤學(xué)報,2015,52(4):731—745 Jiang H Q,Wang B W,Liu X N,et al. Earlywarning of heavy metals potential risk governance in Beijing(In Chinese). Acta Pedologica Sinica,2015,52(4):731—745
[46] 楊敏,滕應(yīng),任文杰,等. 石門雄黃礦周邊農(nóng)田土壤重金屬污染及健康風(fēng)險評估. 土壤,2016,48(6):1172—1178 Yang M,Teng Y,Ren W J,et al. Pollution and health risk assessment of heavy metals in agricultural soil around Shimen Realgar Mine(In Chinese). Soils,2016,48(6):1172—1178
[47] 蔣逸駿,胡雪峰,舒穎,等. 湘北某鎮(zhèn)農(nóng)田土壤-水稻系統(tǒng)重金屬累積和稻米食用安全研究. 土壤學(xué)報,2017,54(2):410—420 Jiang Y J,Hu X F,Shu Y,et al. Accumulation of heavy metals in the soil-rice system and assessment of dietary safety of the rice produced in the paddy fields-A case study of a town in the northern part of Hunan Province,China(In Chinese). Acta Pedologica Sinica,2017,54(2):410—420
Major Factors Affecting Threshold of Soil Cd for Food Health Safety and Relevant Prediction Models:A Case Study of Paddy Soil in Changsha
HE Junqiang HE Qianfeng?LIU Daihuan?HUANG Fang TANG Chunmin
(Hunan Yonker Environmental Protection Research Institute Co.,Ltd.,Changsha410330,China)
【Objective】Cadmium(Cd)is the major pollutant in farmland soils of China,especially in South China,where the rice produced in certain areas is very high in over limit rate. It is,therefore,essential to perform soil Cd risk assessment and explore for major pathways of the food chain getting exposed to Cd pollution. Based on the point-to-point data of Cd in the soil and brown rice of a certain tract of paddy field in Changsha,the Food Health Standard for Rice(GB 2762-2012)and the research target of protecting 95% of the bio-species in the ecosystem,a threshold value for soil Cd was worked out using the biological concentration factor(BCF)and SSD(species sensitivity distribution)equations,quantitative relationships of HC5(hazardous concentrations)with soil properties and their prediction models discussed and studies done to compare the threshold value with the criteria for Cd in the Standard for Soil Environment Quality of China.【Method】Some foreign research institutions and scholars usually use BCF as an important parameter in assessing effect and variety of the pollutant,and HC5as the concentration of a substance in soil being toxic to 5% of bio-species in the ecosystem,in other words,protecting 95% of the bio-species in the ecosystem.HC5is the scientific basis for setting up soil environmental quality standards. In the present study,HC5for Cd in soil was derived using the species sensitivity distribution method and the concept of BCF based on pointto-point field data from paddy soils. Prediction models for Cd crop safety thresholds based on soil properties were also developed and a function of soil physicochemical properties established.【Result】Results show that soil pH is the main soil factor affecting soil Cd food safety thresholds,and followed by organic matter(OM)content and total Cd(TCd),explaining 62.2%,19.4% and 18.3% of the variation of HC5in paddy soil,respectively. The two-factor(soil pH and OM)prediction models can predict Cd crop safety thresholds quite accurately with determination coefficients(R2)ranging from 0.802 to 0.817,while the three-factor(soil pH,OM and TCd)prediction models are more accurate than the two-factor ones. With rising soil pH or TCd,HC5increases in value,but the trend varies significantly. When the number of factors rises from two to three,the influence of TCd on HC5decreases in degree,while the effect of pH does not vary much. In the test range,OM and HC5show a certain negative relationship between the two. Soil Cd food safety thresholds vary with soil physical and chemical properties. The variation may lead to the the problem of insufficient protection and excessive protection at the same time,when the thresholds are used for controlling total Cd content by a single stage. In this study,a dynamic and quantitative food safety threshold model for Cd in soil was established.【Conclusion】The prediction models developed in the present study prove that quantitative relationships exist between soil properties and risk thresholds. And all the findings in this study are beneficial to developing and implementing soil specific,scientific and reasonable risk control of Cd in paddy soil and formulating regional soil environmental quality standards.
Cadmium;Crop safety threshold;Biological concentration factor;Soil properties;Prediction model
X825
A
10.11766/trxb201703300620
* 國家重點研發(fā)計劃項目(2016YFD0800700)、湖南省青年基金項目(2017JJ3227)和湖南省科技計劃項目(2016TP1024)共同資助 Supported by the National Key Research and Development Program of China(No. 2016YFD0800700),the Yonth Foundation Project of Hunan Province(No.2017JJ3227)and the Planned Science and Technology Project of Hunan Province,China(No. 2016TP1024)
? 通訊作者 Corresponding author,E-mail:78087666@qq.com;36882233@qq.com
和君強(qiáng)(1991—),山西孝義人,碩士,工程師,研究方向為農(nóng)業(yè)環(huán)境修復(fù)與評估。E-mail:365155513@qq.com
2017-03-30;
2017-06-05;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-06-14
(責(zé)任編輯:陳榮府)