• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of MIL-53(Fe)/MWCNTs Hybrid Material with Enhanced Efficiency for Photocatalytic Degradation of Rhodamine B

    2017-11-01 09:26:41ZhangDanLiRongXuQianZhangJingWangLili
    中國煉油與石油化工 2017年3期

    Zhang Dan; Li Rong; Xu Qian; Zhang Jing; Wang Lili

    (1. School of Metallurgy, Northeastern University, Shenyang 110004;2. School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001;3. Xinjiang Institute of Light Industry Technology, Urumqi 830021;4. State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072)

    Synthesis of MIL-53(Fe)/MWCNTs Hybrid Material with Enhanced Efficiency for Photocatalytic Degradation of Rhodamine B

    Zhang Dan1,2; Li Rong3; Xu Qian4; Zhang Jing2; Wang Lili1

    (1. School of Metallurgy, Northeastern University, Shenyang 110004;2. School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001;3. Xinjiang Institute of Light Industry Technology, Urumqi 830021;4. State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072)

    BMIL-53(Fe)/MWCNTs hybrid material was prepared via the solvethermal synthesis method. The resulting samples were characterized by X-ray diffraction, FT-IR spectroscopy, scanning electron microscopy, UV-Vis absorption spectroscopy,the Brunauer-Emmet-Teller method, and photoluminescence spectroscopy. The result showed that the introduction of multiwalled carbon nanotubes to the MIL-53(Fe) can increase the surface area of the composites, suppress the recombination of photogenerated electron-hole pairs and promote the electron transfer process. The hybrid material showed optimal photocatalytic performance in the degradation of Rhodamine B under the irradiation of ultraviolet and natural light.

    MIL-53(Fe); multi-walled carbon nanotubes; photocatalysis; Rhodamine B

    1 Introduction

    Dyes pose considerable threat to the environment and human body when they are directly released to the environment without further processing[1-3]. Photocatalysis can effectively solve environmental issues by degrading toxic pollutants[4-6]. The metal-organic frameworks(MOFs) materials, which exhibit the designed and controlled structure and function, have been attracting an increasing attention in recent years[7-8]. MOFs materials with semiconductor properties can function photocatalytically under light irradiation[9-12]. MIL-53(Fe), an MOFs material, displays good photocatalytic activity to degrade the organic dyes[13-14]. However, the photocatalytic degradation efficiency of MIL-53(Fe) is low, owing to its fast rate of electron-hole pair recombination.Zhang, et al. prepared MIL-53(Fe)-graphene hybrid materials that showed high photocatalytic performance in the degradation of dye[15]. Graphene can improve the photocatalytic activity, since it can reduce the electronhole pair recombination.

    Carbon nanotubes possess outstanding mechanical,electronic and optical properties because of their unique tubular structure. Moreover, the carbon nanotubes exhibit better electrical conductivity and are more stable than graphene. Carbon nanotubes have been added to the photocatalytic systems, as they can increase the surface area of the material, while acting as an electron-transfer channel. It can enhance the absorbance of the visible light and improve the photocatalytic activity of the system[16-19].In the present work, the MIL-53(Fe)/MWCNT (multiwalled carbon nanotubes) hybrid material was prepared through in-situ introduction of multi-walled carbon nanotubes and applied in the field of photocatalytic degradation of Rhodamine B (RhB). It is interesting to note that the hybrid material showed higher photocatalytic efficiency than the neat MIL-53(Fe).

    2 Experimental

    2.1 Materials

    Multi-walled carbon nanotubes (10—20 nm inoutside diameter and 10—30 μm in length) were purchased from the Beijing Dk Nano Technology Co., Ltd. Iron (III) chloride hexahydrate, ethanol and N,N-dimethylformamide (DMF) were supplied by the Sinopharm Chemical Reagent Co., Ltd.1,4-Benzenedicarboxylic acid (H2BDC) was purchased from the Aladdin Industrial Corporation..

    2.2 Synthesis of MIL-53(Fe) and MIL-53(Fe)/MWCNT hybrid material

    MIL-53(Fe) was prepared according to the literature report[20]. Typically, FeCl3·6H2O (1.35 g),1,4-benzenedicarboxylic acid (H2BDC) (0.83 g), and N,N-dimethylformamide (DMF) (112 mL) were mixed and stirred at room temperature until it became clear, then the reaction mixture was transferred into a 200-mL Teflon lined vessel and heated at 150 °C for 15 h. The resultant suspension was filtered and the filter residue was washed under ultrasonic condition with C2H5OH for 1 h. The orange powder was collected under vacuum after being heated at 150 °C for 24 h.

    50 mg of MWCNTs were dispersed into 50 mL of DMF prior to being subjected to sonication for 30 min, and then the MWCNTs suspension was added to the solution of MIL-53(Fe) precursor. The rest methods of preparation and post-treatment were the same as those for preparation of MIL-53(Fe).

