• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Con fined Impinging Jet Mixer and Mechanism offlash Nanoprecipitation

    2017-11-01 09:26:36CaoShuyanXuXuWangXiaoxiao
    中國煉油與石油化工 2017年3期

    Cao Shuyan; Xu Xu; Wang Xiaoxiao

    (School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002)

    Study on Con fined Impinging Jet Mixer and Mechanism offlash Nanoprecipitation

    Cao Shuyan; Xu Xu; Wang Xiaoxiao

    (School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002)

    Nanoparticles have been given considerable attention and applied in many fields because of their properties that are superior to and more distinct than those of conventional materials. In practice, a stable and reproducible manufacturing process is highly desirable. This review presents the flash nanoprecipitation, a new technique that can rapidly produce nanoparticles. Moreover, the mixing process, the mechanism of particle formation, and the mixer design are discussed.Furthermore, the factors controlling the size stability of the produced nanoparticles are summarised in this review.

    flash nanoprecipitation; mechanism; particle stability

    1 Introduction

    Nanoparticles (NPs) possess one-dimensional or multidimensional nanoscale and show different properties at the nanometre scale, including the physical, chemical,distinct optical, electrical, magnetic, and pharmacological properties. These properties make NPs widely used in many applications, such as coatings[1], pigments[2],medicines[3-5]and catalysis[6].

    Two main methods can be used to prepare NPs. One is called the top-down, which usually involves superfine grinding of a material to the nanometre range. The other method is called the bottom-up, which involves controlling the nanoprecipitation and self-assembly into nanoscale. However, the process which called the bottom-up is time consuming. Therefore, the flash nanoprecipitation (FNP), which is used to produce NPs,is introduced in this review. The FNP possesses the following advantages, namely: 1) the particle size can be small with an even size distribution; 2) the preparation is rapid and can save time; 3) the device is simple and easy to operate; and 4) the method is environmentally friendly.This review aims to present the advanced methods for preparing NPs through FNP. The particle size and size distribution that have been influenced by nucleation and the supersaturation kinetics are discussed, and the parameters that influence the phase of NP form are discussed.

    2 Mechanism

    2.1 Nucleation and growth

    The classical nucleation theory is widely used in explaining the nucleation and crystallisation. Under a certain supersaturation degree, the nuclei can form primarily in the concentration of the solute molecules that can grow through aggregation. Moreover, the nuclei assume a spherical shape. The following derivation summarises the process[7-8].

    The Arrhenius relationship can be used to describe the nucleation rate using the following equation:

    where B refers to the nucleation rate, T is the absolute temperature, K1is a constant, k is the Boltzmann constant and ΔG is the Gibbs free energy of the nucleation. As a spherical particle, the Gibbs free energy contributes to the radius r:[8]

    where γ is the surface tension and ΔGvis the Gibbs free energy in the formation of bulk phase. The ΔGvchanges when the critical nucleus radius rcvaries:

    The particle size is inversely proportional to the maximum bulk free energy.

    The nucleation rate is linked to the supersaturation of the solution. Supersaturation is a state wherein the solute concentration exceeds the solubility under a certain pressure and temperature. Nevertheless, no precipitation occurs. Supersaturation (S) is de fined as follows:

    where C is the solubility of the solute at a certain particle radius, and C∞is the equilibrium solubility. Mixing the organic and aqueous phases is necessary under homogeneous supersaturation. Fewer nuclei are observed at low supersaturation than in high supersaturation environments. The following relationship can be obtained using the above equations:In the classical nucleation theory, the precipitation is closely related with the solute concentration (Figure 1)[9]:

    Figure 1 Schematic representation of the concentration relationships in controlled particle formation according to the model representation of LaMer[9]

    When the concentration continues to increase beyond the critical nucleation concentration, the nuclei will begin to form and grow. High supersaturation allows the growth of a large amount of nuclei; therefore, supersaturation is important for FNP.

    2.2 Spinodal decomposition

    In the classical nucleation theory, nuclei that form and grow are widely used. However, the spinodal and binodal decomposition exists in the phase program, and the metastable region should be discussed.

    Figure 2 Phase diagram of a two component system with miscibility gap[10]

    This type of phase transformation is called spinodal decomposition. In the phase program, no apparent phase boundary is observed, and a miscibility gap exists.Moreover, the supersaturation phase spreads towards the direction of the increasing concentration gradient. The boundary of the unstable region is called the bimodal, and the spinodal region is inside (Figure 2)[10]. The spinodal and binodal curves reach a critical point where the spinodal decomposition may occur. High supersaturation takes place in the FNP process; therefore, the borderline to spinodal decomposition can be crossed, and the phase separation occurs spontaneously without any actual nuclei.

    Spinodal decomposition can be contrasted with the nucleation and growth. Critical nucleation energy (ΔG)is essential in the former process which is driven by the thermodynamic force. The process can be remarkably slow because the energy barrier is difficult to reach.However, the spinodal decomposition is controlled by a dynamic force and may be too fast to be observed.

