• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Atomization of Gelled Propellant Simulant with Carbon Particles

    2015-05-10 06:19:04QIANGHongfuLIUHuHANQilongWANGGuangHANYawei
    含能材料 2015年12期

    QIANG Hong-fu, LIU Hu, HAN Qi-long, WANG Guang, HAN Ya-wei

    (1. 601 Staffroom, Xi'an Hi-Tech Institution, Xi′an 710025, China; 2. 96263 Unit of the Second Artillery, Luoyang 471000, China)

    1 Introduction

    As a new kind of rocket propellant, gelled propellants have advantages for both liquid and solid propellants, including high density, combustion energy, security and long reservation period, etc. However, compared with the traditional liquid propellants, the non-Newtonian character makes the gelled propellants difficult to be atomized. Atomization has attracted widespread and lasting attentions since the beginning of the gel propulsion technology[1-2].

    The addition of energetic particles like carbon, aluminum or boron is essential to gelled propellants, and it may significantly increase the energy content per unit volume of the gelled propellant and improve the performance of gelled propulsion system[3-4]. As the addition of energetic particles would alter the rheological properties of gelled propellant[5], some researches have been made to investigate the atomization characteristics of gelled propellants with energetic particles. Jayaprakash et al[6]investigated the injection and atomization characteristics of gelled kerosene with 30%(mass fraction) Al particles, they found that Sauter mean diameter(SMD) of the gel spray was more sensitive to the impingement angle and was dependent on the injection pressure in a highly non-linear manner. Kampen et al[7-8]detail studied the influence of Al particles content of gelled Jet A-1 fuels on rheology, atomization and combustion. The gels prepared in their research appeared "solid" at unstressed ambient conditions and a distinct yield stress occurred. With different generalized Reynolds numbers, different atomization modes were observed. Baek et al[9]investigated the atomization behavior of C934 Carbopol gels with and without 15% SUS304 nanoparticles. They found the nanoparticles decreased the gel strength and made breakup length of gel with nanoparticles remarkably shorter than that of the pure Carbopol gel.

    Overall, the mechanics of atomization of gelled propellant with energetic particles are still far from being fully understood in these limited researches. In this work, a new simulant containing carbon particles was prepared and used in atomization experiments. The rheological properties were measured and a series of atomization experiments were made. The linear stability theory was adopted to study the breakup characteristics of the liquid sheet.

    2 Experiment

    2.1 Preparation of Gelled Propellant Simulants

    The gelled propellant simulant was prepared by dissolving 1%(mass fraction) high-molecular polymer, 5%(mass fraction) carbon particles with an average diameter of about 5 μm in de-ionized water and mixing with an electric mixer for 20 min at 2000 revolutions per minute. This carbon-loaded simulant is named as S1 in this paper. We also prepared another simulant S2 with 99%(mass fraction) de-ionized water and 1%(mass fraction) high-molecular polymer for comparison. The physical and rheological properties of simulants S1 and S2 are similar to gelled propellant: their densities (ρ) are 1010.1 kg·m-3and 1001.7 kg·m-3, and surface tension coefficients (σ) 0.067 N·m-1and 0.072 N·m-1, respectively. As the shear rate of the gelled propellant is high in atomization. The rheological properties of the simulants were measured by a rotational rheometer when shear rate and by pipe-flowing experiments whenγ≥103s-1.

    The relationship of apparent viscosity (η) and shear rate(γ) can be described by power-law equation, Herschel-Bulkley (HB) equation, Herschel-Bulkley Extended(HBE) equation, etc.[8]. The simulants prepared in this paper appear “syrupy” at unstressed ambient conditions. The experimental results show that the yield stresses (τ0) of the two simulants are very low and both below 10 Pa. Therefore, the yield stress was neglected and the most common power-law equation was adopted.

    (1)

    ηandγof simulants obtained from experiment and the fitted power-law constitutive curves are given in Fig.1, and their physical properties are listed in Table 1. From Fig.1, it can be seen that simulants S1 and S2 are pseudo plastic fluids and theirηdecrease with the increases ofγ. And compared with simulant S2 without carbon particles in Fig.1, simulant S1 shows higher apparent viscosity under the same shear rate than that of S2. The addition of carbon particles increases the consistency coefficient and decreases the flow index of the simulant, which indicates that the addition of carbon particles evidently changes the physical and rheological properties of the gel. As the de-ionized water is main component of the simulants, the densityρand surface tension coefficientσof the two simulants are similar to ones of water (ρ=1000.0 kg·m-3andσ=0.073 N·m-1), as shown in Table 1.