    2.2 Characterization

    The powder X-ray diffraction (XRD) was carried on a Rigaku D/Max-2500 diffractometer with Cu Kα radiation.The morphology of the samples was characterized by a JSM-7500ffield emission scanning electron microscope. The Fourier transform-infrared spectra (FTIR) were recorded on a Nicolet NEXUS 6700 infrared spectrometer. The UV-vis diffuse reflectance spectra were obtained by a Lamda 650 spectrophotometer. The photoluminescence spectra (PL) were conducted on a Cary Eclipse fluorescence spectrophotometer. The nitrogen adsorption-desorption isotherms of the samples were measured using an ASAP 2020 surface area analyzer(Micromeritics, USA) operating at 77 K.

    2.3 Photocatalytic activity test

    The photocatalytic activity of MIL-53 (Fe) and MIL-53(Fe)/MWCNTs was evaluated by the photodegradation of RhB under irradiation with a highpressure Hg lamp (ML250W, Philips) and natural light at room temperature. 20 mg of MIL-53(Fe) and MIL-53(Fe)/MWCNT photocatalyst were put in a 250-mL beaker containing 100 mL of RhB aqueous solution (20 mg/L), respectively. The distance between the outer edge of beaker and the light source was 20 cm. The suspension was stirred in the dark for 60 min to reach the adsorption/desorption equilibrium. The mixture was kept under stirring during the photodegradation reaction.5 mL of suspension were withdrawn at given time intervals and were immediately centrifuged to remove the catalyst. The RhB concentration was monitored by measuring the absorption intensity at its maximum absorbance wavelength of 553 nm with a UV-Vis spectrophotometer (721 type spectrometer, made by the Shanghai Jinghua Instruments Co., Ltd.).

    3 Results and Discussion

    3.1 Characterization

    Figure 1 XRD patterns of MIL-53(Fe) and MIL-53(Fe)/MWCNTs

    Figure 2 FT-IR spectra of MIL-53(Fe) and MIL-53(Fe)/MWCNTs

    Figure 1 shows the XRD patterns of MIL-53(Fe) and MIL-53(Fe)/MWCNTs hybrid material. Intense peaks at 2θ = 9.1°, 12.3°, 18.6° were observed, which were consistent with the literature report[21]. The XRD patterns of MIL-53(Fe) and MIL-53(Fe)/MWCNTs hybrid material were similar. This result denoted that the introduction of MWCNTs had no effect on the crystal structure of MIL-53(Fe). The results of fT-IR spectroscopic analysis of MIL-53(Fe) and MIL-53(Fe)/MWCNTs hybrid material are shown in Figure 2. The absorption bands of carboxyl groups are visible at 1 596 cm-1(asymmetric) and 1 390 cm-1(symmetric), respectively. The peak at 750 cm-1corresponds to the C-H bonding vibrations of the benzene rings. The peak of fe-O at 555 cm-1indicates the formation of a metal-oxo bond between the carboxylic group of terephthalic acid and the Fe (III)[22].The hybrid material shows the infrared spectra that are similar to the neat MIL-53(Fe), which means that the MWCNTs do not influence the formation of the MIL-53(Fe)/MWCNTs.Figure 3 shows the SEM images of the MIL-53(Fe) and MIL-53(Fe)/MWCNTs. It can be seen from Figure 3a that the MIL-53(Fe) had spindle and irregular polyhedral shapes. As for the hybrid materials, MWCNTs showed tubular shape and the MIL-53(Fe) still had the spindle and irregular polyhedral shapes. It can be seen that the MWCNTs and MIL-53(Fe) were bonded together.Moreover, the MWCNTs did not change the shape and size of the MIL-53(Fe), indicating that the addition of MWCNTs via the solvethermal treatment did not influence the formation of MIL-53(Fe)/MWCNTs. The pore structures of MIL-53(Fe) and MIL-53(Fe)/MWCNTs were investigated using the nitrogen adsorption-desorption analysis at 77K, with the results shown in Figure 4. The surface area and pore volume data are listed in Table 1.As for the MIL-53(Fe) sample, the N2adsorption is a type I isotherm, indicating to the microporous solids. The N2adsorption isotherm of MIL-53(Fe)/MWCNT showed a type IV isotherm, indicating to the mesoporous solids.The surface area of MIL-53(Fe) was very low (16.7 m2),whereas the surface area of MIL-53(Fe)/MWCNT was found to be increased (164.9 m2). The increase in surface area could be caused by the increase of the pore volume after the introduction of MWCNTs. With an enhanced surface area and pore volume of the material, the MIL-53(Fe)/MWCNTs material could adsorb more organic dye molecules, which would accelerate the reaction rate, thus improving the photocatalytic efficiency.

