劉蘭初,王 佩
(湖南工程學(xué)院 理學(xué)院, 湘潭 411104)
時(shí)標(biāo)上一類具時(shí)滯的動(dòng)力方程的新的非振動(dòng)準(zhǔn)則
劉蘭初,王 佩
(湖南工程學(xué)院 理學(xué)院, 湘潭 411104)
考慮了時(shí)標(biāo)上時(shí)滯動(dòng)力方程xΔ(t)+P(t)f(x(τ(t)))=0,t≥t0∈T.的非振動(dòng)性,獲得新的非振動(dòng)解的存在條件.其中P(t),τ(t)∈Crd([t0,.),R+),R+=[0,),f(u)·u>0,τ(t)是非減函數(shù).當(dāng)T=R,T=Z,f(u)=u時(shí),是該方程的特殊情形,獲得的結(jié)論是對(duì)已有結(jié)果的改進(jìn)與推廣.
時(shí)標(biāo); 時(shí)滯; 非振動(dòng)準(zhǔn)則 ;Δ導(dǎo)數(shù)
Stefan Hilger[1]對(duì)時(shí)標(biāo)上時(shí)滯動(dòng)力型方程的開創(chuàng)性研究,引起了廣泛關(guān)注[2-10].時(shí)標(biāo)上的動(dòng)力方程不僅能夠統(tǒng)一微分方程和離散方程,還能揭示更為復(fù)雜的動(dòng)力系統(tǒng)[7-10],例如在昆蟲數(shù)量模型、神經(jīng)網(wǎng)絡(luò)模型、流行病傳播模型等等中都有廣泛應(yīng)用.
首先給出一些基本定義,詳見[1-4]將離散和連續(xù)形式統(tǒng)一起來的時(shí)標(biāo)(實(shí)數(shù)R的任意一個(gè)非空閉子集稱作一個(gè)時(shí)標(biāo),本文以符號(hào)T表示).常用的集合,如R,Z,N,[0,1]∪N,都是時(shí)標(biāo).
對(duì)于函數(shù)f:T→R,如果對(duì)任意的ε>0,存在U的某一鄰域,即U=(t-δ,t+δ)∩T,使得
|[f(σ(t))-f(s)]-fΔ(t)[σ(t)-s]|≤ε|σ(t)-s|
成立,則稱為f在t處是可導(dǎo)的,這樣的導(dǎo)數(shù)稱作Δ導(dǎo)數(shù)或者Hilger導(dǎo)數(shù).
本文考慮時(shí)標(biāo)上時(shí)滯動(dòng)力方程
xΔ(t)+P(t)f(x(τ(t)))=0,t≥t0∈T.
(1)
其中P(t),τ(t)∈Crd([t0,.),R+),R+=[0,),f(u)·u>0,τ(t)是非減函數(shù).當(dāng)T=R,T=Z,f(u)=u時(shí),方程(1)已有一些非振動(dòng)準(zhǔn)則[11-12],本文將這些結(jié)果推廣到一般的時(shí)標(biāo)上,并獲得新的非振動(dòng)準(zhǔn)則.
引理1[3]若方程(1)存在最終正解當(dāng)且僅當(dāng)相應(yīng)方程
xΔ(t)+P(t)f(x(τ(t)))≤0(t≥t0)
存在最終正解.
引理2[5,6]設(shè)P(t)∈Crd([t0,.),R+),考慮二階方程
yΔ2(t)+P(t)f(y(t))=0,t≥t0
(2)
則方程(2)存在最終正解當(dāng)且僅當(dāng)
(3)
其中t充分大.
定理1 如果
(4)
且二階方程
(5)
存在最終正解,則方程
xΔ(t)+f(x(τ(t)))=0,t≥t0∈T.
(6)
存在最終正解.