    2.3 Thermodynamic self-assembly

    In FNP, an amphiphilic diblock copolymer and an organic active drug are dissolved in an organic solvent and mixed rapidly using an antisolvent. Johnson[11]discussed the mechanism of self-assembly in the block copolymer NPs.Several key components, including the mixing time and the copolymer selection, have been proposed. The mixing time must be rapid and less than the induction time;moreover, the aggregation and induction time should match each other. The narrowest particle size distribution can be achieved when the aggregation and induction time are equal. Furthermore, different copolymers can significantly influence the size distribution. Correctly selecting copolymers can create functional surfaces to provide steric stabilisation and promote nucleation.

    2.4 Kinetically controlled freezing process

    Zhu[12]proved that FNP is more likely a kinetic process limited by the time as compared with a thermodynamic process. The NPs in the FNP show no micellar structure but present a non-equilibrium one. Moreover, an evidence can support the non-equilibrium structure, which includes a non-uniform particle size distribution and a size larger than the average equilibrium micellar size.

    The self-assembly process mentioned above is controlled by thermodynamic force, and the NPs are kinetically frozen. Zhu[12]stated that the thermodynamic effect could influence the particle formation. Based on the experimental outcome, β-carotene was protected in the PEG corona, and different block copolymers showed different stability against aggregation.

    3 Mixer and Mixing Process

    3.1 Con fined impinging jets (CIJ)

    The first FNP mixer was designed by Prud’homme[13]and was named CIJ. The design aims to produce NPs with a rapid mixing time and narrow size distribution. Numerous investigations on mixing devices have been characterised and proposed. In these methods, CIJ uses two high velocity fluid streams to turbulently mix with each other in the chamber and rapidly reduce the aggregation to reach the precipitation process. The chamber size and the Reynold’s number are important in the mixing process.

    The CIJ mixer is faster during mixing than during precipitation[14]. The key to fast mixing includes the high turbulent energy dissipation and a high intensity twofluid stream mixing. High energy dissipation occurs in the chamber because the small size of the chamber can convert the kinetic energy of the jet fluid into a turbulentlike motion. Demyanovich and Bourne[15]provided the relationship between the energy dissipation rate and the particle length scale.

    3.2 Multi-inlet vortex mixer (MIVM)

    Studies have been done on CIJ, and a new design of MIVM was proposed by Ying Liu and Prud’homme[16].

    Further understanding the concept of macro- , mesoand mirco-mixing is also necessary for application in the supersaturation process. These concepts are divided into three length scales, viz.: the vessel, the turbulent eddies and the molecules. FNP belongs to the micromixing process. Micromixing in CIJ can occur in milliseconds,but is limited by the two inlet streams. The equal momenta of the solvent and the antisolvent are necessary,and the final concentration is the average of the two.

    MIVM uses four inlet streams to overcome these limitations. The four inlet streams can exhibit different velocities, and each stream individually contributes to the mixing. Computational fluid dynamics simulation was conducted by Liu Ying[16]. MIVM exhibits a better mixing than CIJ at the same flow rate and it can provide a wide distribution of the stream concentration.

    3.3 CIJs with dilution (CIJ-D) mixer

    Furthermore, Zhu[17]modified CIJs to produce stable and small NPs. Two stream inlets have been preserved and the hand operation has been enabled. The syringe pump has been eliminated and an antisolvent dilution step has been added. Moreover, with dilution, a high level of supersaturation has become achievable, and NPs are not likely to aggregate. The particle size becomes relatively small and the kinetically stabled NPs are formed.Moreover, the CIJ-D mixer exhibits several advantages,including easy usage, low cost and effectiveness for treating a small quantity of materials. Furthermore,this mixer is an alternative among the three devices,especially for laboratory use and testing. Figure 3 shows the dimensions of the CIJ-D mixer chamber.

    4 Solvent Elimination

    4.1 Flash evaporation

    FNP is based on two streams, including the hydrophobic drug dissolved in the organic solvent and the antisolvent,such as water. The solvent should be removed, and acceptable NP suspensions or NPs should remain for other research or biological applications. Traditional drying methods are not suitable because aggregation occurs during drying and makes the restoration impossible.Varun Kumar[18]used flash evaporation to remove the solvent and obtained a low nanosuspension concentration that is below the Food and Drug Administration (FDA)limit.

    Figure 3 Dimensions of the CIJ-D mixer made of high-density polyethylene[17]

    A low pressure is applied in flash evaporation, which is performed under saturated vapour pressure so that the solvent can be removed. The multistep flash evaporation can improve the amount of evaporation. The two stages were performed by Kumar[18], and the removal rate of solvent reached 96%, as calculated by ASPEN software.The NP dispersion showed a stable size distribution against the Ostwald ripening, which can be more useful than the traditional dialysis.