    Figure 3 SEM images of (a): MIL-53(Fe) and (b): MIL-53(Fe)/MWCNTs

    Figure 4 N2 adsorption -desorption isotherms of MIL-53(Fe) and MIL-53(Fe)/MWCNTs

    Table 1 Pore characteristics of MIL-53(Fe) and MIL-53(Fe)-MWCNTs

    The light-absorption characteristics of the samples were determined using the UV-Vis diffuse reflectance spectroscopy. As shown in Figure 5, the absorbance intensity of the sample was enhanced significantly with the addition of MWCNTs, especially in the visible light region. The major absorption edges of the MIL-53(Fe) and MIL-53(Fe)/MWCNTs were around 490 nm and 540 nm, respectively, which corresponded to a band gap energy (Eg) of 2.53eV and 2.30eV(Eg= 1 240/wavelength), respectively. Figure 6 illustrates the fluorescence spectra of MIL-53(Fe) and MIL-53(Fe)/MWCNTs. MIL-53(Fe) had a strong broad emission peak at around 300 nm—500 nm and three peaks at 390 nm,430 nm, and 470 nm. It can be seen that the PL spectrum of MIL-53(Fe)/MWCNTs was similar to that of MIL-53(Fe). However, the intensity of the hybrid material was much lower than that of MIL-53(Fe) because MWCNTs were introduced into the MIL-53(Fe), which could prolong the lifetime of the electron-hole pairs.

    Figure 5 UV-Vis diffuse re flectance spectra of MIL-53(Fe)and MIL-53(Fe)/MWCNTs

    Figure 6 Photoluminescence spectra of MIL-53(Fe) and MIL-53(Fe)/MWCNTs

    3.2 Photocatalytic activity

    The photocatalytic degradation of RhB was performed to investigate the photocatalytic activity of the samples.As presented in Figure 7, the neat MIL-53(Fe) could degrade 42.4% of RhB after 60 min of high-pressure Hg light irradiation, whereas the MIL-53(Fe)/MWCNTs could degrade 95.1% of RhB. This fact illustrates that the photocatalytic degradation rate of RhB can be increased significantly with the addition of MWCNTs to MIL-53(Fe). However, pure MIL-53(Fe) degraded 43.2% of RhB, whereas MIL-53(Fe)/MWCNTs degraded 13.2%of RhB under natural light. This means the degradation rate of dyes under UV light was higher than that under natural light. The degradation rate of RhB in the presence of MIL-53(Fe)/MWCNTs and MIL-53(Fe) in the dark reached 52.1% and 26.3%, respectively, after 60 min.These results showed that the MOF samples had certain adsorption affinity to the RhB molecules. This result is related to the pore structure of the materials (16.7 m2for MIL-53(Fe), and 164.9 m2for MIL-53(Fe)/MWCNTs).

    Figure 7 Efficiency of MOF and MOF/MWCNTs for degradation of RhB under irradiation with different light source in 60 min

    3.3. Mechanism for the degradation of RhB using MIL-53(Fe)/MWCNTs

    The possible mechanism for the degradation of RhB using MIL-53(Fe)/MWCNTs was deduced (Figure 8).Under light irradiation, the electrons in the valence band(VB) of MIL-53(Fe) were excited to the conduction band (CB). The photogenerated electrons moved to the surface of the MIL-53(Fe), with some of them being transferred to the MWCNTs, which were in close contact with the MIL-53(Fe). The MWCNTs, as electron acceptors, quickly exported the photogenerated electrons to the surface of MWCNTs. Therefore, the introduction of MWCNTs effectively improved the electron-hole pair separation, which led to higher photocatalytic decomposition efficiency. The electrons on the surface of MIL-53(Fe) and MWCNT reacted with the O2in the solution to produce superoxide radical anions [·O2-][23-24].Meanwhile, the holes in the valence band migrated to the surface of the MIL-53(Fe) and trapped water molecules or hydroxyl ions (OH-) to form hydroxyl radicals (·OH).The ·OH and ·O2- produced thereby can degrade the RhB molecules to CO2, H2O, or other products. The related reactions are as follows:

    Moreover, the surface area and pore volume of the composites were increased because of the doping of the MWCNTs. The hybrid materials MIL-53(Fe)/MWCNTs with much greater surface area and pore volume could provide more space and more unsaturated metal sites for the adsorption of organic dye molecules. Furthermore,the porous structure of the MIL-53(Fe)/MWCNTs could facilitate the migration of the photogenerated electrons[6],which could also suppress the recombination of the electron-hole pairs, thus enhancing the photocatalytic degradation efficiency of RhB.

    Figure 8 The proposed mechanism for photodegradation of RhB by MIL-53(Fe)/MWCNTs

    4 Conclusions

    In this study, the MIL-53(Fe)/MWCNTs hybrid material was prepared via a solvothermal method. The addition of MWCNTs did not affect the crystallization phase structure of MIL-53(Fe), which was verified through XRD, SEM,and IR characterizations. The existence of MWCNTs increased the surface area of the material and suppressed the electron-hole pairs recombination. Consequently, the composites showed higher photocatalytic activity than pure MIL-53(Fe). This study showed that MWCNTs could be combined with MOFs materials for application in the field of photocatalysis.

    Acknowledgement: This work was financially supported by the National Natural Science Foundation of China (21573101,20903054), the Liaoning Provincial Natural Science Foundation (2014020107), the Program for Liaoning Excellent Talents in University (LJQ2014041), the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry ([2013]1792), the Support Plan for Distinguished Professor of Liaoning Province ([2015]153),and the Open Project of Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences(N-15-10).

