• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photocatalytic Oxidative Desulfurization of Dibenzothiophene on TiO2 modified Bimodal Mesoporous Silica

    2017-11-01 09:26:39XuMeizhenYangLinaLiJian
    中國(guó)煉油與石油化工 2017年3期

    Xu Meizhen; Yang Lina; Li Jian

    (School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001)

    Photocatalytic Oxidative Desulfurization of Dibenzothiophene on TiO2modified Bimodal Mesoporous Silica

    Xu Meizhen; Yang Lina; Li Jian

    (School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001)

    By using the bimodal mesoporous silica(BMMS) as the carrier and butyl titanate as the titanium source, the TiO2/BMMS catalyst was prepared. The samples were characterized by XRD, XRF, N2adsorption and desorption, FTIR, UV-vis, SEM, EDS, and TEM techniques. The test results showed that TiO2was amorphous, the TiO2/BMMS catalyst had an ordered bimodal mesoporous structure, and the chemical interaction existed between BMMS and TiO2. Since the TiO2/BMMS had a lower band gap, its photocatalytic activity was better than TiO2. Under UV irradiation a one-pot PODS system was set up, using TiO2/BMMS as the catalyst, H2O2as the oxidant, and methanol as the solvent. The TiO2/BMMS catalyst showed better photocatalytic activity than the mono-modal mesoporous TiO2/SBA-15 catalyst, and the desulfurization rate of dibenzothiophene (DBT) over TiO2/BMMS catalyst could reach 99.2%. The TiO2/BMMS catalyst also had so good stability that the desulfurization rate of DBT did not drop apparently after 8 cycles of reusing, and could still be close to 90%.

    bimodal mesoporous silica; amorphous TiO2; photocatalytic activity; UV irradiation; dibenzothiophene

    1 Introduction

    Aliphatic sulfides and thiols contained in liquid fuel can be easily removed by hydrodesulfurization (HDS), however, to remove benzothiophene (BT),dibenzothiophene (DBT) and their derivates, the high temperature and pressure conditions are often necessary,which make HDS process very expensive[1-3]. As an alternative energy-efficient technology, oxidative desulfurization (ODS) is considered as one of the most attractive methods to obtain ultra-low sulfur fuels under facile reaction conditions without consumption of expensive hydrogen[4-5]. In this process, the organic sulfides are oxidized to the corresponding polar sulfoxide (DBTO) and sulfone (DBTO2), which can be removed by conventional separation processes like extraction, adsorption, distillation or decomposition[6-8].Compared with ODS, the photocatalytic oxidative desulfurization (PODS) process is more competent as a green pathway, since it can convert organic sulfur compounds with high product selectivity, and can be very efficient without heating while using the ultraviolet or visible light as the energy source[9-12].

    It was reported that the PODS system using H2O2as the oxidant under ultraviolet (UV) irradiation with TiO2as the photocatalyst showed excellent activity[13-14]. The TiO2-based photocatalyst has been widely used for degradation of organic pollutants thanks to its superb photocatalytic activity, nontoxicity, widespread availability, abundance,stability and low cost under UV irradiation[15-16]. However,it has some disadvantages such as the fast recombination of the photogenerated electron-hole pairs, the broad band gap and the low specific surface area, which has limited its photocatalytic efficiency to some extent[17-19].Thus many studies now focus on loading TiO2on some supports, such as molecular sieve materials[20-22],porous glass[23]and carbon materials[24-25]to improve its photocatalytic activity.

    Bimodal mesoporous silica (BMMS) is a type of hierarchical porous material with high surface area, as compared with the mono-modal mesoporous materials,and it owns a double-peak pore size distribution in the mesoporous range. The large mesopores allow the dispersion of the large molecules such as BT and DBT,and its small mesopores can provide high specific surface area[26-27]. BMMS should be a good selection as PODS catalyst support, since it can provide more opportunities for sulfur compounds to approach the catalytic sites and increases the reaction rate.

    Nowadays, bimodal mesoporous materials are applied in the heterogeneous catalysis, medicine, biology and other fields[28-30]. The CTA-PMO/SBA-15 and CTAPMO/BMMS catalysts were prepared with the monomodal mesoporous and bimodal mesoporous silica serving as the carrier, respectively[31]. The results showed that the bimodal mesoporous silica has better performance than the mono-modal mesoporous silica in the oxidative desulfurization reaction. Herein, we report a photocatalytic oxidation system for DBT based on the bimodal mesoporous silica containing TiO2serving as the catalyst. Results of photocatalytic oxidation of DBT proved that the TiO2/BMMS catalyst demonstrated excellent catalytic activity.The related properties of the TiO2/BMMS catalyst were characterized and discussed. Then, a possible mechanism was proposed for the removal of DBT to elucidate the reaction process. The recovered TiO2/BMMS sample can be reused directly.

    2 Experimental

    2.1 Materials

    All chemicals were used directly in our experiments without further purification. Tetraethylorthosilicate (TEOS, AR), tetrabutyl titanate (TBT, AR), ethanol(AR), methanol (AR), hydrogen peroxide (H2O2,30%), dibenzothiophene (DBT, 98%), hydrochloric acid (2.0 mol/L), dodecane (AR) and Na2SO4·10 H2O(AR) were all purchased from the China National Pharmaceutical Group. In addition, P123 (AR) and F127 (AR) were purchased from the Sigma-Aldrich Corporation.

    2.2 Synthesis of SBA-15

    The SBA-15 zeolite was prepared by the sol-gel method.As regards its detailed synthesis process, please refer to the literature[32].

    2.3 Synthesis of bimodal mesoporous silica

    As referred to in the published literature[31], BMMS was prepared by using P123 and F127 as the template and TEOS as the silica source.

    2.4 Synthesis of catalysts

    4 mL of distilled water were added into a beaker containing a mixture of 15 mL of ethanol and 4 mL of tetrabutyl titanate under vigorous stirring, while the white flocs were formed immediately. Aging occurred for 24 h at room temperature after continuous stirring for 1.0 h, and then the beaker was placed in a water bath at 40 °C for 6 h under constant stirring to evaporate ethanol, and the white powder was dried at 100 °C to obtain the amorphous TiO2particles.The TiO2/BMMS and TiO2/SBA-15 catalysts were prepared by adding 1.0 g of BMMS or 1.0 g of SBA-15, respectively, in 4 mL of the ethanol solution of tetrabutyl titanate at the beginning of the synthesis of TiO2followed by the same treatment steps as mentioned above. Finally, the TiO2/BMMS and TiO2/SBA-15 catalysts were obtained, respectively, after being dried at 100 °C for 12 h.