    4.2 Spray drying

    To date, spray drying is widely used in pharmaceutical industries to convert liquid solutions into powder. Spray drying is formed directly by the atomised droplets. During this process, the medium contained in the solvent, which is in contact with the hot gas, is evaporated to produce dry powder. This technique shows the advantage in FNP for its remarkable reproducibility, consistency and beneficial drug release. Katherine Margulis[19]prepared the curcumin NPs via FNP and used spray drying to obtain the powdered form. Narrow particle size distribution was observed and the particles were stable after solvent removal. However, the spray drying uses high temperature in both the inlet air and vacuum chamber,and this would limit the NP choice. High temperature can cause aggregation that reduces the stability of NPs.Therefore, the strictly controlled conditions and a narrow choice of NP suspensions can be used with this method.

    4.3 Freeze drying and spray freeze drying

    Freeze drying and spray freeze drying[20-22]are two available methods for removing solvents without extensive aggregation to obtain the dry powder with a relative stability. Freeze drying is a dehydration process that is usually adopted by pharmaceutical and biotechnology companies. During the freeze drying process, water is frozen and NPs are removed by reducing the surrounding pressure to sublimate directly from solid to gas. However, without proper stabilisers, NPs tend to fuse under stresses as the phase separation progresses.

    With the rapid developments in biotechnology, the spray freeze drying has become important in the pharmaceutical industry. The NP in the form of aerosols can sublime from the lower layer of the cryogenic liquid and then the cold vapour phase would enter the gas phase after being discharged through a nozzle. Small droplets from the vapour phase begin to freeze when their contact with the cryogenic liquid layer would completely lead to the formation of frozen droplets. At low temperature and pressure, solvents are removed by sublimation, leaving dried particles. Spray freeze drying is a combination and complementary method of spray drying and freeze drying.

    5 Particle Stability

    5.1 Ostwald ripening

    The Ostwald ripening, or particle coarsening, is a significant factor for particle formation. This ripening refers to the process in which small particles tend to shrink and also precipitate on the surface of large particles. Moreover, large particles tend to grow, thereby increasing the size distribution. The process is controlled by thermodynamic forces, which rely on the theory that small particles possess a higher surface tension than large particles. The Ostwald ripening of particles can be effectively controlled because the particle size distribution is considerably well-prepared through FNP.

    5.2 Aggregation of NPs

    Irreversible NP aggregation is caused by the van der Waals interactions between particles. NP aggregation occurs immediately after particle formation when no stabilizer is present; this stabilizer, which can be a lowmolecular-weight surfactant or an amphiphilic polymer(e. g. PEG-b-PLGA block copolymer), is absorbed at the NP surface. Nevertheless, the stabilizer is usually not required when the NP contains surface charges or hydrophilic moieties[23]. Moreover, the particles collide with one another and the van der Waals force can cause the particles to come in contact to form a flocculation, if the repulsive force between the particles is small. Zhu, et al.[24]found that β-carotene nanoparticles stabilized by the inherent surface charge could flocculate in a 1% saline solution.

    5.3 Sedimentation or floating of particles

    Particle movement depends on the density of the particles and the base liquid. When the density of the particle is greater than that of the base liquid, the particles will precipitate; otherwise, the particles will float.Furthermore, the particle movement depends on the particle size. Large particles can easily precipitate. The particles prepared through FNP are remarkably small, and the Brownian movement is highly active. Therefore, the sedimentation and floating of particles can be effectively controlled.

    6 Conclusions

    In this review, the particle size and its distribution influenced by nucleation and supersaturation kinetics are discussed. The stability of NPs is also investigated.Given the control over the particle size and flexibility in incorporating multiple activities, the particles prepared through rapid precipitation are exploited for several applications. As the understanding of the mechanism of this process broadens, the scope offNP application will continue to increase.

    Acknowledgements: The work was financially supported by the National Natural Science Foundation of China (No. 21544005),the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 15KJB430034), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    Reference

    [1] Taylor J W, Winnik M A. Functional latex and thermoset latex films[J]. JCT Res., 2004, 1(3): 163-190

    [2] Schuman T, Karlsson A, Larsson J, et al. Characteristics of pigment- filled polymer coatings on paperboard[J]. Prog Org Coat, 2005, 54(4): 360-371

    [3] Gharpure K M, Wu S Y, Li C, et al. Nanotechnology:Future of Oncotherapy[J]. Clin Cancer Res, 2015, 21(14):3121-3130

    [4] Dickherber A, Morris S A, Grodzinski P. NCI investment in nanotechnology: achievements and challenges for the future[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2015, 7(3): 251-265

    [5] Yang J, Han S, Zheng H, et al. Preparation and application of micro/nanoparticles based on natural polysaccharides[J].Carbohydr Polym, 2015, 123: 53-66

    [6] Klapper M, Clark C G, Muellen K, Jr. Application-directed syntheses of surface-functionalized organic and inorganic nanoparticles[J]. Polym Int, 2008, 57(2): 181-202

    [7] Brick M C, Palmer H J, Whitesides T H. Formation of colloidal dispersions of organic materials in aqueous media by solvent shifting[J]. Langmuir, 2003, 19(16): 6367-6380