    [1] Datskevich E V, Prikhod’ko R V, Stolyarova I V, et al. Water treatment to remove acid and basic dyes by biosorption on polysaccharide composites[J]. Russian Journal of Applied Chemistry, 2010, 83(10): 1785-1793

    [2] Almeidaa C A P, Debacherb N A, Downsc A J, et al.Removal of methylene blue from colored effluents by adsorption on montmorillonite clay[J]. Journal of Colloid and Interface Science, 2009, 332: 46-53

    [3] Paulino A T, Guilherme M R, Reis A V, et al. Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide[J]. Journal of Colloid and Interface Science, 2006, 301: 55-62

    [4] Chen Z, Fu J, Wang M, et al. Adsorption of cationic dye (methylene blue) from aqueous solution using poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol)nanospheres[J]. Applied Surface Science, 2014, 289: 495-501

    [5] Li Y, Du Q, Liu T, et al. Methylene blue adsorption on graphene oxide/calcium alginate composites[J].Carbohydrate Polymers, 2013, 95: 501-507

    [6] Liang R, Jing F, Shen L, et al. M@MIL-100 (Fe) (M= Au, Pd, and Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible light photocatalysts for redox reactions in water[J]. Nano Research, 2015, 10: 3237-3249

    [7] O'Keeffe M. Design of MOFs and intellectual content in reticular chemistry: A personal view[J]. Chem Soc Rev,2009, 38(5): 1215-1217

    [8] Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527

    [9] Xu B, Yang H, Cai Y, et al. Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles[J].Inorganic Chemistry Communications, 2016, 67: 29-31

    [10] Mercedes A, Esther C, Belen F, et al. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chem Eur, 2007, 13(18): 5106-5112

    [11] Shen L, Liang S, Wu W, et al. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI)[J].Dalton Trans, 2013, 42(37): 13649-13657

    [12] Shen L, Liang S, Wu W, et al. CdS-decorated UiO-66(NH2)nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols[J]. Journal of Materials Chemistry A, 2013, 1(37): 11473-11482

    [13] Du J J, Yuan Y P, Sun J X, et al. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye[J]. Journal of Hazardous Materials, 2011, 190(1/3): 945-951

    [14] Ai L, Zhang C, Li L, et al. Iron terephthalate metal-organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J]. Applied Catalysis B: Environmental,2014, 148-149(1): 191-200

    [15] Zhang Y, Li G, Lu H, et al. Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials[J]. RSC Advances, 2014, 4(15): 7594-7600

    [16] Zhang W D, Xu B, Jiang L C. Functional hybrid materials based on carbon nanotubes and metal oxides[J]. Journal of Materials Chemistry, 2010, 20(31): 6383-6391.

    [17] Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic Carbon-Nanotube-TiO2Composites[J]. Advanced Materials, 2009, 21(21): 2233-2239

    [18] Yu J, Ma T, Liu S. Enhanced photocatalytic activity of mesoporous TiO2aggregates by embedding carbon nanotubes as electron-transfer channel[J]. Physical Chemistry Chemical Physics, 2011, 13(8): 3491-3501

    [19] Wang S, Shi X, Shao G, et al. Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites[J].Journal of Physics and Chemistry of Solids, 2008, 69(10):2396-2400

    [20] Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery[J]. Journal of the American Chemical Society,2008, 130(21): 6774-6780

    [21] Gordon J, Kazemian H, Rohani S. MIL-53(Fe), MIL-101,and SBA-15 porous materials: Potential platforms for drug delivery[J]. Materials Science and Engineering C, 2015,47: 172-179

    [22] Gong C, Chen D, Jiao X, et al. Continuous hollow α-Fe2O3and α-Fe fibers prepared by the sol-gel method[J]. Journal of Materials Chemistry, 2002, 12(6): 1844-1847

    [23] Vijayan B K, Dimitrijevic N M, Finkelsteinshapiro D, et al.Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites[J]. ACS Catalysis, 2012,2(2): 223-229

    [24] Gui M M, Chai S P, Xu B Q, et al. Visible-light-driven MWCNT@TiO2core-shell nanocomposites and the roles of MWCNTs on the surface chemistry, optical properties and reactivity in CO2photoreduction[J]. RSC Advances,2014, 4(46): 24007-24013

    date: 2017-03-01; Accepted date: 2017-04-10.

    Dr. Zhang Dan, E-mail: 495553468@qq.com.