證明設(shè)y(t)是方程(5)的最終正解,由(2)-(4)知存在T≥t0,使得:
(7)
設(shè)u(t)=yΔ(t),顯然u(t)>0,uΔ(t)≤0,且
(8)
定義
(9)
t)u(s)Δs+2ey(T)≤ω(t)-
ω(t)-u(t)
即:
(10)
v0(t)=ω(t),t≥T,vn(t)=
由歸納,有:
u(t) 1,2,... u(t)≤vn(t)≤ω(t)=2ey(t),t≥T (11) 且 (12) (12)代人(5),有 或者 (13) (14) 將上式代入(14)有 zΔ(t)+f(z(τ(t)))≤0, (15) t足夠大.這表明不等式(15)有一最終正解,由引理1知相應(yīng)的方程(6)有最終正解. 注釋:當(dāng)方程(1)中P(t)=1,即為方程(6). 定理2 假設(shè)(4)成立,且 (16) 成立,則方程(1)有一最終正解.證明類似與定理1.(略) 定理3 假設(shè)存在0t0,使得 (17) 則方程(1)存在最終正解. [1] S. Hilger. Analysis on Measure Chains A Unified Approach to Continuous and Discrete Calculus[J]. Results in Matematics 1990(18):18-56. [2] S.H.Saker. Oscillation of Second-order Nonlinear Neutral Delay Dynamic Equations on Time Scales[J].Journal of Computational and Applied Matematics, 2005, 39(3): 377-396. [3] J.S..Yu,Z.C.Wang,B.G.Zhang,X.Z.Qian.Oscillation of Differential Equations with Deviating Ayguments[J].Panamer Math,1992(2):59-78.. [4] 楊 軍,張玉靜.時(shí)標(biāo)上二階混合型邊值問題的正解存在性[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2008,31(4): 592-598. [5] E.Hille,Non-oscillation Theorems,Trans.Amer.Math.Soc.1948(64):234-252. [6] M.K.Kwong,Oscillation of First Order Delay Equations[J].Math.Anal.Appl,1991(156): 274-286. [7] 劉光輝,夏文華.測(cè)度鏈上一階中具有多時(shí)滯的非線性中立型泛函微分方程的振動(dòng)性[J].湖南工程學(xué)院自科版,2011,21(4):35-37. [8] Xun-huan Deng,Qi-ru Wang, Zhan Zhou. Oscillation Criteria for Second Order Nonlinear Delay Dynamic Equations on Time Scales[J].Journal of Computational and Applied Matematics, 2015(269): 834-840. [9] Qinglong WangZhijun Liu. Existence and Stability of Positive Almost Periodic Solutions for a Competitive System on Time Scales[J]. Matematics and Computers in Simulation, 2017(1): 34-40. [10] Quanxin Cheng, Jinde Cao. Synchronization of Complex Dynamical Networks with Discrete Time Delays on Time Scales[J].Neurocomputing, 2015,151(2):729-736. [11] Jianhua,Xianhua Tang. New Nonoscillation Criteria for Delay Differential Equations[J].Math.Anal,2004(290): 1-9. [12] Xiaoping Wang. Oscillation for Higher Order Superlinear Rdelay Differential Equations with Unstable Type[J].Math.Anal,2004(289): 379-386. NovelNonoscillatoryCriteriaforDelayDynamicEquationonTimeScales LIU Lan-chu, WANG Pei (College of Science, Hunan Institute of Engineering, Xiangtan 411104, China) Considering the delay dynamic equationsxΔ(t)+P(t)f(x(τ(t)))=0,t≥t0∈T. WhereP(t),τ(t)∈Crd([t0,.),R+),R+=[0,),f(u)·u>0,τ(t)is nondecreasing, novel nonoscillation criteria are obtained. Our results as a special case whenT=R,T=Z,f(u)=u, are involved improve some nonoscillation results. time scales; delay; nonoscillatory criteria; delta differential O175.1 A 1671-119X(2017)03-0040-03 2017-03-02 湖南省教育廳科研資助項(xiàng)目(13C188). 劉蘭初(1972-),女,碩士,副教授,研究方向:泛函微分方程及其應(yīng)用.