    2.5 Characterization of catalysts

    X-ray diffraction (XRD) patterns were obtained on a D/max-IIIA X-ray diffractometer (Rigaku, Japan)with Cu-Kα radiation operating at 35 kV and 30 mA.The composition of the catalyst was identified by a ZSX-100 (Rigaku, Japan) X-ray fluorescence spectrometer (XRF). The specific surface areas,the pore volume and the pore diameter of all the samples were measured by N2adsorption-desorption isotherms acquired at 77 K with an ASAP 2420(Micromeritics, USA) system. The Fourier-transform infrared spectra (FTIR) were recorded on a Nicolet 380 spectrometer (Thermo Fisher Scientific) in the range of 4 000—400 cm-1at a resolution of 4 cm-1.The UV-vis diffuse reflection spectra (UV-vis)were recorded on a UV-vis spectrometer (UV-2450, Shimadzu) in the range of 200—800 nm.The surface morphology was studied by a scanning electron microscope (SEM) (Hitachi SU 8010)operated at an acceleration voltage of 15 kV and then the elements of the samples were analyzed by an energy dispersive spectrometer (EDS). The transmission electron microscope (TEM) images of catalyst samples were obtained on a JEM-2010CX(JEOL, Japan) electron microscope operating at 200 kV.

    2.6 Photocatalytic oxidative desulfurization

    The model fuel with a sulfur concentration of 200 μg/g was prepared by dissolving DBT in dodecane. A 25-W UV lamp was used as the source of irradiation for PODS reaction at room temperature and the distance from the source to the beaker was 5 cm, while the catalyst (0.4%,calculated according to the mass ratio of TiO2to model fuel), hydrogen peroxide (O/S mole ratio = 10:1), 10 mL of model fuel, and 10 mL of methanol were put into in a beaker under stirring. This mixture was stirred for 2 h, and then the reaction mixture was separated with centrifugation, and the upper clear solution was subjected to sulfur measurement by a WK-2D type microcoulomb comprehensive analyzer. The catalyst at the bottom of the beaker was recovered with filtration and reused after drying at 100 °C.

    3 Results and Discussion

    3.1 XRD analysis

    The XRD patterns of TiO2, TiO2/SBA-15 and TiO2/BMMS are shown in Figure 1. In Figure 1a, the small angle XRD patterns of TiO2/SBA-15 (2θ = 0.90°, 1.54°and 1.77°) reveal the long range ordered arrangement of 2D hexagonal channels. As for TiO2/BMMS,the distinct double-peaks are found in the range of 2θ = 0.89°-1.0°, indicating that there are two kinds of ordered mesoporous structures. It can be seen from Figure 1b that no significant diffraction peaks can be identified as TiO2. Therefore, we have successfully prepared amorphous TiO2[33]. Only one obvious broad peak appears in the TiO2/SBA-15 and TiO2/BMMS samples, which is assigned to the amorphous structure of silica.

    Figure 1 (a) Small angle XRD patterns and (b) wide angle XRD patterns of TiO2, TiO2/SBA-15 and TiO2/BMMS

    3.2 N2 adsorption and desorption analysis

    The N2adsorption and desorption isotherms results are given in Figure 2. The isotherm of TiO2/SBA-15 catalyst has a single typical H1 hysteresis loop,indicating to the existence of mono-modal cylindrical mesopores in this sample. A typical H1 hysteresis loop and a H2 hysteresis loop are both found in the isotherms of BMMS and TiO2/BMMS. The H1 hysteresis loops are attributed to the cylindrical mesopore, while H2 hysteresis loops is ascribed to the bottle mesopore. These results indicate that the loading of TiO2does not change the bimodal mesoporous structure of BMMS. The pore size distribution of the samples is listed in Figure 2b, in which the TiO2/SBA-15 catalyst displays the characteristic single peak, indicating to the existence of the monomodal mesopores. The double peaks in the pore size distribution of BMMS and TiO2/BMMS can further verify the bimodal mesoporous structure. Table 1 lists the physical structure parameters and composition of these samples. The TiO2contents in TiO2/BMMS and TiO2/SBA-15 are almost the same. The specific surface area and pore volume of the TiO2/BMMS catalyst are much greater than TiO2. Compared with the TiO2/SBA-15 catalyst, the specific surface area of the TiO2/BMMS catalyst has increased but is not particularly obvious,while its pore volume has decreased.

    Figure 2 (a) N2 adsorption-desorption isotherms and (b)pore diameter distribution of BMMS, TiO2/SBA-15 and TiO2/BMMS

    Table 1 Physical parameters of pore structure and composition of samples

    3.3 FTIR spectrometric analysis

    The FIIR spectra of the samples are shown in Figure 3.The peak around 800 cm-1—500 cm-1is assigned to the O-Ti-O lattice[34]. The characteristic peaks of TiO2at 1 463 cm-1and 1 377 cm-1are assigned to the stretching vibration of Ti-O, and the characteristic peak at 1 235 cm-1—1 050cm-1can be attributed to the Ti-OH[35].The strong and broad peaks around 1 077 cm-1and 810 cm-1of TiO2/SBA-15 and TiO2/BMMS are assigned to the antisymmetric and symmetric stretching vibrations of Si-O-Si, respectively. The band near 463 cm-1is assigned to the symmetric vibration of Si-OH forming hydrogen bond. The band at around 968 cm-1can be contributed to the stretching vibration of Si-O bond formed by Si and Ti in Si-O-Ti[36]. Based on the above FTIR results it can be deduced here that TiO2was successfully introduced in BMMS and the chemical interaction existed between TiO2and the silica support.

    Figure 3 FTIR of TiO2, TiO2/SBA-15 and TiO2/BMMS

    3.4 UV-vis spectrometric analysis

    Figure 4 (a) displays the diffuse reflectance spectra of TiO2and TiO2/BMMS. It is shown that both samples have sharp absorption bands at 200 nm—400 nm.Compared with the pure TiO2, the intensity of the absorption peak of TiO2/BMMS is higher, suggesting that the rate of electron-hole pair formation increases when TiO2is supported on the surface of BMMS,resulting in an enhanced photocatalytic activity[8]. The forbidden band width of the sample can be calculated with the formula αhv= A (hv-Eg)1/2, where α, hv, Eg and A are the optical absorption coefficient, the photon energy, the forbidden band width, and a constant,respectively. Figure 4 (b) shows the energy intercept of a plot of (αhv)2vs. hv for a direct transition. After calculation, the band gap energy (hv) of TiO2and TiO2/BMMS is obtained, which is equal to 3.23 eV and 3.03 eV, respectively. The results indicate that the UV light absorption of TiO2is clearly improved after being loaded on BMMS and hence the photocatalytic activity is enhanced under UV-light irradiation[37].