    [8] D'Addio S M, Prud'homme R K. Controlling drug nanoparticle formation by rapid precipitation[J]. Adv Drug Delivery Rev, 2011, 63(6): 417-426

    [9] Sugimoto T, Shiba F, Sekiguchi T, et al. Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution I: Silver chloride[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2000, 164(2/3): 183-203

    [10] Horn D, Rieger J. Organic nanoparticles in the aqueous phase - Theory, experiment, and use[J]. Angewandte Chemie - International Edition, 2001, 40(23): 4331-4361

    [11] Johnson B K, Prud’Homme R K. Mechanism for rapid self-assembly of block copolymer nanoparticles[J]. Phys Rev Lett, 2003, 91(11): 118302

    [12] Zhu Z. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability[J]. Biomaterials, 2013,34(38): 10238-10248

    [13] Johnson B K, Prud'homme R K. Chemical processing and micromixing in con fined impinging jets[J]. AIChE J, 2003,49(9): 2264-2282

    [14] Mahajan A J, Kirwan D J. Micromixing effects in a twoimpinging-jets precipitator[J]. AIChE J, 1996, 42(7):1801-1814

    [15] Demyanovich R J, Bourne J R. Rapid micromixing by the impingement of thin liquid sheets. 1. A photographic study of the flow pattern[J]. Ind Eng Chem Res, 1989, 28(6):825-830

    [16] Liu Y, Cheng C, Prud'homme R K, et al. Mixing in a multiinlet vortex mixer (MIVM) for flash nano-precipitation[J].Chem Eng Sci, 2008, 63(11): 2829-2842

    [17] Han J, Zhu Z, Qian H, et al. A simple confined impingement jets mixer for flash nanoprecipitation[J]. J Pharm Sci, 2012, 101(10): 4018-4023

    [18] Kumar V, Prud'homme R K. Nanoparticle stability:Processing pathways for solvent removal[J]. Chem Eng Sci, 2009, 64(6): 1358-1361

    [19] Margulis K, Magdassi S, Lee H S, et al. Formation of curcumin nanoparticles by flash nanoprecipitation from emulsions[J]. J Colloid Interface Sci, 2014, 434: 65-70

    [20] Cavalli R, Caputo O, Carlotti M E, et al. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles[J]. International Journal of Pharmaceutics(Amsterdam), 1997, 148(1): 47-54

    [21] D'Addio S M, Chan J G Y, Kwok P C L, et al. Aerosol delivery of nanoparticles in uniform mannitol carriers formulated by ultrasonic spray freeze drying[J]. Pharm Res, 2013, 30(11): 2891-2901

    [22] Wang Z L, Finlay W H, Peppler M S, et al. Powder formation by atmospheric spray-freeze-drying[J]. Powder Technol, 2006, 170(1): 45-52

    [23] Lepeltier E, Bourgaux C, Couvreur P. Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices[J]. Adv Drug Delivery Rev, 2014, 71: 86-97

    [24] Zhu Z, Margulis-Goshen K, Magdassi S, et al.Polyelectrolyte stabilized drug nanoparticles via flash nanoprecipitation: A model study with beta-carotene[J]. J.Pharm Sci, 2010, 99(10): 4295-4306

    Successful Bench Test of Novel Catalyst for Shape-Selective Disproportionation of Toluene at Liaoyang Petrochemical Company

    The PetroChina’s Liaoyang Petrochemical Company(LPC) has successfully carried out the bench-scale tests of shape-selective catalyst for toluene disproportionation.The catalyst evaluation tests have revealed that this catalyst can achieve a toluene conversion of more than 30%, with the xylene selectivity exceeding 90%to be on a par with the similar catalysts used in China to fill a domestic gap in the field of shape-selective disproportionation of toluene. This study adopts the catalyst modification technique by means of the liquid phase deposition of silicon to precisely adorn the catalyst pores and control the surface acidity in an attempt to maximize the toluene conversion and the para-xylene selectivity.

    Currently LPC is working on the optimization of process regime for manufacturing the catalyst to provide basic data necessary for the forthcoming model scaleup tests and commercial scaleup tests.

    date: 2017-05-02; Accepted date: 2017-07-04.

    Xu Xu, Telephone: +86-15715172289,E-mail: 523457677@qq.com.