    Fig.1 Apparent viscosity and shear rate of gelled propellant simulants

    Table 1 Physical property of gelled propellant simulants with and without carbon particles

    simulantscarbonparticlesρ/kg·m-3σ/N·m-1power-lawconstitutiveparametersK/Pa·snnS1with1010.10.06716.590.29S2without1001.70.0727.080.37

    2.2 Experimental Apparatus

    Fig.2 is the schematic diagram of gelled propellant atomization experiment system. At the beginning of the experiment, high pressure gas would be filled into the tank to force the gelled propellant simulant to the jet injector across pipes and values. The impingement angle 2θand the jet velocityvjetwere tuned by adjusting the angle of the doublet injectors and changing the mass flow rate by the control value, respectively. The atomization processes were recorded by a Phantom V12.1 high speed camera with 784×800 image resolution and 5 μs shutter speed. The atomization images were passed to the data acquisition system for further analysis. Meanwhile, important data in the experiment, such as mass flow rate, pressure in the tank, pressure in the injectors, etc. were measured and recorded by the data acquisition system during the whole experiment.

    Fig.2 Schematic diagram of gelled propellant atomization experiment system

    2.3 Experimental Design

    In order to analyze the atomization characteristics of gelled propellant simulant with carbon particles, 10 atomization experiments were designed with different impingement angles 2θ, jet velocitiesvjet, injector orifice diametersdand injector orifice length to diameter ratioL/d0, etc., as shown in Table 2.

    The generalized Reynolds number(Regen) was used to describe the flow behavior of the power-law fluid, which is defined as ref.[10]:

    (2)

    whereρpis the density of the power-law fluid.

    Table 2 Conditions for the atomization experiment

    case2θ/(°)vjet/m·s-1d/mmL/d0Regen1601018160626015183211360221861824901018160659015183211690221861827601513.532118602213.56182960100.5813131060101.581806

    3 Results and Analysis

    3.1 Experiment Results and Analysis

    In this paper, the atomization quality is evaluated by the atomization angle (β) and atomization patterns. As we know, when two jets impinge with each other, a fan-shaped liquid sheet forms, and the angle between the left and right rims of the liquid sheet is called atomization angle (β, as shown in Fig.3). Generally, largerβmeans better atomization quality. According to former researches[8,11], with different gels, jet velocities, impingement angles, generalized Reynolds numbers, etc., there are different atomization patterns, including close-rim, open-rim, ligament and fully-developed patterns, etc.[8,11]The close-rim and open rim patterns indicate poor atomization qualities, while the other two indicate better atomization qualities.

    Fig.3 is atomization images with the impingement angle 2θ=60° and different velocities for cases 1-3. As shown in Fig.3a, with a low jet velocity (10.2 m·s-1) andRegen, a fan-shaped liquid sheet forms, and it has a distinct rim at the upstream and breakups into ligaments and large drops downstream. The atomization pattern in Fig. 3a is the so-called “open-rim pattern” with the atomization angleβof about 70°. Fig.3b also shows an open-rim pattern withβ=85° under a larger jet velocity (15.68 m·s-1) andRegen=3211. As shown in Fig.3c, withvjet=22.14 m·s-1andRegen=3211, the rim of the liquid sheet becomes indistinct, and clearer bow-shaped impact waves occurs and makes the liquid sheet more unstable and breakup into more ligaments and drops. The pattern in Fig.3c is called “l(fā)igament pattern”.βin Fig.3c is about 100°. As discussed in Ref.[8], in cases 1-3, the generalized Reynolds numberRegen, which is completely determined by jet velocity, could be adopted as the indication of the atomization quality. LargerRegen(jet velocity) means a larger kinetic energy in jet impingement and would lead to better atomization quality.

    Fig.4 shows atomization images with 2θ=90° and different velocities for cases 4-6. Compared with cases 1-3 in Fig.3, theβin Fig.4 are larger, which are about 80°, 110°, 140° in Fig.4a, Fig.4b, Fig.4c, respectively. Fig.4a shows an open-rim pattern, and Fig.4b and Fig.4c show ligament patterns. The atomization qualities at impingement angle 2θ=90° are better than ones with 2θ=60° and the similar jet velocities.

    Fig.5 shows that the atomization images with ratio of injector orifice length to diameter (L/d0=3.5)under different jet velocities for cases 7 and 8. Compared with case 2 and case 3 withL/d0=8 shown in Fig.3b and Fig.3c, there are no obvious differences in Fig.5. Atomization patterns in Fig.5a and Fig.5b are almost identical to patterns in Fig.3b and Fig.3c respectively, which indicates that there are no essential differences on the flow characteristics of the jets sprayed from injectors withL/d0=3.5 and 8. As a result, the ratio of injector orifice length to diameter has little influences on the atomization patterns.