    Figure 4 (a) UV-vis spectra and (b) (αhν)2 vs hν curves of TiO2 and TiO2/BMMS

    3.5 SEM and EDS analyses

    Figure 5 shows the SEM images of TiO2and TiO2/BMMS. It can be seen from Figure 5 (a) that the amorphous TiO2shows many particles, and the particle agglomeration is obvious. It can be seen from Figure 5 (b)that the TiO2/BMMS sample shows a grain shape, which is a typical appearance of BMMS, indicating that the addition of TiO2still cannot change the morphology of BMMS. It can be seen from Figure 6 that TiO2/BMMS is composed of Ti, Si and O elements, indicating that TiO2has been successfully supported on BMMS.

    Figure 5 SEM images of (a) TiO2 and (b) TiO2/BMMS

    Figure 6 EDS photographs of TiO2/BMMS

    3.6 TEM analysis

    In order to further clarify the pore structure of TiO2/BMMS and the dispersion status of TiO2in BMMS, the TEM images of TiO2/BMMS are listed in Figure 7. It can be seen from the graph that A is a typical hexagonal pore structure and B is a cubic structure, and the sample shows the orderly hexagonal-cubic symbiotic structure of the long range ordered arrangement. And the different pore size of TiO2/BMMS is 3.0 nm and 5.0 nm, respectively,which is consistent with the N2adsorption-desorption and XRD results. The darker part in the field can be attributed to the existence of TiO2in the channels.

    Figure 7 TEM images of TiO2/BMMS

    3.7 Comparison of catalytic performance between catalyst samples

    The desulfurization performance of TiO2, BMMS, SBA-15, TiO2/BMMS and TiO2/SBA-15 samples was studied during PDOS of DBT, with the reaction results and the calculated dynamic data listed in Figure 8. According to Figure 8, for the catalyst systems with BMMS or SBA-15 the desulfurization rate was basically around 40%,showing that the supported catalysts had much higher activity than the bulk TiO2, BMMS and SBA-15, which occurred because the formation rate of conduction band electron (e-) and the valence band hole (h+) increased when TiO2was supported on the surface of BMMS under irradiation. The result was consistent with the outcome of the UV-vis analysis. The TiO2/BMMS catalyst had better catalytic performance than the TiO2/SBA-15 catalyst and its highest desulfurization rate could reach 99.2% thanks to its special bimodal mesoporous structure.

    The kinetic data were obtained after linear fitting of -lnCA/C mapping to the reaction time (T), where C and CAare the sulfur content of the feed and the product after PODS respectively. It can be seen that all the samples showed a linear increase with the reaction time, and consequently the PODS of DBT over these catalysts complied with the pseudo- first-order kinetics equation, and the slope of the straight lines was the reaction rate constant, and the reaction rate reduced in the following order: TiO2/BMMS> TiO2/SBA-15 > TiO2.

    Figure 8 Comparison of catalytic activity and pseudo- firstorder kinetics for catalysts

    3.8 Recycled use of TiO2/BMMS catalyst

    In order to investigate the stability of the TiO2/BMMS catalyst, the catalyst was reused for 8 runs, the results of sulfur removal on the reused catalyst in Figure 9 showed that the desulfurization rate achieved by the TiO2/BMMS catalyst did not significantly decrease and the desulfurization rate could still reach about 90.0% in the 8th reaction cycle.

    Figure 9 Desulfurization rates over TiO2/BMMS catalyst reused for different cycles

    3.9 Mechanism of PODS on TiO2/BMMS catalyst

    Since DBT can be converted effectively under UV irritation on the TiO2/BMMS catalyst, it is necessary to conduct a research on this PODS mechanism. The research on the functions of the constituents of the PODS system was carried out, with the desulfurization rates in different situations shown in Table 2. All the experiments were carried out under ultraviolet irradiation. The data in Table 2 show that when only H2O2and DBT were used, the desulfurization rate was only 12.2%. When the TiO2/BMMS catalyst and H2O2were added to the DBT, the desulfurization rate was improved to reach 34.6% but the effect was not very good. When CH3OH was added into the above system, the desulfurization rate increased sharply to reach 98.9%, which indicated that TiO2/BMMS, H2O2and CH3OH had a good synergistic effect to improve the photocatalytic oxidative desulfurization. Here H2O2acted as an oxidant, TiO2/BMMS was a catalyst and CH3OH functioned as a solvent.The mechanism of photocatalytic oxidation of DBT on TiO2/BMMS is proposed in Figure 10. The TiO2/BMMS catalyst produces photogenerated electrons and holes under the irradiation of ultraviolet light, while electrons can quickly move and react with H2O2to form hydroxyl radicals ·OH and the holes on the surface can react with the adsorbed H2O or OH-on catalyst surface to form ·OH radicals[38-39]. The ·OH radicals have a strong oxidizing ability to further oxidize the DBT molecules adsorbed on the surface of TiO2/BMMS catalyst. At the water and oil interface, DBT can be easily oxidized to the corresponding sulfone or sulfoxide, which is then extracted by methanol to achieve the purpose of deep desulfurization. In this process, when TiO2is loaded on BMMS, the specific surface area and pore volume are increased, and the large pores of BMMS can provide a transport channel for the DBT and transfer the product to the inside and outside of the pores. The small mesopores have higher specific surface area which is good for the fine dispersion of TiO2particles that can be more conductive to the formation of photogenerated electrons and holes, and consequently this method can effectively increase the effective conversion of DBT.

    Table 2 Effect of different systems on the sulfur removal of DBT

    Figure 10 Proposed mechanism of photocatalytic oxidation of DBT on TiO2/BMMS catalyst

    4 Conclusions

    In summary, TiO2was successfully supported on the BMMS and its photocatalytic performance was better than pure TiO2and TiO2/SBA-15. The large mesopores could afford the passageway for the dispersion of DBT and its products in the reaction system, in the meantime because of the high surface area of small mesopores the distribution of TiO2became more homogeneous on the pore wall surface. The TiO2/BMMS catalyst could effectively inhibit the recombination of photogenerated electrons and holes and had a lower band gap to improve its photocatalytic performance. The PODS of DBT over the TiO2/BMMS catalyst could comply with the firstorder kinetic equation and the reaction rate constant was obviously higher than the monomodal mesoporous materials. The desulfurization rate could reach 99.2%,along with the good reusability of the catalyst.