    黄色视频在线播放观看不卡| 99久久综合免费| 精品国产一区二区久久| 22中文网久久字幕| 国产成人精品福利久久| 免费在线观看完整版高清| 在线观看免费视频网站a站| 国产精品蜜桃在线观看| 国产精品一区www在线观看| 免费大片18禁| 美女视频免费永久观看网站| 色婷婷av一区二区三区视频| 亚洲色图 男人天堂 中文字幕 | 亚洲成av片中文字幕在线观看 | 黄片播放在线免费| 丰满乱子伦码专区| 在线观看三级黄色| 国产成人91sexporn| 久久99蜜桃精品久久| 亚洲一码二码三码区别大吗| 国产一区二区激情短视频 | 亚洲国产av影院在线观看| 成人毛片60女人毛片免费| 久久精品人人爽人人爽视色| 亚洲国产日韩一区二区| 成年女人在线观看亚洲视频| 国产在线一区二区三区精| 国产乱来视频区| 丰满少妇做爰视频| 校园人妻丝袜中文字幕| 我的女老师完整版在线观看| 久久久久精品久久久久真实原创| 日韩人妻精品一区2区三区| 欧美最新免费一区二区三区| 90打野战视频偷拍视频| 免费大片黄手机在线观看| 国产精品人妻久久久久久| 精品亚洲成a人片在线观看| 国产深夜福利视频在线观看| 蜜桃国产av成人99| 999精品在线视频| 在线观看www视频免费| 欧美日韩av久久| 国产在视频线精品| 久久国产亚洲av麻豆专区| 亚洲精品av麻豆狂野| 国产国拍精品亚洲av在线观看| 精品一区二区免费观看| 日韩精品有码人妻一区| 一区二区av电影网| 久久精品久久久久久噜噜老黄| 国产精品无大码| 欧美精品一区二区免费开放| 日本与韩国留学比较| 亚洲av国产av综合av卡| 天天躁夜夜躁狠狠久久av| 亚洲欧美一区二区三区黑人 | 插逼视频在线观看| 日韩成人伦理影院| 精品人妻在线不人妻| 天天影视国产精品| 晚上一个人看的免费电影| 51国产日韩欧美| 日本欧美国产在线视频| 国产精品久久久久成人av| 咕卡用的链子| 久久国产亚洲av麻豆专区| 黄色怎么调成土黄色| 两个人看的免费小视频| 青春草亚洲视频在线观看| 亚洲成人手机| 激情视频va一区二区三区| 日韩av在线免费看完整版不卡| 熟妇人妻不卡中文字幕| 国产高清不卡午夜福利| 亚洲精品久久成人aⅴ小说| 国产欧美日韩一区二区三区在线| 黑人巨大精品欧美一区二区蜜桃 | 亚洲一区二区三区欧美精品| 国产成人精品无人区| 久久国产精品大桥未久av| 伦理电影大哥的女人| 成人免费观看视频高清| 亚洲人成网站在线观看播放| 一级爰片在线观看| 免费少妇av软件| 国产日韩欧美在线精品| 18禁动态无遮挡网站| 久久精品久久久久久久性| 美女国产高潮福利片在线看| 国产成人aa在线观看| av女优亚洲男人天堂| 亚洲精品国产av成人精品| 成人无遮挡网站| 国产成人a∨麻豆精品| kizo精华| 美女中出高潮动态图| 国产一区有黄有色的免费视频| 狠狠精品人妻久久久久久综合| 91成人精品电影| 久久精品国产a三级三级三级| 久久久久久久国产电影| 自线自在国产av| 亚洲精品一区蜜桃| 九九爱精品视频在线观看| 中文字幕免费在线视频6| 亚洲国产精品国产精品| 国产一级毛片在线| 国产69精品久久久久777片| 内地一区二区视频在线| 国产亚洲精品第一综合不卡 | 精品久久久久久电影网| 日本vs欧美在线观看视频| av片东京热男人的天堂| 十分钟在线观看高清视频www| 亚洲精品乱久久久久久| 18禁裸乳无遮挡动漫免费视频| 黑人高潮一二区| 97在线视频观看| 欧美国产精品一级二级三级| 亚洲国产精品一区三区| 少妇猛男粗大的猛烈进出视频| 性色avwww在线观看| 一二三四在线观看免费中文在 | 亚洲丝袜综合中文字幕| 日韩在线高清观看一区二区三区| 18禁国产床啪视频网站| 伦精品一区二区三区| 国产白丝娇喘喷水9色精品| 全区人妻精品视频| 亚洲激情五月婷婷啪啪| av免费观看日本| 国产熟女午夜一区二区三区| 亚洲国产精品专区欧美| 国产男女内射视频| 激情五月婷婷亚洲| 国产av国产精品国产| 精品国产国语对白av| 一本大道久久a久久精品| 亚洲五月色婷婷综合| 亚洲精品中文字幕在线视频| 建设人人有责人人尽责人人享有的| 亚洲精品456在线播放app| 日韩制服丝袜自拍偷拍| 一个人免费看片子| 日韩成人伦理影院| 国产av精品麻豆| 超色免费av| 亚洲精品乱久久久久久| 久久ye,这里只有精品| av在线播放精品| www日本在线高清视频| 欧美成人午夜精品| 精品亚洲乱码少妇综合久久| 日韩电影二区| 九草在线视频观看| 成年美女黄网站色视频大全免费| 国产精品国产三级专区第一集| 极品人妻少妇av视频| www.