    Fig.6 shows atomization images with impingement angle 2θ=60° and different injector orifice diameters for cases 9 and 10. As shown in Fig.3a (case 1) and Fig.6, the larger orifice diameters lead to larger mass flow rates and will produce larger liquid sheets. But there are also no essential differences on the atomization patterns of cases 1, 9 and 10, they are all open-rim patterns with almost the same atomization angle about 70°.

    In all the cases studied in this paper, the gelled propellant simulant could hardly to be atomized into fine drops, the main atomization products are ligaments and large drops. Within the investigation conditions, the atomization quality increases with the increase of jet velocity and impingement angle, while the changes of injector length to diameter ratio and the injector orifice diameters influence the atomization patterns little.

    a.vjet=10.2 m·s-1, b.vjet=15.68 m·s-1, c.vjet=22.14 m·s-1,

    β=70°β=85°β=100°

    Fig.3 Atomization images of cases 1-3

    a.vjet=9.77 m·s-1, b.vjet=15.28 m·s-1, c.vjet=21.71 m·s-1

    Fig.4 Atomization images of cases 4- 6

    a.vjet=15.35 m·s-1b.vjet=22.22 m·s-1

    Fig.5 Atomization images case 7 and case 8

    a.vjet=9.80 m·s-1b.vjet=10.49 m·s-1

    d0=0.5 mmd0=1.5 mm

    Fig.6 Atomization images of case 9 and case 10

    3.2 Linear Stability Analysis

    Linear stability theory is widely used to evaluate the instabilities of the liquid sheet[12-13]. In this theory, the liquid sheet instability is mainly due to the aerodynamics interactions between the liquid and its surrounding gas. There are two kinds of disturbances that will occur on the liquid sheet: symmetric and anti-symmetric. Squire[14]showed that the anti-symmetric disturbance played a dominant role on breaking the liquid sheet into fragments. Therefore, only the anti-symmetric disturbance is considered here. Schematic of a moving liquid sheet under anti-symmetric disturbance is shown in Fig.7, a two dimensional liquid sheet moves into a quiescent, inviscid, incompressible gas with velocityUs, the thickness of the liquid sheet is 2hs, the surface tension of liquid isσ, the densities of liquid and gas areρ1andρgrespectively, the density ratio of gas and liquid isRg1=ρg/ρ1. Generally, the wave amplitude on the liquid sheet can be expressed as:

    (3)

    Fig.7 Schematic of a moving liquid sheet under anti-symmetric disturbance

    Chojnaki[15]deduced the dispersion relation for a plan liquid sheet based on the power-law constitutive:

    (4)

    (5)

    (6)

    If the liquid sheet breakups when the wave amplitude reachesηb, the breakup timeτbcan be obtained as follows:

    τb=ln(ηb/η0)/ωi,max

    (7)

    whereωi,maxis the maximum grow rate, then the breakup length can be calculated as:

    Lb=Usln(ηb/η0)/ωi,max

    (8)

    Here ln(ηb/η0) is set to be 12 according to Ref. [13].

    In this paper, the breakup length of the liquid sheet is defined as the axial distance from the impingement point to the point where the liquid sheet along the axis begins to breakup, as shown in Fig.8. We assume the liquid sheet speedUs=0.92vjetaccording to ref. [16]. Solving equation (4) withρ1=1010.1 kg·m-3,ρg=1.225 kg·m-3,K=16.59 Pa·sn,n=0.29,σ=0.067 N·m-1and 2hs=2.0×10-4m under jet velocity of 10 m·s-1(cases 1, 4), 15 m·s-1(cases 2, 5) and 22 m·s-1(cases 3, 6), the effects of sheet velocity on the stability of the liquid sheet can be obtained, as shown in Fig.9. It can be seen that the maximum disturbance wave grow rate increases with the increase of the sheet velocity. It means that the liquid sheet will become more unstable at larger sheet velocities, which agrees well with the experiment results of cases 1-3 and cases 4-6 under the same velocities.

    With equations (4), (7) and (8), the breakup length of the liquid sheet can be predicted. Fig.10 is the comparison of breakup lengths of liquid sheets predicted by linear stability theory and measured from experiments. As shown in Fig.10, the variation trend of breakup lengths of liquid sheets calculated from linear stability theory is consistent with the ones measured from experiments. At a low Weber number, the linear stability analysis evidently overestimates the breakup length when compared with the experiment. The relative error between the predicted and measured breakup lengths is about 24% atWes=128. As the Weber number increases, the relative errors decrease to 14.9% atWes=618. The errors of the predicted values are considered as a results of neglect of instabilities caused by jet impingement in the linear stability theory.

    Fig.8 Definition of the breakup length of the liquid sheet

    Fig.9 Influence of sheet velocityUson the stability of the liquid sheet calculated by linear stability theory

    Fig.10 Comparison of breakup lengths of liquid sheets from linear stability analysis and experiments

    4 Conclusions

    (1) The carbon particles increase the consistency coefficient and decrease the flow index of the simulant S1, which makes simulant S1 show high apparent viscosity under the same shear rate.