    Acknowledgment: The work was financially supported by the Program for Liaoning Excellent Talents in University,abbreviated as “LNET”(LJQ2015062), Program for Science and Technology Agency of Liaoning Province (20170540585),General Scientific Research Project of Liaoning Provincial Department of Education(L2015296, L2016018) and Science and Technology Planning project of fushun (FSKJHT201376).

    [1] Bokare A D, Choi W. Bicarbonate-induced activation of H2O2for metal-free oxidative desulfurization[J]. Journal of Hazardous Materials, 2016, 304: 313-319

    [2] Zaid H F M, Chong F K, Mutalib M I A. Photooxidativeextractive deep desulfurization of diesel using Cu-Fe/TiO2and eutectic ionic liquid[J]. Fuel, 2015, 156: 54-62

    [3] Xun S, Zhu W, Chang Y, et al. Synthesis of supported SiW12O40-based ionic liquid catalyst induced solventfree oxidative deep-desulfurization of fuels[J]. Chemical Engineering Journal, 2016, 288: 608-617

    [4] Li S W, Gao R M, Zhang R L, et al. Template method for a hybrid catalyst material POM@ MOF-199 anchored on MCM-41: Highly oxidative desulfurization of DBT under molecular oxygen[J]. Fuel, 2016, 184: 18-27

    [5] Li S, Mominou N, Wang Z, et al. Ultra-deep desulfurization of gasoline with CuW/TiO2- GO through photocatalytic oxidation[J]. Energy & Fuels, 2016, 30(2): 962-967

    [6] Li L, Zhang J, Shen C, et al. Oxidative desulfurization of model fuels with pure nano-TiO2as catalyst directly without UV irradiation[J]. Fuel, 2016, 167: 9-16

    [7] Choi A E S, Roces S, Dugos N, et al. Oxidation by H2O2of bezothiophene and dibenzothiophene over different polyoxometalate catalysts in the frame of ultrasound and mixing assisted oxidative desulfurization[J]. Fuel, 2016,180: 127-136

    [8] Lu X, Li X, Qian J, et al. Synthesis and characterization of CeO2/TiO2nanotube arrays and enhanced photocatalytic oxidative desulfurization performance[J]. Journal of Alloys and Compounds, 2016, 661: 363-371

    [9] Miao G, Huang D, Ren X, et al. Visible-light induced photocatalytic oxidative desulfurization using BiVO4/C3N4@SiO2with air/cumene hydroperoxide under ambient conditions[J]. Applied Catalysis B: Environmental, 2016,192: 72-79

    [10] Lei W, Wenya W, Mominou N, et al. Ultra-deep desulfurization of gasoline through aqueous phase in-situ hydrogenation and photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 2016, 193: 180-188

    [11] Lin F, Jiang Z, Tang N, et al. Photocatalytic oxidation of thiophene on RuO2/SO42--TiO2: Insights for cocatalyst and solid-acid[J]. Applied Catalysis B: Environmental, 2016,188: 253-258

    [12] Hitam C N C, Jalil A A, Triwahyono S, et al. Synergistic interactions of Cu and N on surface altered amorphous TiO2nanoparticles for enhanced photocatalytic oxidative desulfurization of dibenzothiophene[J]. RSC Advances,2016, 6(80): 76259-76268

    [13] Zhu W, Xu Y, Li H, et al. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2in ionic liquid[J]. Korean Journal of Chemical Engineering, 2014, 31(2): 211-217

    [14] Matsuzawa S, Tanaka J, Sato S, et al. Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2:Effect of hydrogen peroxide and ultrasound irradiation[J].Journal of Photochemistry and Photobiology A: Chemistry,2002, 149(1): 183-189

    [15] Xun S, Zhu W, Zheng D, et al. Supported ionic liquid[Bmim] FeCl4/Am TiO2as an efficient catalyst for the catalytic oxidative desulfurization of fuels[J]. RSC Advances, 2015, 5(54): 43528-43536

    [16] Zarrabi M, Entezari M H, Goharshadi E K. Photocatalytic oxidative desulfurization of dibenzothiophene by C/TiO2@MCM-41 nanoparticles under visible light and mild conditions[J]. RSC Advances, 2015, 5(44): 34652-34662

    [17] Vu T H T, Nguyen T T T, Nguyen P H T, et al. Fabrication of photocatalytic composite of multi-walled carbon nanotubes/TiO2and its application for desulfurization of diesel[J]. Materials Research Bulletin, 2012, 47(2): 308-314

    [18] Lin F, Zhang Y, Wang L, et al. Highly efficient photocatalytic oxidation of sulfur-containing organic compounds and dyes on TiO2with dual cocatalysts Pt and RuO2[J]. Applied Catalysis B: Environmental, 2012, 127:363-370

    [19] Moradi S, Vossoughi M, Feilizadeh M, et al. Photocatalytic degradation of dibenzothiophene using La/PEG-modified TiO2under visible light irradiation[J]. Research on Chemical Intermediates, 2015, 41: 4151-4167

    [20] Zhang J, Zhao D, Ma Z, et al. Phase-boundary photocatalytic oxidation of dibenzothiophene over amphiphilic Ti-MCM-41 molecular sieve[J]. Catalysis Letters, 2010, 138(1/2): 111-115

    [21] Wang L, Cai H, Li S, et al. Ultra-deep removal of thiophene compounds in diesel oil over catalyst TiO2/Ni-ZSM-5 assisted by ultraviolet irradiation[J]. Fuel, 2013,105: 752-756

    [22] Ren X, Miao G, Xiao Z, et al. Catalytic adsorptive desulfurization of model diesel fuel using TiO2/SBA-15 under mild conditions[J]. Fuel, 2016, 174: 118-125

    [23] Shen C, Wang Y J, Xu J H, et al. Oxidative desulfurization of DBT with H2O2catalysed by TiO2/porous glass[J].Green Chemistry, 2016, 18(3): 771-781

    [24] Zhang J, Zhao D, Wang J, et al. Photocatalytic oxidation of dibenzothiophene using TiO2/bamboo charcoal[J]. Journal of Materials Science, 2009, 44(12): 3112-3117