    国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 日本一二三区视频观看| 两个人免费观看高清视频| 亚洲国产欧美网| 免费在线观看完整版高清| 亚洲国产欧美网| 久久久精品欧美日韩精品| 巨乳人妻的诱惑在线观看| 久久国产精品影院| 黄色a级毛片大全视频| 桃色一区二区三区在线观看| 国产成人影院久久av| 波多野结衣高清作品| 国内少妇人妻偷人精品xxx网站 | 一级作爱视频免费观看| 国产午夜精品久久久久久| 男女做爰动态图高潮gif福利片| 国产亚洲精品第一综合不卡| 欧美日韩黄片免| 欧美乱码精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 精品午夜福利视频在线观看一区| www.www免费av| 日本精品一区二区三区蜜桃| 天天躁夜夜躁狠狠躁躁| 精品高清国产在线一区| 最新美女视频免费是黄的| 国产成人啪精品午夜网站| 精品久久蜜臀av无| 欧美日韩一级在线毛片| 在线观看美女被高潮喷水网站 | 欧美乱码精品一区二区三区| 伦理电影免费视频| 最新在线观看一区二区三区| 国产精品爽爽va在线观看网站| 亚洲国产精品sss在线观看| 精品福利观看| 日日爽夜夜爽网站| 免费在线观看亚洲国产| 久久午夜亚洲精品久久| 国产亚洲精品久久久久5区| 国产av不卡久久| 午夜a级毛片| 亚洲欧美日韩无卡精品| 国产亚洲精品久久久久久毛片| 国产熟女xx| 国产精品野战在线观看| 国产激情偷乱视频一区二区| 九色国产91popny在线| 国产成人啪精品午夜网站| 熟女少妇亚洲综合色aaa.| e午夜精品久久久久久久| 成人av在线播放网站| 高清毛片免费观看视频网站| 丝袜美腿诱惑在线| 亚洲,欧美精品.| 亚洲美女视频黄频| 一a级毛片在线观看| 亚洲真实伦在线观看| 亚洲电影在线观看av| 婷婷精品国产亚洲av| 国产亚洲精品综合一区在线观看 | avwww免费| 丁香欧美五月| 午夜免费成人在线视频| 亚洲精品中文字幕在线视频| 一区二区三区激情视频| 国产精品久久久久久久电影 | 亚洲aⅴ乱码一区二区在线播放 | 真人做人爱边吃奶动态| 国产激情偷乱视频一区二区| 欧美久久黑人一区二区| 最新在线观看一区二区三区| 女警被强在线播放| 欧美人与性动交α欧美精品济南到| 淫秽高清视频在线观看| 国产精品一区二区三区四区久久| 国产精品久久久人人做人人爽| 午夜影院日韩av| 欧美+亚洲+日韩+国产| 久久精品91蜜桃| 亚洲一区二区三区色噜噜| 999久久久国产精品视频| 成人永久免费在线观看视频| 欧美色欧美亚洲另类二区| 青草久久国产| 好男人在线观看高清免费视频| 狠狠狠狠99中文字幕| 亚洲性夜色夜夜综合| 俄罗斯特黄特色一大片| 叶爱在线成人免费视频播放| 亚洲中文av在线| 久久精品国产亚洲av香蕉五月| 欧美在线黄色| 久久久久久九九精品二区国产 | 深夜精品福利| 老司机靠b影院| 精品国产超薄肉色丝袜足j| 国产午夜精品论理片| 欧美日本视频| 国产激情偷乱视频一区二区| 亚洲 欧美一区二区三区| 欧美中文综合在线视频| 国产视频内射| 美女 人体艺术 gogo| 久99久视频精品免费| 精品久久久久久久末码| av视频在线观看入口| а√天堂www在线а√下载| 性色av乱码一区二区三区2| 听说在线观看完整版免费高清| 欧美性猛交黑人性爽| 一二三四社区在线视频社区8| 无遮挡黄片免费观看| 男人舔女人的私密视频| ponron亚洲| 欧美成人午夜精品| 国产精品1区2区在线观看.| 久久精品亚洲精品国产色婷小说| 搞女人的毛片| 国产av麻豆久久久久久久| 黄色a级毛片大全视频| 国产aⅴ精品一区二区三区波| 成人亚洲精品av一区二区| 少妇的丰满在线观看| 日本一区二区免费在线视频| 给我免费播放毛片高清在线观看| 午夜精品久久久久久毛片777| 免费看十八禁软件| 麻豆av在线久日| 久久精品成人免费网站| 久久久久久国产a免费观看| 宅男免费午夜| 啦啦啦免费观看视频1| 日本五十路高清| 婷婷精品国产亚洲av在线| 日本黄色视频三级网站网址| 精品一区二区三区视频在线观看免费| 亚洲精品中文字幕在线视频| 午夜福利高清视频| 亚洲一区二区三区色噜噜| 999久久久精品免费观看国产| 少妇粗大呻吟视频| 搡老岳熟女国产| 国产又色又爽无遮挡免费看| 国产精品久久久人人做人人爽| 免费在线观看完整版高清| 草草在线视频免费看| 午夜免费观看网址| 国产av不卡久久| 嫩草影院精品99| 国产一区二区激情短视频| 国产黄a三级三级三级人| 麻豆国产97在线/欧美 | av超薄肉色丝袜交足视频| 51午夜福利影视在线观看| 