    (2) The simulant S1 can only be atomized into ligaments and large drops. The atomization quality improves with the increases of jet velocity and impingement angles, while the changes in injector length to diameter ratio and the injector orifice diameters show little influences on the atomization patterns.

    (3) There are about 14.9%-24% relative errors between the predicted and measured breakup lengths, but the tendency of the breakup lengths predicted by the linear stability theory agrees well with the experiment ones.

    [1] Natan B, Rahimi S. The status of gel propellants in year 2000[J].InternationalJournalofEnergeticMaterialsandChemicalPropulsion, 2002,5(1-6): 172-192.

    [2] LIU Hu, QIANG Hong-fu, WANG Guang. Review on Jet Impingement Atomization on Gelled Propellant[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23(7): 697-708.

    [3] Hodge K, Crofoot T, Nelson S. Gelled propellants for tactical missile applications. AIAA 99-2976[R], 1999.

    [4] Haddad A, Natan B, Arieli R. The performance of a boron-loaded gel-fuel ramjet[J].ProgressinPropulsionPhysics, 2011,2: 499-518.

    [5] Wu Zhijian, Hu Lirong. Performance Research of Metallized Gelled Propellant[J].MissileandSpaceVehicle, 2006, 283(03): 52-55.

    [6] Jayaprakash N, Chakravarthy S R. Impingement Atomization of Gelled Fuels. AIAA 2003-316[R], 2003.

    [7] von Kampen J, Madlener K, Ciezki H K. Characteristic Flow and Spray Properties of Gelled Fuels with Regard to the Impinging Jet Injector Type. AIAA 2006-4573[R], 2006.

    [8] von Kampen J, Alberio F, Ciezki H K. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J].AerospSciTechnol, 2007,11:77-83.

    [9] Baek G, Kim S, Han J, et al. Atomization characteristics of impinging jets of gel material containing nanoparticles[J].JNon-NewtonFluid, 2011,166(21): 1272-1285.

    [10] Metzner A B, Reed C J. Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions[J].AmericanInstituteofChemicalEngineeringJournal, 1955,4(1): 189-204.

    [11] Fu Q, Yang L, Zhuang F. Effects of Orifice Geometry on Spray Characteristics of Impinging Jet Injectors for Gelled Propellants[R].AIAA 2013-3704, 2013.

    [12] Ryan H M, Anderson W E, Pal S, et al. Atomization characteristics of impinging liquid jets[J].JPropulPower, 1995,11(1): 135-145.

    [13] Dombrowski N, Johns W R. The aerodynamic instability and disintegration of viscous liquid sheets[J].ChemEngSci, 1963,18(3): 203-214.

    [14] Squire H B. Investigation of the instability of a moving liquid film[J].BritishJournalofAppliedPhysics, 1953,4: 167-169.

    [15] Chojnacki K T. Atomization and mixing of impinging non-Newtonian jets[D]. Huntsville: University of Alabama-Huntsville, 1997.

    [16] Heislbetz B, Madlener K, Ciezki H K. Breakup Characteristics of a Newtonian Liquid Sheet formed by a Doublet Impinging Jet Injector.AIAA2007-5694[R], 2007.