    [25] Wang C, Zhu W, Xu Y, et al. Preparation of TiO2/g-C3N4composites and their application in photocatalytic oxidative desulfurization[J]. Ceramics International, 2014, 40(8):11627-11635

    [26] Zhang Y, Koike M, Tsubaki N. Preparation of aluminasilica bimodal pore catalysts for Fischer-Tropsch synthesis[J]. Catalysis Letters, 2005, 99(3/4): 193-198

    [27] Sato S, Takahashi R, Sodesawa T, et al. Bimodal porous Pd-silica for liquid-phase hydrogenation[J]. Applied Catalysis A: General, 2005, 284(1): 247-251

    [28] Xiu T, Wang J, Liu Q. Ordered bimodal mesoporous boria-alumina composite: One-step synthesis,structural characterization, active catalysis for methanol dehydration[J]. Microporous and Mesoporous Materials,2011, 143(2): 362-367

    [29] Gao L, Sun J, Ren B, et al. Structural characterization and surface heterogeneity of bimodal mesoporous silicas functionalized with aminopropyl groups and loaded aspirin[J]. Materials Research Bulletin, 2011, 46(10):1540-1545

    [30] Zhang Y, Shi X, Kim J M, et al. Synthesis and catalysis of nanometer-sized bimodal mesoporous aluminosilicate materials[J]. Catalysis Today, 2004, 93: 615-618

    [31] Li Jian, Wang Haishun, Yang Lina, et al. An oxidative desulfurization catalyst based on bimodal mesoporous silica containing quaternary ammonium heteropolyphosphamolybdenum[J]. China Petroleum Processing & Petrochemical Technology, 2016, 18(2):33-42

    [32] Zhao D, Feng J, Huo Q, et al. Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 Angstrom pores[J]. Science, 1998, 279(5350): 548-552

    [33] Zheng D, Zhu W, Xun S, et al. Deep oxidative desulfurization of dibenzothiophene using low-temperature-mediated titanium dioxide catalyst in ionic liquids[J]. Fuel, 2015,159: 446-453

    [34] Zou J, Gao J, Xie F. An amorphous TiO2sol sensitized with H2O2with the enhancement of photocatalytic activity[J].Journal of Alloys and Compounds, 2010, 497(1): 420-427

    [35] Liao M H, Hsu C H, Chen D H. Preparation and properties of amorphous titania-coated zinc oxide nanoparticles[J]. Journal of Solid State Chemistry, 2006,179(7): 2020-2026

    [36] Palcheva R, Spojakina A, Dimitrov L, et al.12-Tungstophosphoric heteropolyacid supported on modified SBA-15 as catalyst in HDS of thiophene[J].Microporous and Mesoporous Materials, 2009, 122(1):128-134

    [37] Aazam E S. Visible light photocatalytic degradation of thiophene using Ag-TiO2/multi-walled carbon nanotubes nanocomposite[J]. Ceramics International, 2014, 40(5):6705-6711

    [38] Zhu W, Wang C, Li H, et al. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent[J]. Green Chemistry, 2015, 17(4): 2464-2472

    [39] Bo S U N, Xue Y U, Liang W, et al. Enhanced visible light photocatalytic oxidative desulfurization by BiOBrgraphene composite[J]. Journal of fuel Chemistry and Technology, 2016, 44(9): 1074-1081

    The Methanol-to-Propylene Fluidized-bed Process Developed by Dalian Institute of Chemical Physics Passed the Assessment of Research Achievement

    The research project “The methanol to propylene (DMTP)fluidized-bed process”, on which the CAS Dalian Institute of Chemical Physics (DICP) owns the independent intellectual property rights, has passed the assessment of Scientific achievement organized by China Petroleum and Chemical Industry Federation (CPCIF).

    The Dalian Institute of Chemical Physics (DICP) on the basis of successful development of the DMTO technology has again been innovatively engaging in the development of technical process for manufacturing propylene from methanol in the fluidized bed. DICP after having developed the special DMTP catalyst with outstanding performance has successfully integrated three reactions covering methanol conversion, ethylene alkylation and conversion ofhydrocarbons with the advanced performance and process technology indicators. The 100 t/a DMTP scaleup tests have been completed, with the DMTP fluidized process being verified and optimized to harvest the basic data required for compiling the process design package (PDP). The calibration test conducted in 72 hours had revealed that the propylene selectivity reached 75.0%, and the ethylene selectivity reached 10.4%, with the consumption of methanol was equal to 3.01 tons/ ton of propylene produced. The propylene selectivity can be further increased by changing the ethylene/methanol ratio.

    date: 2017-03-30; Accepted date: 2017-05-09.

    Professor Li Jian, E-mail:yanglnzg@163.com.