熟女人妻精品国产 | 国产淫语在线视频| 国产精品不卡视频一区二区| 看十八女毛片水多多多| 高清黄色对白视频在线免费看| 黄片无遮挡物在线观看| 日韩中字成人| 亚洲一级一片aⅴ在线观看| 欧美性感艳星| 成人无遮挡网站| 亚洲人与动物交配视频| 午夜精品国产一区二区电影| 国产爽快片一区二区三区| 日本欧美视频一区| 少妇高潮的动态图| 波野结衣二区三区在线| 狠狠婷婷综合久久久久久88av| 美女大奶头黄色视频| 少妇被粗大猛烈的视频| 色吧在线观看| 欧美精品av麻豆av| 免费观看无遮挡的男女| 一级毛片我不卡| 日韩 亚洲 欧美在线| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品,欧美精品| 搡女人真爽免费视频火全软件| 久久久精品94久久精品| 国产免费一区二区三区四区乱码| 九色亚洲精品在线播放| 熟妇人妻不卡中文字幕| 国产午夜精品一二区理论片| 99国产精品免费福利视频| 国产免费一级a男人的天堂| av免费观看日本| 色哟哟·www| 18禁在线无遮挡免费观看视频| 亚洲人与动物交配视频| 亚洲伊人色综图| 亚洲精品美女久久久久99蜜臀 | 一级毛片我不卡| 国产日韩欧美视频二区| 午夜福利视频在线观看免费| a级片在线免费高清观看视频| 90打野战视频偷拍视频| 18在线观看网站| 国产一区二区在线观看av| 亚洲av电影在线观看一区二区三区| 久久午夜福利片| 亚洲欧美中文字幕日韩二区| 亚洲av在线观看美女高潮| 两个人免费观看高清视频| 久久女婷五月综合色啪小说| freevideosex欧美| 五月玫瑰六月丁香| 亚洲精品av麻豆狂野| 成年人午夜在线观看视频| 中文字幕制服av| 精品视频人人做人人爽| 成人亚洲精品一区在线观看| 日韩一本色道免费dvd| 亚洲国产精品专区欧美| 夫妻午夜视频| 亚洲综合精品二区| 久久久久久久大尺度免费视频| 秋霞伦理黄片| 看十八女毛片水多多多| 日韩人妻精品一区2区三区| 国产成人免费观看mmmm| 人人澡人人妻人| 午夜激情av网站| 熟妇人妻不卡中文字幕| a级片在线免费高清观看视频| 99国产综合亚洲精品| 日韩中字成人| 中国国产av一级| 国产精品嫩草影院av在线观看| av线在线观看网站| www.av在线官网国产| 亚洲精品久久久久久婷婷小说| 成人国产av品久久久| 国产激情久久老熟女| 啦啦啦中文免费视频观看日本| 一二三四在线观看免费中文在 | 中国美白少妇内射xxxbb| 欧美xxⅹ黑人| 免费在线观看黄色视频的| 午夜久久久在线观看| 嫩草影院入口| 久热久热在线精品观看| 久久毛片免费看一区二区三区| 在线天堂最新版资源| 欧美bdsm另类| 久久ye,这里只有精品| 国产老妇伦熟女老妇高清| 精品亚洲成a人片在线观看| www.av在线官网国产| 亚洲精品,欧美精品| 久久ye,这里只有精品| 国产亚洲精品久久久com| 久久久久久久大尺度免费视频| 国产伦理片在线播放av一区| av网站免费在线观看视频| 亚洲av.av天堂| 99久久综合免费| 中文字幕亚洲精品专区| 两个人免费观看高清视频| 人成视频在线观看免费观看| 桃花免费在线播放| 美女福利国产在线| 女的被弄到高潮叫床怎么办| 欧美激情 高清一区二区三区| 精品福利永久在线观看| 亚洲成国产人片在线观看| 毛片一级片免费看久久久久| 久久久精品区二区三区| 另类亚洲欧美激情| 天天操日日干夜夜撸| 18禁裸乳无遮挡动漫免费视频| 大片免费播放器 马上看| 久久久久久久大尺度免费视频| 久久av网站| 久久99精品国语久久久| 国产亚洲午夜精品一区二区久久| 亚洲四区av| 久久精品aⅴ一区二区三区四区 | 欧美丝袜亚洲另类| 亚洲人成网站在线观看播放| 22中文网久久字幕| 少妇的逼好多水| 夜夜骑夜夜射夜夜干| 精品亚洲乱码少妇综合久久| 亚洲精品美女久久久久99蜜臀 | 亚洲熟女精品中文字幕| 综合色丁香网| 国产成人aa在线观看| 两个人免费观看高清视频| 午夜福利在线观看免费完整高清在| 日韩大片免费观看网站| 日韩欧美精品免费久久| 午夜福利视频在线观看免费| 午夜福利在线观看免费完整高清在| 久久这里只有精品19| 少妇猛男粗大的猛烈进出视频| 自线自在国产av| 久久久久国产网址| 久久精品国产自在天天线| 午夜福利视频精品| 国产在线一区二区三区精| 免费高清在线观看日韩| 午夜av观看不卡| 天堂8中文在线网| 国产69精品久久久久777片| 