    av免费在线观看网站| 久久久久久久精品吃奶| 黄片大片在线免费观看| 精品久久久久久成人av| 搞女人的毛片| 91成人精品电影| 国产av一区二区精品久久| 日韩视频一区二区在线观看| 三级毛片av免费| 观看免费一级毛片| 一级黄色大片毛片| 久久99热这里只有精品18| 免费看美女性在线毛片视频| 国内精品久久久久久久电影| 热re99久久国产66热| 一级a爱视频在线免费观看| 国产男靠女视频免费网站| 男女床上黄色一级片免费看| 成人手机av| 亚洲av电影不卡..在线观看| 色婷婷久久久亚洲欧美| 美女大奶头视频| 在线天堂中文资源库| 啪啪无遮挡十八禁网站| 精品一区二区三区四区五区乱码| 波多野结衣巨乳人妻| 国产精品亚洲一级av第二区| 日本 av在线| 免费观看人在逋| 欧美色视频一区免费| √禁漫天堂资源中文www| 真人做人爱边吃奶动态| 麻豆久久精品国产亚洲av| av欧美777| 亚洲九九香蕉| 国产区一区二久久| 欧美日本视频| 成人国产一区最新在线观看| 亚洲无线在线观看| tocl精华| 精品国产乱子伦一区二区三区| 亚洲色图av天堂| 亚洲精品在线观看二区| 极品教师在线免费播放| 久久草成人影院| 看黄色毛片网站| 亚洲精品国产区一区二| 亚洲精品美女久久av网站| 在线观看午夜福利视频| 天堂影院成人在线观看| 夜夜看夜夜爽夜夜摸| 色综合亚洲欧美另类图片| 欧美zozozo另类| 性欧美人与动物交配| 久久国产亚洲av麻豆专区| 欧美乱色亚洲激情| 婷婷精品国产亚洲av在线| 啦啦啦 在线观看视频| 好男人在线观看高清免费视频 | 日韩欧美 国产精品| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 日日爽夜夜爽网站| 午夜福利高清视频| 国产午夜精品久久久久久| 久久人妻av系列| 在线观看日韩欧美| 最近在线观看免费完整版| 禁无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人av激情在线播放| 中文亚洲av片在线观看爽| 丰满的人妻完整版| a在线观看视频网站| 国内久久婷婷六月综合欲色啪| 曰老女人黄片| 欧美午夜高清在线| 免费看十八禁软件| 人人澡人人妻人| 久久香蕉精品热| 在线永久观看黄色视频| 嫁个100分男人电影在线观看| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影| 久久天堂一区二区三区四区| 国产色视频综合| 91老司机精品| 久久欧美精品欧美久久欧美| 性色av乱码一区二区三区2| 日韩一卡2卡3卡4卡2021年| 欧美乱码精品一区二区三区| 一级a爱片免费观看的视频| 成人午夜高清在线视频 | 免费看a级黄色片| 久久人妻福利社区极品人妻图片| 熟女少妇亚洲综合色aaa.| 欧美不卡视频在线免费观看 | 性色av乱码一区二区三区2| 久久久精品国产亚洲av高清涩受| 99热这里只有精品一区 | 香蕉av资源在线| 韩国精品一区二区三区| 久久精品人妻少妇| 国产又爽黄色视频| 丰满的人妻完整版| 视频区欧美日本亚洲| 亚洲精华国产精华精| 欧洲精品卡2卡3卡4卡5卡区| 麻豆成人av在线观看| 黄色女人牲交| 大香蕉久久成人网| 一区二区三区国产精品乱码| 国产精品久久久av美女十八| 久久人妻福利社区极品人妻图片| 午夜福利成人在线免费观看| 日本黄色视频三级网站网址| 天堂√8在线中文| 中文字幕人妻熟女乱码| 精品久久久久久久人妻蜜臀av| 亚洲av成人不卡在线观看播放网| 亚洲精品中文字幕一二三四区| 特大巨黑吊av在线直播 | 国产欧美日韩精品亚洲av| 变态另类丝袜制服| 我的亚洲天堂| 国产免费男女视频| 老熟妇乱子伦视频在线观看| 91成人精品电影| 久久精品国产清高在天天线| 亚洲男人天堂网一区| 极品教师在线免费播放| bbb黄色大片| 精品久久久久久成人av| 黄色a级毛片大全视频| 色播在线永久视频| 久久香蕉精品热| 国产av一区二区精品久久| 精品久久久久久久毛片微露脸| 51午夜福利影视在线观看| a级毛片在线看网站| 女警被强在线播放| 色av中文字幕| 色播在线永久视频| 亚洲精品国产区一区二| 亚洲一区二区三区色噜噜| 午夜福利高清视频| 国产精品久久久人人做人人爽| 国产一区二区在线av高清观看| 成年人黄色毛片网站| av片东京热男人的天堂| 人妻久久中文字幕网| 正在播放国产对白刺激| 国内久久婷婷六月综合欲色啪| 淫妇啪啪啪对白视频| 亚洲五月色婷婷综合| 此物有八面人人有两片| av视频在线观看入口| 