    欧美日韩综合久久久久久| 欧美日韩在线观看h| 一进一出抽搐gif免费好疼| 亚洲欧美精品自产自拍| 亚洲经典国产精华液单| 看免费成人av毛片| 国产亚洲精品综合一区在线观看| 成人鲁丝片一二三区免费| 在线免费观看不下载黄p国产| 亚洲欧美日韩高清专用| 日日干狠狠操夜夜爽| 少妇裸体淫交视频免费看高清| 麻豆国产97在线/欧美| 精品午夜福利在线看| 丰满人妻一区二区三区视频av| 最新中文字幕久久久久| 国产精品,欧美在线| 亚洲综合色惰| 亚洲精品日韩在线中文字幕 | 黄色欧美视频在线观看| 欧美高清性xxxxhd video| 日本三级黄在线观看| 成熟少妇高潮喷水视频| 久久99热6这里只有精品| 最新在线观看一区二区三区| 三级毛片av免费| 亚洲国产色片| 最近在线观看免费完整版| 欧美色视频一区免费| 99国产精品一区二区蜜桃av| 97人妻精品一区二区三区麻豆| 亚洲精品一卡2卡三卡4卡5卡| 国产久久久一区二区三区| 蜜桃久久精品国产亚洲av| 又爽又黄a免费视频| 内地一区二区视频在线| 99久久成人亚洲精品观看| 国产在视频线在精品| 色尼玛亚洲综合影院| 亚洲欧美精品综合久久99| 男人狂女人下面高潮的视频| 在线看三级毛片| 国产精品嫩草影院av在线观看| 男女视频在线观看网站免费| 99riav亚洲国产免费| 日日摸夜夜添夜夜爱| 99久久无色码亚洲精品果冻| 嫩草影院入口| 99riav亚洲国产免费| 99久国产av精品国产电影| 可以在线观看的亚洲视频| a级毛色黄片| 蜜桃亚洲精品一区二区三区| 在线播放国产精品三级| 午夜激情欧美在线| 99热这里只有是精品在线观看| 久久人人爽人人片av| 日本撒尿小便嘘嘘汇集6| 简卡轻食公司| 亚洲一区高清亚洲精品| 97超级碰碰碰精品色视频在线观看| 日本撒尿小便嘘嘘汇集6| 干丝袜人妻中文字幕| 亚洲久久久久久中文字幕| 精品久久久久久久久久免费视频| 国产乱人偷精品视频| 国产91av在线免费观看| 又黄又爽又刺激的免费视频.| 欧美最黄视频在线播放免费| av在线亚洲专区| 国产高清不卡午夜福利| 日本-黄色视频高清免费观看| 日本-黄色视频高清免费观看| 欧美一区二区精品小视频在线| 日本五十路高清| 亚洲精品成人久久久久久| 亚洲av.av天堂| 亚洲不卡免费看| 国产高清三级在线| 少妇的逼水好多| 成年版毛片免费区| 亚洲成人av在线免费| 亚洲一区二区三区色噜噜| 蜜臀久久99精品久久宅男| 日本色播在线视频| 日本色播在线视频| www.色视频.com| 少妇的逼好多水| 一个人免费在线观看电影| 欧美xxxx黑人xx丫x性爽| 成人av在线播放网站| 欧美3d第一页| 在线播放国产精品三级| 日本在线视频免费播放| 久久久精品大字幕| 午夜免费男女啪啪视频观看 | 色哟哟·www| 最近视频中文字幕2019在线8| 午夜亚洲福利在线播放| 夜夜爽天天搞| 精品久久久久久久末码| 久久久色成人| 老司机午夜福利在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品国产精品| 精品一区二区三区av网在线观看| av专区在线播放| 欧美激情国产日韩精品一区| 国产精品亚洲一级av第二区| 寂寞人妻少妇视频99o| 欧美又色又爽又黄视频| 国产高清激情床上av| 99久久精品热视频| 97在线视频观看| 一个人观看的视频www高清免费观看| 日韩高清综合在线| 国产精华一区二区三区| 可以在线观看的亚洲视频| 三级毛片av免费| 一级av片app| 成人美女网站在线观看视频| 欧美+日韩+精品| 欧美三级亚洲精品| 欧美日韩在线观看h| 亚洲欧美精品自产自拍| av在线老鸭窝| 18禁裸乳无遮挡免费网站照片| 亚洲一区二区三区色噜噜| 午夜久久久久精精品| 欧美成人一区二区免费高清观看| 搡老岳熟女国产| 麻豆久久精品国产亚洲av| 97碰自拍视频| 人人妻人人澡欧美一区二区| avwww免费| 97在线视频观看| 久久久久国内视频| 麻豆成人午夜福利视频| 欧美成人精品欧美一级黄| 国产成人a区在线观看| 欧美绝顶高潮抽搐喷水| 在线天堂最新版资源| 五月伊人婷婷丁香| 欧美精品国产亚洲| 亚洲七黄色美女视频| 毛片女人毛片| 女人被狂操c到高潮| 九九爱精品视频在线观看| 午夜免费男女啪啪视频观看 | 深夜精品福利| 日韩强制内射视频| 春色校园在线视频观看| 麻豆av噜噜一区二区三区| 精品久久久久久久久久免费视频| 麻豆一二三区av精品| 国产免费男女视频| 久久精品91蜜桃| 最好的美女福利视频网| 久久婷婷人人爽人人干人人爱| 国产成人福利小说| 亚洲婷婷狠狠爱综合网| 国产美女午夜福利| 中文字幕免费在线视频6| 中文字幕av在线有码专区| 国产熟女欧美一区二区| 亚洲国产精品sss在线观看| 国产av不卡久久| 欧美成人a在线观看| 秋霞在线观看毛片| 别揉我奶头 嗯啊视频| 国产精品不卡视频一区二区| 国产熟女欧美一区二区| 五月伊人婷婷丁香| 成年女人永久免费观看视频| 夜夜爽天天搞| 国产淫片久久久久久久久| 晚上一个人看的免费电影| 啦啦啦韩国在线观看视频| 99久久九九国产精品国产免费| 亚洲电影在线观看av| 3wmmmm亚洲av在线观看| 日韩强制内射视频| 国产精品嫩草影院av在线观看| 一区二区三区免费毛片| 亚洲av一区综合| 国产精品一区www在线观看| 成人亚洲精品av一区二区| 真人做人爱边吃奶动态| 成年版毛片免费区| ponron亚洲| 男女下面进入的视频免费午夜| 亚洲av成人av| av卡一久久| 国产亚洲欧美98| 成人美女网站在线观看视频| 伦理电影大哥的女人| 日韩精品青青久久久久久| 精品一区二区免费观看| 最近中文字幕高清免费大全6| 亚洲国产色片| 十八禁国产超污无遮挡网站| 国产精品国产高清国产av| 国产成人精品久久久久久| 97人妻精品一区二区三区麻豆| 免费高清视频大片| 日日干狠狠操夜夜爽| 51国产日韩欧美| 国产精品一区二区免费欧美| 一个人看视频在线观看www免费| 