日本免费a在线| 色播亚洲综合网| 久久天躁狠狠躁夜夜2o2o| 日韩大码丰满熟妇| 欧美色视频一区免费| 免费看日本二区| 色av中文字幕| 狂野欧美激情性xxxx| 欧美中文综合在线视频| 黄色女人牲交| 国产av一区二区精品久久| 亚洲成人中文字幕在线播放| 国产真人三级小视频在线观看| 亚洲自拍偷在线| 国产一区在线观看成人免费| 欧美午夜高清在线| 少妇被粗大的猛进出69影院| 国产精品久久久久久精品电影| 国产蜜桃级精品一区二区三区| 男人舔女人下体高潮全视频| 亚洲精品一区av在线观看| 国产三级中文精品| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久国产a免费观看| 九色成人免费人妻av| 亚洲熟妇中文字幕五十中出| 波多野结衣高清作品| 我要搜黄色片| 一级片免费观看大全| 99riav亚洲国产免费| 给我免费播放毛片高清在线观看| 黄色片一级片一级黄色片| 最新在线观看一区二区三区| 久久久久国产一级毛片高清牌| 亚洲avbb在线观看| 久久人妻av系列| 一级毛片高清免费大全| 亚洲va日本ⅴa欧美va伊人久久| 又紧又爽又黄一区二区| 午夜视频精品福利| 亚洲精品一区av在线观看| 在线观看一区二区三区| 18禁国产床啪视频网站| 长腿黑丝高跟| 听说在线观看完整版免费高清| 男插女下体视频免费在线播放| 国产成人影院久久av| 亚洲人与动物交配视频| 亚洲avbb在线观看| 国产激情偷乱视频一区二区| 亚洲色图av天堂| 成人av一区二区三区在线看| 亚洲真实伦在线观看| 免费电影在线观看免费观看| 51午夜福利影视在线观看| 欧美日韩一级在线毛片| 成人亚洲精品av一区二区| 亚洲国产欧美网| 国产99白浆流出| 他把我摸到了高潮在线观看| 99国产综合亚洲精品| 日韩有码中文字幕| 男女那种视频在线观看| 757午夜福利合集在线观看| 欧美一区二区精品小视频在线| 日韩精品免费视频一区二区三区| 91成年电影在线观看| 一本一本综合久久| 91麻豆av在线| 黑人操中国人逼视频| 999精品在线视频| 美女大奶头视频| 男女床上黄色一级片免费看| 免费看十八禁软件| 久久这里只有精品19| 久久久久久久久免费视频了| 变态另类成人亚洲欧美熟女| av天堂在线播放| 草草在线视频免费看| 免费人成视频x8x8入口观看| 亚洲欧美激情综合另类| 天堂影院成人在线观看| 久久精品亚洲精品国产色婷小说| 12—13女人毛片做爰片一| 一区福利在线观看| 一个人免费在线观看电影 | 男插女下体视频免费在线播放| 法律面前人人平等表现在哪些方面| 亚洲专区字幕在线| 日本免费一区二区三区高清不卡| 免费在线观看完整版高清| 欧美成人一区二区免费高清观看 | bbb黄色大片| 日本在线视频免费播放| 无限看片的www在线观看| 搡老岳熟女国产| 听说在线观看完整版免费高清| 久久午夜亚洲精品久久| xxx96com| 亚洲熟女毛片儿| 国产精品久久久av美女十八| 国产高清视频在线观看网站| 岛国在线免费视频观看| 一进一出抽搐动态| 夜夜夜夜夜久久久久| 日本一本二区三区精品| 亚洲在线自拍视频| 国产视频一区二区在线看| 一a级毛片在线观看| a级毛片a级免费在线| 女警被强在线播放| 人妻丰满熟妇av一区二区三区| 国语自产精品视频在线第100页| 巨乳人妻的诱惑在线观看| 国产精品av视频在线免费观看| 亚洲精品中文字幕一二三四区| 精品久久久久久成人av| 亚洲最大成人中文| 男人舔奶头视频| 免费高清视频大片| 午夜福利在线观看吧| 法律面前人人平等表现在哪些方面| 欧美绝顶高潮抽搐喷水| 亚洲成人中文字幕在线播放| 国产精品爽爽va在线观看网站| 青草久久国产| 亚洲avbb在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲乱码一区二区免费版| 久久久久久久久久黄片| 日韩高清综合在线| e午夜精品久久久久久久| 亚洲av成人一区二区三| 国产一区二区三区视频了| 精品电影一区二区在线| 国产91精品成人一区二区三区| а√天堂www在线а√下载| 亚洲欧美精品综合久久99| 一区二区三区国产精品乱码| 国产精品亚洲一级av第二区| 男女下面进入的视频免费午夜| 亚洲av电影在线进入| 午夜精品久久久久久毛片777| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区| 欧美av亚洲av综合av国产av| 久久精品综合一区二区三区| 久久天躁狠狠躁夜夜2o2o| 欧美另类亚洲清纯唯美| 50天的宝宝边吃奶边哭怎么回事| 国产精品免费视频内射| 国产精品久久久av美女十八| 