免费在线观看完整版高清| 亚洲图色成人| 亚洲,欧美,日韩| 成人黄色视频免费在线看| 国产高清国产精品国产三级| 亚洲国产色片| 国产淫语在线视频| 一级,二级,三级黄色视频| 夫妻午夜视频| 日韩一区二区三区影片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久精品古装| 免费看光身美女| 午夜av观看不卡| 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| 精品国产露脸久久av麻豆| 久久久久视频综合| 亚洲av免费高清在线观看| 日本91视频免费播放| 在线天堂最新版资源| 亚洲av福利一区| 曰老女人黄片| 午夜免费男女啪啪视频观看| 免费高清在线观看视频在线观看| 制服人妻中文乱码| 激情视频va一区二区三区| 捣出白浆h1v1| 亚洲美女视频黄频| 一区二区三区乱码不卡18| 青春草视频在线免费观看| freevideosex欧美| 黄色怎么调成土黄色| 另类精品久久| 久久久国产精品麻豆| 久久精品国产自在天天线| 精品少妇内射三级| 国产亚洲av片在线观看秒播厂| 成人亚洲欧美一区二区av| 亚洲精品乱久久久久久| 国产精品99久久99久久久不卡 | 搡老乐熟女国产| 999精品在线视频| 捣出白浆h1v1| 亚洲国产av新网站| 又黄又粗又硬又大视频| 国产色爽女视频免费观看| 满18在线观看网站| 久久久精品94久久精品| 欧美丝袜亚洲另类| videosex国产| 免费不卡的大黄色大毛片视频在线观看| 黄色视频在线播放观看不卡| 国产又色又爽无遮挡免| 99香蕉大伊视频| 人妻人人澡人人爽人人| 国产av一区二区精品久久| 久久99蜜桃精品久久| 热re99久久国产66热| 日韩视频在线欧美| 亚洲精品,欧美精品| 黄色毛片三级朝国网站| 国产亚洲av片在线观看秒播厂| 大话2 男鬼变身卡| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三区在线| 99视频精品全部免费 在线| 久久久国产一区二区| 99热这里只有是精品在线观看| 看十八女毛片水多多多| 免费不卡的大黄色大毛片视频在线观看| 国产精品熟女久久久久浪| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人综合一区亚洲| 1024视频免费在线观看| 久久 成人 亚洲| 在线观看一区二区三区激情| 国产免费一级a男人的天堂| 五月玫瑰六月丁香| 天堂俺去俺来也www色官网| 国产男女超爽视频在线观看| xxx大片免费视频| 国产成人aa在线观看| 亚洲国产日韩一区二区| 亚洲综合色惰| 一级黄片播放器| 国产成人精品在线电影| 日本wwww免费看| 午夜激情av网站| 国产伦理片在线播放av一区| 久久精品久久久久久噜噜老黄| 最近手机中文字幕大全| 免费看不卡的av| 国产欧美日韩综合在线一区二区| 高清欧美精品videossex| 日韩一区二区视频免费看| 观看av在线不卡| 成年人午夜在线观看视频| 深夜精品福利| av免费在线看不卡| 秋霞在线观看毛片| 在线天堂最新版资源| 久久精品久久精品一区二区三区| 精品一区二区三卡| 国产 一区精品| 丝袜美足系列| 在线观看免费视频网站a站| 日韩伦理黄色片| 久久久久精品性色| 国产欧美亚洲国产| 国产亚洲最大av| 精品亚洲成a人片在线观看| 丝袜人妻中文字幕| 一本大道久久a久久精品| 深夜精品福利| 亚洲av男天堂| 韩国av在线不卡| 最近中文字幕2019免费版| 激情五月婷婷亚洲| 极品少妇高潮喷水抽搐| 午夜日本视频在线| 国产在视频线精品| 欧美激情国产日韩精品一区| 日韩中文字幕视频在线看片| 欧美丝袜亚洲另类| 成人毛片60女人毛片免费| 亚洲,一卡二卡三卡| 午夜福利乱码中文字幕| 久久这里只有精品19| 日韩一区二区三区影片| 精品国产露脸久久av麻豆| 久久人人爽av亚洲精品天堂| 国产一区有黄有色的免费视频| 国产黄频视频在线观看| 在现免费观看毛片| av有码第一页| 久久久久国产精品人妻一区二区| 精品亚洲乱码少妇综合久久| 免费人妻精品一区二区三区视频| 18禁在线无遮挡免费观看视频| 久久亚洲国产成人精品v| 少妇的丰满在线观看| 另类精品久久| 精品福利永久在线观看| 18禁在线无遮挡免费观看视频| 熟女av电影| 午夜激情久久久久久久| 免费黄网站久久成人精品| 只有这里有精品99| 男人爽女人下面视频在线观看| 国产成人精品福利久久| 久久午夜综合久久蜜桃| 