一进一出抽搐gif免费好疼| 国产精品免费一区二区三区在线| 在线观看美女被高潮喷水网站| 男人和女人高潮做爰伦理| 国产精品永久免费网站| 91在线观看av| 国产免费一级a男人的天堂| 国内揄拍国产精品人妻在线| 最近视频中文字幕2019在线8| 99久久精品国产国产毛片| 国产精品永久免费网站| 国产免费男女视频| 欧美+亚洲+日韩+国产| 亚洲自偷自拍三级| 性色avwww在线观看| 国产91av在线免费观看| 国产精品99久久久久久久久| 国产精品综合久久久久久久免费| 国产一区二区三区av在线 | 欧美三级亚洲精品| 久久亚洲精品不卡| 久久久久久久午夜电影| 男人的好看免费观看在线视频| 免费看av在线观看网站| 亚洲成av人片在线播放无| 久久热精品热| 99在线人妻在线中文字幕| 卡戴珊不雅视频在线播放| 国产精品伦人一区二区| 国产亚洲精品av在线| 精品人妻偷拍中文字幕| 亚洲熟妇熟女久久| 性色avwww在线观看| 午夜久久久久精精品| 老熟妇乱子伦视频在线观看| 村上凉子中文字幕在线| 成年女人永久免费观看视频| 成人av在线播放网站| 成人一区二区视频在线观看| 你懂的网址亚洲精品在线观看 | 精品日产1卡2卡| 可以在线观看毛片的网站| 久久精品91蜜桃| 婷婷六月久久综合丁香| 一区二区三区四区激情视频 | 91久久精品国产一区二区成人| 国产麻豆成人av免费视频| 国产伦精品一区二区三区四那| 中文亚洲av片在线观看爽| 少妇丰满av| 夜夜爽天天搞| 成年女人毛片免费观看观看9| 亚洲久久久久久中文字幕| 人妻制服诱惑在线中文字幕| 日韩欧美精品v在线| 观看美女的网站| 晚上一个人看的免费电影| 国产精品国产高清国产av| 又粗又爽又猛毛片免费看| 九九热线精品视视频播放| 国产麻豆成人av免费视频| 中国美白少妇内射xxxbb| 亚洲美女黄片视频| 哪里可以看免费的av片| 最近在线观看免费完整版| 欧美一级a爱片免费观看看| 国产女主播在线喷水免费视频网站 | 国产精品野战在线观看| 午夜福利在线观看免费完整高清在 | 午夜日韩欧美国产| 老熟妇仑乱视频hdxx| 免费不卡的大黄色大毛片视频在线观看 | avwww免费| 一个人免费在线观看电影| a级毛色黄片| 国产精品99久久久久久久久| 黄片wwwwww| 校园人妻丝袜中文字幕| 免费看av在线观看网站| 欧美绝顶高潮抽搐喷水| 97人妻精品一区二区三区麻豆| 色综合站精品国产| 三级毛片av免费| 国产精品野战在线观看| 欧美+亚洲+日韩+国产| 中国国产av一级| 两个人的视频大全免费| 亚洲成人中文字幕在线播放| 嫩草影院新地址| 色尼玛亚洲综合影院| 大香蕉久久网| 九九久久精品国产亚洲av麻豆| 欧美一区二区亚洲| 亚洲精品456在线播放app| 国产午夜精品论理片| 国产一区二区三区av在线 | 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 国产激情偷乱视频一区二区| 嫩草影视91久久| 国产精品精品国产色婷婷| 桃色一区二区三区在线观看| 青春草视频在线免费观看| 欧美+亚洲+日韩+国产| 中文字幕熟女人妻在线| 欧美3d第一页| 久久久久国产网址| 久久这里只有精品中国| 给我免费播放毛片高清在线观看| 国产在视频线在精品| 国产女主播在线喷水免费视频网站 | 欧美日韩一区二区视频在线观看视频在线 | 99热只有精品国产| 午夜免费激情av| 级片在线观看| av.在线天堂| 欧美一区二区国产精品久久精品| 成人性生交大片免费视频hd| 国产亚洲精品av在线| 看非洲黑人一级黄片| 亚洲婷婷狠狠爱综合网| 久久久久久久亚洲中文字幕| 又粗又爽又猛毛片免费看| 我要搜黄色片| 国产久久久一区二区三区| 亚洲欧美精品自产自拍| 久久久精品94久久精品| 又爽又黄无遮挡网站| 黄色一级大片看看| www.色视频.com| 国产美女午夜福利| 熟妇人妻久久中文字幕3abv| 2021天堂中文幕一二区在线观| 免费高清视频大片| 欧美色视频一区免费| 看片在线看免费视频| 精品人妻偷拍中文字幕| 我要搜黄色片| 久久久久久久久久久丰满| 国产午夜福利久久久久久| or卡值多少钱| 中文字幕免费在线视频6| av天堂中文字幕网| 天堂动漫精品| 简卡轻食公司| 国产成人一区二区在线| 精品一区二区免费观看| 别揉我奶头~嗯~啊~动态视频| 天堂av国产一区二区熟女人妻| 久久久午夜欧美精品| 91久久精品国产一区二区成人| 国产久久久一区二区三区| 寂寞人妻少妇视频99o| 国产精品女同一区二区软件| 亚洲图色成人| 中文字幕av成人在线电影| 校园人妻丝袜中文字幕| 国产高清三级在线| 亚洲精品在线观看二区| 少妇裸体淫交视频免费看高清| 校园春色视频在线观看| 99视频精品全部免费 在线| 男女边吃奶边做爰视频| 女的被弄到高潮叫床怎么办| 亚洲中文字幕日韩| 18禁在线播放成人免费| 成年av动漫网址| 永久网站在线| 我要搜黄色片| 久久久久精品国产欧美久久久| 精品熟女少妇av免费看| 18禁在线播放成人免费| 亚洲av不卡在线观看| 欧美三级亚洲精品| 中文字幕熟女人妻在线| 亚洲精品乱码久久久v下载方式| 高清午夜精品一区二区三区 | 99久久中文字幕三级久久日本| 国产黄色视频一区二区在线观看 | 狠狠狠狠99中文字幕| 亚洲天堂国产精品一区在线| 日韩精品青青久久久久久| 男女之事视频高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 免费av不卡在线播放| 亚洲熟妇熟女久久| 桃色一区二区三区在线观看| 欧美不卡视频在线免费观看| 久久精品综合一区二区三区| 成年av动漫网址| 嫩草影视91久久| 国模一区二区三区四区视频| 在线国产一区二区在线| 欧美日韩在线观看h| 在现免费观看毛片| 一个人看视频在线观看www免费| 九九久久精品国产亚洲av麻豆| 人妻少妇偷人精品九色| 成年版毛片免费区| av免费在线看不卡| 99热全是精品| 欧美最新免费一区二区三区| 