日韩欧美国产在线观看| 久久精品人妻少妇| 母亲3免费完整高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 妹子高潮喷水视频| 久久中文字幕一级| 天堂影院成人在线观看| 国产精品影院久久| www.www免费av| 脱女人内裤的视频| 男男h啪啪无遮挡| 亚洲熟女毛片儿| 老汉色av国产亚洲站长工具| 精品午夜福利视频在线观看一区| 中文亚洲av片在线观看爽| 久久精品影院6| 亚洲精品久久国产高清桃花| 这个男人来自地球电影免费观看| 亚洲人成伊人成综合网2020| 男女那种视频在线观看| 一级片免费观看大全| 午夜老司机福利片| 国产精品永久免费网站| 一区二区三区国产精品乱码| 搞女人的毛片| 男女视频在线观看网站免费 | 1024视频免费在线观看| 国产视频内射| 窝窝影院91人妻| 亚洲精品在线美女| 国产av一区二区精品久久| 亚洲aⅴ乱码一区二区在线播放 | 麻豆国产av国片精品| 国产v大片淫在线免费观看| 一级毛片女人18水好多| 久久久久国产精品人妻aⅴ院| 亚洲一区二区三区色噜噜| 一区福利在线观看| 免费高清在线观看日韩| 国产欧美日韩一区二区精品| 特大巨黑吊av在线直播 | 亚洲熟妇熟女久久| 精品久久久久久久末码| 两人在一起打扑克的视频| 黑人欧美特级aaaaaa片| 99国产精品一区二区三区| 精品电影一区二区在线| 亚洲激情在线av| 亚洲欧美一区二区三区黑人| av福利片在线| 国内久久婷婷六月综合欲色啪| 成人欧美大片| 久久国产精品影院| 亚洲美女黄片视频| 亚洲精品国产精品久久久不卡| 免费人成视频x8x8入口观看| 麻豆国产av国片精品| 日韩欧美在线二视频| 国产1区2区3区精品| 侵犯人妻中文字幕一二三四区| 久久久久亚洲av毛片大全| 国产av不卡久久| 国产成人影院久久av| 可以免费在线观看a视频的电影网站| 亚洲av中文字字幕乱码综合 | 免费人成视频x8x8入口观看| 精品熟女少妇八av免费久了| 日韩欧美国产在线观看| 99国产精品一区二区三区| 国产男靠女视频免费网站| 国产精品一区二区三区四区久久 | 首页视频小说图片口味搜索| 看免费av毛片| 国产精品免费视频内射| 精品久久久久久,| 在线天堂中文资源库| 视频在线观看一区二区三区| 欧美色欧美亚洲另类二区| 91老司机精品| 女同久久另类99精品国产91| 丁香欧美五月| 成在线人永久免费视频| 国产真实乱freesex| 黑人欧美特级aaaaaa片| 成年版毛片免费区| 91成人精品电影| 在线天堂中文资源库| www.www免费av| 精品日产1卡2卡| 亚洲av中文字字幕乱码综合 | 18禁美女被吸乳视频| 日本一区二区免费在线视频| 国产人伦9x9x在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美+亚洲+日韩+国产| 久久久久久久久久黄片| 满18在线观看网站| 久久久精品国产亚洲av高清涩受| 制服人妻中文乱码| 国产精品99久久99久久久不卡| 久久国产精品男人的天堂亚洲| 黄色视频不卡| 久久中文字幕人妻熟女| 国产成人影院久久av| 精品久久蜜臀av无| 91在线观看av| 一边摸一边做爽爽视频免费| 久久亚洲精品不卡| av在线天堂中文字幕| 欧美日韩福利视频一区二区| 黄色丝袜av网址大全| 夜夜看夜夜爽夜夜摸| 亚洲熟妇熟女久久| 午夜老司机福利片| 在线十欧美十亚洲十日本专区| 男女做爰动态图高潮gif福利片| 亚洲精华国产精华精| 男女那种视频在线观看| 久久久久久九九精品二区国产 | 亚洲aⅴ乱码一区二区在线播放 | 国产精品野战在线观看| 欧美又色又爽又黄视频| 听说在线观看完整版免费高清| 亚洲成国产人片在线观看| 美女国产高潮福利片在线看| 中文字幕人成人乱码亚洲影| a在线观看视频网站| 99精品在免费线老司机午夜| 波多野结衣高清无吗| 一夜夜www| 欧美大码av| 久久久久亚洲av毛片大全| 日本免费a在线| 日韩欧美国产在线观看| 麻豆久久精品国产亚洲av| 亚洲精品久久成人aⅴ小说| 18美女黄网站色大片免费观看| 国产区一区二久久| 久久久久久久久中文| 搡老岳熟女国产| 国产成人影院久久av| 看片在线看免费视频| 国产真人三级小视频在线观看| 高清毛片免费观看视频网站| 亚洲 欧美一区二区三区| 午夜福利18| 这个男人来自地球电影免费观看| 窝窝影院91人妻| 国产精品久久久av美女十八| 国产成人影院久久av| 波多野结衣巨乳人妻| 99re在线观看精品视频| 两性夫妻黄色片| 亚洲av成人一区二区三| 