欧美日韩亚洲综合一区二区三区_| 99热6这里只有精品| 国产成人精品久久二区二区免费| 每晚都被弄得嗷嗷叫到高潮| 欧美黄色片欧美黄色片| 一个人观看的视频www高清免费观看 | 啦啦啦观看免费观看视频高清| 久久久久国产精品人妻aⅴ院| 在线视频色国产色| 极品教师在线免费播放| 成年人黄色毛片网站| 老司机福利观看| 欧美性长视频在线观看| 一级a爱片免费观看的视频| 欧美一区二区国产精品久久精品 | 在线播放国产精品三级| 黑人巨大精品欧美一区二区mp4| 美女午夜性视频免费| 亚洲七黄色美女视频| av片东京热男人的天堂| 中文字幕高清在线视频| 久久欧美精品欧美久久欧美| 欧美黄色片欧美黄色片| 一本一本综合久久| 精品第一国产精品| 亚洲av成人精品一区久久| 伊人久久大香线蕉亚洲五| 久久人妻福利社区极品人妻图片| 天堂影院成人在线观看| 他把我摸到了高潮在线观看| 又黄又粗又硬又大视频| 欧美一区二区精品小视频在线| 天堂√8在线中文| 亚洲人与动物交配视频| 99国产精品99久久久久| 日韩欧美 国产精品| 19禁男女啪啪无遮挡网站| 亚洲人成伊人成综合网2020| 亚洲国产日韩欧美精品在线观看 | 18禁黄网站禁片午夜丰满| 亚洲自偷自拍图片 自拍| 少妇人妻一区二区三区视频| 极品教师在线免费播放| 色尼玛亚洲综合影院| 国产爱豆传媒在线观看 | 欧美最黄视频在线播放免费| 男女午夜视频在线观看| 最近最新中文字幕大全免费视频| 精品第一国产精品| 人人妻,人人澡人人爽秒播| 搡老妇女老女人老熟妇| 色综合欧美亚洲国产小说| 国产亚洲精品久久久久久毛片| 黄色视频不卡| 97超级碰碰碰精品色视频在线观看| 国产午夜精品论理片| 精品久久久久久,| а√天堂www在线а√下载| 成人18禁高潮啪啪吃奶动态图| 欧美一区二区精品小视频在线| 最近视频中文字幕2019在线8| 亚洲精品国产一区二区精华液| 不卡一级毛片| 免费观看人在逋| 正在播放国产对白刺激| 国产高清视频在线播放一区| 国产一区二区三区在线臀色熟女| 欧美色欧美亚洲另类二区| 无限看片的www在线观看| 精品一区二区三区视频在线观看免费| 美女高潮喷水抽搐中文字幕| 好男人在线观看高清免费视频| 成人精品一区二区免费| 麻豆久久精品国产亚洲av| av欧美777| 这个男人来自地球电影免费观看| 非洲黑人性xxxx精品又粗又长| 熟妇人妻久久中文字幕3abv| 一区福利在线观看| 真人一进一出gif抽搐免费| 搡老熟女国产l中国老女人| 一a级毛片在线观看| 毛片女人毛片| 国产99久久九九免费精品| 亚洲av成人不卡在线观看播放网| 日日干狠狠操夜夜爽| 91大片在线观看| 激情在线观看视频在线高清| 免费av毛片视频| 亚洲欧美激情综合另类| 岛国在线观看网站| 免费电影在线观看免费观看| 精品熟女少妇八av免费久了| 国产熟女xx| 巨乳人妻的诱惑在线观看| 午夜福利在线观看吧| 国产探花在线观看一区二区| 色在线成人网| 在线观看午夜福利视频| 看黄色毛片网站| 国内揄拍国产精品人妻在线| 亚洲五月婷婷丁香| 国产1区2区3区精品| 午夜福利欧美成人| 一本久久中文字幕| 可以在线观看毛片的网站| 久久国产乱子伦精品免费另类| 久久亚洲真实| 中文字幕av在线有码专区| av欧美777| 欧美成人一区二区免费高清观看 | xxx96com| 日韩欧美精品v在线| 毛片女人毛片| 女人爽到高潮嗷嗷叫在线视频| 国产免费av片在线观看野外av| 国产亚洲av嫩草精品影院| 9191精品国产免费久久| 两个人免费观看高清视频| 热99re8久久精品国产| 久久中文字幕人妻熟女| 久久人妻福利社区极品人妻图片| 法律面前人人平等表现在哪些方面| 女同久久另类99精品国产91| 成在线人永久免费视频| 在线播放国产精品三级| 国产精品综合久久久久久久免费| 国产成人精品无人区| 午夜精品一区二区三区免费看| 国产男靠女视频免费网站| 日本 欧美在线| 日日夜夜操网爽| av国产免费在线观看| 久久九九热精品免费| 曰老女人黄片| 黄色视频,在线免费观看| 国产成人av激情在线播放| av天堂在线播放| 午夜精品久久久久久毛片777| 亚洲午夜精品一区,二区,三区| 国产一区二区三区在线臀色熟女| 日韩欧美国产在线观看| 日本五十路高清| 国产av又大| 777久久人妻少妇嫩草av网站| 舔av片在线| 中文字幕久久专区| 国产主播在线观看一区二区| 国产97色在线日韩免费| 老汉色∧v一级毛片| 成人午夜高清在线视频| 天堂av国产一区二区熟女人妻 | 我要搜黄色片| 国产精品一区二区免费欧美| 日韩 欧美 亚洲 中文字幕| 久久久精品国产亚洲av高清涩受| 国产精品免费视频内射| 91av网站免费观看| 国产激情欧美一区二区| 久久精品国产清高在天天线| 成人三级做爰电影| 国内少妇人妻偷人精品xxx网站 | 亚洲国产精品成人综合色| 国产成人精品久久二区二区免费| 天堂动漫精品| 熟女少妇亚洲综合色aaa.