男女边吃奶边做爰视频| 直男gayav资源| 嫩草影视91久久| 97热精品久久久久久| 赤兔流量卡办理| 菩萨蛮人人尽说江南好唐韦庄 | 老女人水多毛片| 波多野结衣高清无吗| 性插视频无遮挡在线免费观看| 日韩一区二区视频免费看| 日韩精品有码人妻一区| 99热6这里只有精品| 国产亚洲精品久久久久久毛片| 丰满乱子伦码专区| 校园春色视频在线观看| 国产精品美女特级片免费视频播放器| 免费人成在线观看视频色| 久久亚洲精品不卡| 在线免费十八禁| 伊人久久精品亚洲午夜| 少妇的逼好多水| 国内久久婷婷六月综合欲色啪| 国产免费一级a男人的天堂| 搡老妇女老女人老熟妇| 99热精品在线国产| 国产一区二区在线观看日韩| 人妻少妇偷人精品九色| 婷婷精品国产亚洲av| 成人特级av手机在线观看| 精品99又大又爽又粗少妇毛片| 不卡一级毛片| 99九九线精品视频在线观看视频| 国内久久婷婷六月综合欲色啪| 免费在线观看影片大全网站| 深爱激情五月婷婷| 日韩大尺度精品在线看网址| 日本 av在线| 午夜爱爱视频在线播放| 在线观看66精品国产| 久久精品综合一区二区三区| 晚上一个人看的免费电影| 国产三级中文精品| 国产成人福利小说| 久久国内精品自在自线图片| 一个人看视频在线观看www免费| 久久这里只有精品中国| 色视频www国产| 国产高清视频在线播放一区| 日本a在线网址| 日日摸夜夜添夜夜添小说| 日韩精品有码人妻一区| 中文字幕精品亚洲无线码一区| 三级男女做爰猛烈吃奶摸视频| 黄色视频,在线免费观看| 天堂影院成人在线观看| 日本五十路高清| 欧美色视频一区免费| 成人永久免费在线观看视频| 天堂√8在线中文| 午夜精品国产一区二区电影 | 免费大片18禁| 精品人妻一区二区三区麻豆 | 久久精品综合一区二区三区| 99久久成人亚洲精品观看| 无遮挡黄片免费观看| 成人性生交大片免费视频hd| 全区人妻精品视频| 99国产精品一区二区蜜桃av| 天堂网av新在线| 一级a爱片免费观看的视频| 国产精华一区二区三区| 不卡视频在线观看欧美| 国产精品日韩av在线免费观看| 精品久久久久久久久久久久久| 婷婷精品国产亚洲av在线| 午夜免费激情av| 久久久久国产精品人妻aⅴ院| 成人特级av手机在线观看| 黄色欧美视频在线观看| 国产精品一及| 在线播放国产精品三级| 搡老岳熟女国产| 国产69精品久久久久777片| 国产精品久久久久久亚洲av鲁大| 国产精华一区二区三区| 少妇高潮的动态图| 搡老妇女老女人老熟妇| 看黄色毛片网站| 国产亚洲91精品色在线| 十八禁国产超污无遮挡网站| 国产蜜桃级精品一区二区三区| 干丝袜人妻中文字幕| 欧美日本亚洲视频在线播放| 国产片特级美女逼逼视频| 亚洲一区二区三区色噜噜| 午夜老司机福利剧场| 在线a可以看的网站| 夜夜爽天天搞| 国产精品不卡视频一区二区| 丰满乱子伦码专区| 99精品在免费线老司机午夜| 国产精品免费一区二区三区在线| 午夜精品国产一区二区电影 | 午夜精品在线福利| 亚洲av二区三区四区| 免费人成视频x8x8入口观看| 欧美人与善性xxx| 国产一区二区三区在线臀色熟女| 国产综合懂色| 久久精品国产清高在天天线| 晚上一个人看的免费电影| 国产真实伦视频高清在线观看| 能在线免费观看的黄片| 国产高潮美女av| 国产亚洲精品久久久com| av.在线天堂| 99久久精品国产国产毛片| 夜夜看夜夜爽夜夜摸| 午夜老司机福利剧场| 插逼视频在线观看| 高清毛片免费观看视频网站| 九九在线视频观看精品| 亚洲va在线va天堂va国产| 久久精品91蜜桃| 欧美成人一区二区免费高清观看| 免费无遮挡裸体视频| 夜夜爽天天搞| 国产午夜精品论理片| 观看美女的网站| 免费看光身美女| 91久久精品国产一区二区成人| 一个人看视频在线观看www免费| 日韩强制内射视频| 中国美白少妇内射xxxbb| 黄色视频,在线免费观看| 国产精品人妻久久久久久| 久久久精品欧美日韩精品| 午夜视频国产福利| 亚洲性夜色夜夜综合| 日韩成人伦理影院| 欧美日韩乱码在线| 日日摸夜夜添夜夜添av毛片| 99九九线精品视频在线观看视频| 赤兔流量卡办理| 最近视频中文字幕2019在线8| 成人欧美大片| 成人特级av手机在线观看| 97超碰精品成人国产| 成人特级av手机在线观看| 精品一区二区三区av网在线观看| 色吧在线观看| 午夜精品一区二区三区免费看| 亚洲av免费在线观看| 精品国内亚洲2022精品成人| 日本精品一区二区三区蜜桃| 久久精品国产鲁丝片午夜精品| 国产精品av视频在线免费观看| 精品午夜福利视频在线观看一区| 欧美日韩在线观看h| 中出人妻视频一区二区| 国内少妇人妻偷人精品xxx网站| 麻豆国产av国片精品| 欧美日韩一区二区视频在线观看视频在线 | 国产精品嫩草影院av在线观看| 日韩一区二区视频免费看| 久久人人爽人人爽人人片va| 啦啦啦观看免费观看视频高清| 亚洲精品色激情综合| 国产精品电影一区二区三区| 久久精品影院6| 99久久成人亚洲精品观看| 丰满人妻一区二区三区视频av| 观看免费一级毛片| 亚洲18禁久久av| 午夜免费男女啪啪视频观看 | 精品国内亚洲2022精品成人| 国产亚洲91精品色在线| 国产av麻豆久久久久久久| 精品久久久久久久久av| 亚洲中文日韩欧美视频| 国产精品爽爽va在线观看网站| 97超碰精品成人国产| 搡老妇女老女人老熟妇| 免费av不卡在线播放| 亚洲最大成人手机在线| 欧美一区二区精品小视频在线| 麻豆成人午夜福利视频| 在线观看av片永久免费下载| 非洲黑人性xxxx精品又粗又长| 男女啪啪激烈高潮av片| 日本黄色片子视频| 日韩精品有码人妻一区| 国产成人a区在线观看| a级毛片免费高清观看在线播放| 国产av麻豆久久久久久久| 欧美性猛交╳xxx乱大交人| 伦理电影大哥的女人| 国产亚洲av嫩草精品影院| 一进一出抽搐gif免费好疼| 久久精品夜色国产| 亚洲欧美日韩无卡精品| 久久草成人影院| 国产不卡一卡二| 欧美高清性xxxxhd video|