男女下面进入的视频免费午夜 | 中文字幕av电影在线播放| 亚洲国产精品999在线| 午夜免费激情av| 国产成人精品久久二区二区免费| 精品久久久久久,| 桃红色精品国产亚洲av| 国产1区2区3区精品| 午夜影院日韩av| 俄罗斯特黄特色一大片| 成年女人毛片免费观看观看9| 亚洲国产精品合色在线| 国产又色又爽无遮挡免费看| 欧美黑人巨大hd| 国产精品 欧美亚洲| 久久国产精品影院| 欧美黑人欧美精品刺激| 久久午夜亚洲精品久久| 免费一级毛片在线播放高清视频| 亚洲av成人不卡在线观看播放网| 久久久久久久午夜电影| 亚洲成人久久爱视频| 麻豆一二三区av精品| ponron亚洲| 色综合站精品国产| 老司机午夜十八禁免费视频| 国产精品亚洲美女久久久| 无遮挡黄片免费观看| 亚洲一码二码三码区别大吗| 精品久久久久久成人av| 黄网站色视频无遮挡免费观看| 亚洲,欧美精品.| 国产欧美日韩一区二区精品| 99国产精品99久久久久| av天堂在线播放| 午夜亚洲福利在线播放| 最新在线观看一区二区三区| 国产1区2区3区精品| 好男人电影高清在线观看| 波多野结衣高清作品| 午夜福利在线观看吧| 欧美成人免费av一区二区三区| 搞女人的毛片| 此物有八面人人有两片| 亚洲九九香蕉| 日韩高清综合在线| 在线看三级毛片| 丁香六月欧美| 亚洲精品在线美女| 人人妻,人人澡人人爽秒播| 十八禁网站免费在线| 国产成人影院久久av| 99热这里只有精品一区 | 国产成人精品久久二区二区免费| 国产精品亚洲一级av第二区| 国产精品久久久av美女十八| 天天添夜夜摸| 黄色片一级片一级黄色片| 人妻丰满熟妇av一区二区三区| 亚洲一区中文字幕在线| 久久人人精品亚洲av| 天天添夜夜摸| 免费在线观看亚洲国产| 国产激情偷乱视频一区二区| 老汉色∧v一级毛片| 精品乱码久久久久久99久播| 俺也久久电影网| 久久人妻av系列| 巨乳人妻的诱惑在线观看| 精品久久久久久久末码| 亚洲第一电影网av| 午夜两性在线视频| 长腿黑丝高跟| 国产极品粉嫩免费观看在线| 人人妻人人看人人澡| 神马国产精品三级电影在线观看 | 黄色视频不卡| 久久久精品国产亚洲av高清涩受| 亚洲av片天天在线观看| 精品久久久久久,| 两个人视频免费观看高清| 国产精品久久电影中文字幕| 白带黄色成豆腐渣| 国产私拍福利视频在线观看| 亚洲欧美激情综合另类| 黑人巨大精品欧美一区二区mp4| 免费高清视频大片| 成年女人毛片免费观看观看9| 亚洲精品国产区一区二| 亚洲国产欧美一区二区综合| 国产亚洲精品av在线| 亚洲,欧美精品.| 成熟少妇高潮喷水视频| 波多野结衣高清无吗| 午夜精品在线福利| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看 | 最新美女视频免费是黄的| 黄片小视频在线播放| 黑人欧美特级aaaaaa片| 久久久久久国产a免费观看| 亚洲国产欧美网| 免费看美女性在线毛片视频| 手机成人av网站| 视频在线观看一区二区三区| 老司机靠b影院| 国产精品美女特级片免费视频播放器 | 精品久久久久久久久久免费视频| 老汉色av国产亚洲站长工具| 亚洲午夜理论影院| 制服丝袜大香蕉在线| 岛国在线观看网站| 久久久久九九精品影院| 一进一出抽搐gif免费好疼| 国产熟女午夜一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 制服诱惑二区| av电影中文网址| 巨乳人妻的诱惑在线观看| 桃色一区二区三区在线观看| 亚洲国产高清在线一区二区三 | 日韩欧美三级三区| 亚洲欧美日韩高清在线视频| 日日爽夜夜爽网站| 国产成人系列免费观看| 免费女性裸体啪啪无遮挡网站| 成人精品一区二区免费| 91麻豆精品激情在线观看国产| 人人澡人人妻人| 国产精品久久久人人做人人爽| 久久久久久久久免费视频了| 国产精品久久久久久精品电影 | 啦啦啦免费观看视频1| 国产成人av教育| 成人国产一区最新在线观看| 99久久99久久久精品蜜桃| 他把我摸到了高潮在线观看| 国产精品电影一区二区三区| 亚洲精品色激情综合| 久久国产亚洲av麻豆专区| 亚洲,欧美精品.