| 成人国产一区最新在线观看| 十八禁人妻一区二区| 国产精品国产高清国产av| 极品教师在线免费播放| 精品国内亚洲2022精品成人| 日韩欧美一区二区三区在线观看| 又爽又黄无遮挡网站| 神马国产精品三级电影在线观看 | 色哟哟哟哟哟哟| 最近最新免费中文字幕在线| 日韩国内少妇激情av| 琪琪午夜伦伦电影理论片6080| 日本在线视频免费播放| 亚洲精品一区av在线观看| 免费在线观看黄色视频的| 在线观看www视频免费| 色播亚洲综合网| 搞女人的毛片| 亚洲中文av在线| 精品一区二区三区av网在线观看| 国产不卡一卡二| av片东京热男人的天堂| 国产高清视频在线播放一区| 男插女下体视频免费在线播放| 欧美日韩精品网址| 国产亚洲精品久久久久5区| 久久久久久久久中文| 久久久水蜜桃国产精品网| 国产人伦9x9x在线观看| 久久亚洲精品不卡| 99久久综合精品五月天人人| 午夜免费成人在线视频| 成人av在线播放网站| 成人特级黄色片久久久久久久| 麻豆av在线久日| 欧美 亚洲 国产 日韩一| 国产精品爽爽va在线观看网站| 啦啦啦观看免费观看视频高清| 久久精品人妻少妇| 18美女黄网站色大片免费观看| 韩国av一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆 | 看免费av毛片| 欧美黑人欧美精品刺激| 在线播放国产精品三级| 日本 av在线| 国产v大片淫在线免费观看| 日韩成人在线观看一区二区三区| 在线看三级毛片| 精品国产亚洲在线| 日本一二三区视频观看| 日本成人三级电影网站| 麻豆av在线久日| 亚洲欧美精品综合一区二区三区| 欧美黑人巨大hd| 日韩精品中文字幕看吧| 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲| 国产精品av久久久久免费| 观看免费一级毛片| 久久精品国产清高在天天线| 蜜桃久久精品国产亚洲av| 一区福利在线观看| 色尼玛亚洲综合影院| 99久久精品热视频| 伦理电影免费视频| 少妇被粗大的猛进出69影院| 亚洲avbb在线观看| 国内揄拍国产精品人妻在线| 熟女少妇亚洲综合色aaa.| av在线播放免费不卡| 国产久久久一区二区三区| 亚洲美女视频黄频| 一卡2卡三卡四卡精品乱码亚洲| 精华霜和精华液先用哪个| 国产精品亚洲av一区麻豆| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| 免费看a级黄色片| 久久久久久亚洲精品国产蜜桃av| 久久国产乱子伦精品免费另类| 国产单亲对白刺激| 中文字幕人成人乱码亚洲影| 亚洲avbb在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 一本大道久久a久久精品| 俄罗斯特黄特色一大片| 成人永久免费在线观看视频| 18禁美女被吸乳视频| www日本在线高清视频| 大型av网站在线播放| 亚洲国产精品合色在线| 亚洲国产精品成人综合色| 国产精品99久久99久久久不卡| 欧美黑人巨大hd| 久久香蕉精品热| 黄片大片在线免费观看| 身体一侧抽搐| 精品熟女少妇八av免费久了| 波多野结衣高清无吗| 亚洲一区高清亚洲精品| 美女免费视频网站| 成熟少妇高潮喷水视频| 国产精品av视频在线免费观看| 中文在线观看免费www的网站 | xxxwww97欧美| 欧美日本亚洲视频在线播放| 最近在线观看免费完整版| 又粗又爽又猛毛片免费看| 在线观看免费午夜福利视频| 国产一级毛片七仙女欲春2| 亚洲五月天丁香| 日韩中文字幕欧美一区二区| 亚洲欧美日韩高清专用| 91字幕亚洲| 国产亚洲欧美98| 啦啦啦免费观看视频1| www.精华液| 岛国视频午夜一区免费看| 精品国内亚洲2022精品成人| 欧美日韩中文字幕国产精品一区二区三区| 黄色毛片三级朝国网站| 嫩草影院精品99| 女人爽到高潮嗷嗷叫在线视频| 岛国在线免费视频观看| 在线观看免费视频日本深夜| 午夜福利视频1000在线观看| 人妻夜夜爽99麻豆av| 精品一区二区三区四区五区乱码| 国产三级在线视频| 久久久久国产一级毛片高清牌| 日本 av在线| 亚洲在线自拍视频| 欧美性猛交黑人性爽| 亚洲va日本ⅴa欧美va伊人久久| 丝袜人妻中文字幕| 一区二区三区高清视频在线| aaaaa片日本免费| 色噜噜av男人的天堂激情| 欧美久久黑人一区二区|