丁香六月天网| 成人黄色视频免费在线看| 97人妻天天添夜夜摸| 99精国产麻豆久久婷婷| 国产亚洲最大av| 中文字幕免费在线视频6| 人人妻人人澡人人爽人人夜夜| 男人操女人黄网站| 中文精品一卡2卡3卡4更新| 嫩草影院入口| 欧美丝袜亚洲另类| 久久精品熟女亚洲av麻豆精品| 欧美老熟妇乱子伦牲交| 最近最新中文字幕大全免费视频 | 国产精品免费大片| 十八禁高潮呻吟视频| av播播在线观看一区| 久久久久网色| 久久精品人人爽人人爽视色| 国产精品一区二区在线不卡| 丝袜喷水一区| 国产国语露脸激情在线看| 亚洲国产欧美日韩在线播放| 亚洲精品乱码久久久久久按摩| 国产免费一区二区三区四区乱码| 高清视频免费观看一区二区| 中文精品一卡2卡3卡4更新| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧美中文字幕日韩二区| 久久久久久久久久人人人人人人| 成人漫画全彩无遮挡| 成人综合一区亚洲| 久久这里只有精品19| 三级国产精品片| 亚洲国产精品一区二区三区在线| 国产1区2区3区精品| 宅男免费午夜| 国产精品三级大全| 久久久国产欧美日韩av| 最新中文字幕久久久久| 人妻系列 视频| 99国产综合亚洲精品| 91在线精品国自产拍蜜月| a级片在线免费高清观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲乱码少妇综合久久| 蜜臀久久99精品久久宅男| 色婷婷久久久亚洲欧美| 国产熟女欧美一区二区| 91精品伊人久久大香线蕉| 亚洲性久久影院| 国产精品女同一区二区软件| 考比视频在线观看| 大片电影免费在线观看免费| 丁香六月天网| 久久精品久久久久久噜噜老黄| 麻豆乱淫一区二区| 午夜福利网站1000一区二区三区| 最近手机中文字幕大全| 看十八女毛片水多多多| 亚洲色图综合在线观看| 99re6热这里在线精品视频| 一级毛片电影观看| 秋霞伦理黄片| 国产亚洲欧美精品永久| 国产成人精品一,二区| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 91aial.com中文字幕在线观看| 亚洲人与动物交配视频| 久久99一区二区三区| 2021少妇久久久久久久久久久| 国产高清不卡午夜福利| 亚洲高清免费不卡视频| 国产在线视频一区二区| 两个人看的免费小视频| 国产午夜精品一二区理论片| 大片电影免费在线观看免费| 丝袜喷水一区| 99热网站在线观看| 亚洲精品一区蜜桃| 久久精品久久久久久噜噜老黄| 国产精品久久久久久久久免| 午夜av观看不卡| 在线观看www视频免费| 日产精品乱码卡一卡2卡三| 国产成人aa在线观看| 久久久久久久久久久久大奶| 97精品久久久久久久久久精品| 久久久久久久久久久久大奶| 亚洲国产精品成人久久小说| 成人毛片60女人毛片免费| 国产 精品1| 国产极品天堂在线| 99热这里只有是精品在线观看| 日产精品乱码卡一卡2卡三| 韩国高清视频一区二区三区| 欧美精品一区二区免费开放| 国产69精品久久久久777片| 黄片无遮挡物在线观看| 蜜桃国产av成人99| 看非洲黑人一级黄片| 久久人人97超碰香蕉20202| 久久这里只有精品19| 男女午夜视频在线观看 | 晚上一个人看的免费电影| 国产极品粉嫩免费观看在线| 黄色视频在线播放观看不卡| 中文天堂在线官网| 水蜜桃什么品种好| 亚洲av国产av综合av卡| 麻豆乱淫一区二区| av播播在线观看一区| 丝袜在线中文字幕| 男人操女人黄网站| 午夜精品国产一区二区电影| 视频区图区小说| 日日啪夜夜爽| 亚洲精品色激情综合| 日韩电影二区| 搡老乐熟女国产| 欧美人与善性xxx| 高清不卡的av网站| 亚洲人成77777在线视频| av电影中文网址| 久久99一区二区三区| 国产黄色视频一区二区在线观看| 男女啪啪激烈高潮av片| 三级国产精品片| 日本午夜av视频| av线在线观看网站| 成人国语在线视频| 欧美97在线视频| 欧美国产精品一级二级三级| 国产午夜精品一二区理论片| 黑人欧美特级aaaaaa片| 成人免费观看视频高清| 我要看黄色一级片免费的| 男的添女的下面高潮视频| 激情视频va一区二区三区| av福利片在线| 丁香六月天网| 高清av免费在线| 日韩在线高清观看一区二区三区| 色视频在线一区二区三区| 欧美激情极品国产一区二区三区 | 国产探花极品一区二区| 99久久综合免费| 欧美xxⅹ黑人| 亚洲精品第二区| 欧美日韩精品成人综合77777|