| 成人亚洲精品av一区二区| 久久精品国产亚洲av香蕉五月| 精品久久久久久成人av| 欧美黑人欧美精品刺激| 黄色丝袜av网址大全| 国产精品二区激情视频| 亚洲人成网站高清观看| or卡值多少钱| 波多野结衣巨乳人妻| 国产黄色小视频在线观看| 国产精品久久久久久精品电影 | 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 欧美最黄视频在线播放免费| 久久人妻福利社区极品人妻图片| 日日夜夜操网爽| 亚洲无线在线观看| 久久国产亚洲av麻豆专区| 日韩视频一区二区在线观看| 激情在线观看视频在线高清| 日本a在线网址| 在线观看免费视频日本深夜| 国产一区二区三区在线臀色熟女| 亚洲一区中文字幕在线| 免费搜索国产男女视频| 亚洲精品一卡2卡三卡4卡5卡| 国产av又大| 精品一区二区三区视频在线观看免费| 免费在线观看亚洲国产| 97人妻精品一区二区三区麻豆 | 色av中文字幕| 亚洲国产精品999在线| 国产成人精品久久二区二区91| 熟女电影av网| 久久久精品欧美日韩精品| 成人国产综合亚洲| 久久九九热精品免费| 欧美成人午夜精品| 可以在线观看的亚洲视频| 丝袜在线中文字幕| www国产在线视频色| 国产av一区二区精品久久| 高清在线国产一区| 成人免费观看视频高清| 色综合婷婷激情| 国产精品久久久久久人妻精品电影| 亚洲国产日韩欧美精品在线观看 | 日本一本二区三区精品| 久久婷婷人人爽人人干人人爱| 国内精品久久久久精免费| 亚洲国产欧洲综合997久久, | 日日干狠狠操夜夜爽| 国产亚洲精品久久久久久毛片| 欧美人与性动交α欧美精品济南到| 男女午夜视频在线观看| 日韩欧美国产在线观看| 波多野结衣av一区二区av| 久久午夜综合久久蜜桃| 午夜免费观看网址| 9191精品国产免费久久| 天天添夜夜摸| 精品不卡国产一区二区三区| 又大又爽又粗| 国产av在哪里看| 亚洲人成伊人成综合网2020| 国产精品久久久人人做人人爽| 亚洲国产中文字幕在线视频| 国产一区二区在线av高清观看| 亚洲av片天天在线观看| 1024视频免费在线观看| 亚洲三区欧美一区| 国产97色在线日韩免费| 一级a爱片免费观看的视频| 91老司机精品| 十八禁网站免费在线| 亚洲自偷自拍图片 自拍| 国产亚洲精品久久久久5区| 国产精品乱码一区二三区的特点| 两个人视频免费观看高清| 亚洲精品国产区一区二| 精品欧美国产一区二区三| 欧美日本亚洲视频在线播放| 久久久国产成人精品二区| 亚洲第一青青草原| 啦啦啦观看免费观看视频高清| 男女之事视频高清在线观看| 手机成人av网站| 国产精品美女特级片免费视频播放器 | 桃红色精品国产亚洲av| 午夜免费成人在线视频| 成年免费大片在线观看| 岛国视频午夜一区免费看| 啦啦啦观看免费观看视频高清| 精品免费久久久久久久清纯| 欧美日韩精品网址| 午夜激情福利司机影院| 久久精品人妻少妇| 丰满人妻熟妇乱又伦精品不卡| 免费av毛片视频| 亚洲国产日韩欧美精品在线观看 | 精品国产乱子伦一区二区三区| 日韩欧美免费精品| 国产精品亚洲美女久久久| 国产色视频综合| 亚洲国产欧美日韩在线播放| 亚洲精品国产一区二区精华液| 国产真人三级小视频在线观看| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 精品少妇一区二区三区视频日本电影| 成人手机av| 黄网站色视频无遮挡免费观看| 99久久精品国产亚洲精品| 一进一出抽搐gif免费好疼| 女警被强在线播放| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区精品| 国产高清视频在线播放一区| 国产日本99.免费观看| 日韩欧美三级三区| 50天的宝宝边吃奶边哭怎么回事| 久久久久久大精品| 搞女人的毛片| 大型av网站在线播放| 国产精品1区2区在线观看.| 高清毛片免费观看视频网站| 亚洲一区二区三区色噜噜| 成熟少妇高潮喷水视频| 男人舔女人的私密视频| 精品久久久久久久久久久久久 | 性欧美人与动物交配| 一二三四社区在线视频社区8| 美女国产高潮福利片在线看| 午夜激情福利司机影院| 国产精品免费一区二区三区在线| 欧美 亚洲 国产 日韩一| 国产av又大| 欧美黑人精品巨大| 亚洲午夜理论影院| 香蕉国产在线看| 男人舔女人下体高潮全视频| www.精华液| 黄色女人牲交| 成人国语在线视频| 黄色视频不卡| 又黄又粗又硬又大视频| 真人一进一出gif抽搐免费| 亚洲一区二区三区色噜噜| 国产激情久久老熟女| 成在线人永久免费视频| 亚洲最大成人中文| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼| 国产片内射在线| 国产精品一区二区三区四区久久 | 草草在线视频免费看| 亚洲国产日韩欧美精品在线观看 | 亚洲成国产人片在线观看| 免费高清视频大片| 亚洲午夜理论影院| 男人操女人黄网站| 国产爱豆传媒在线观看 | 亚洲中文日韩欧美视频|