張海召,周宏勇,王家喜
?
丙烯酸酯改性桐油基乳化劑的合成、表征及光固化性能
張海召,周宏勇,王家喜
(河北工業(yè)大學(xué)化工學(xué)院,天津300130)
桐油和馬來酸酐經(jīng)Diels-Alder反應(yīng)形成桐油二酸酐(TM2)、桐油三酸酐(TM3),桐油三酸酐與不同比例的甲基丙烯酸β羥乙酯(HEMA)反應(yīng),將桐油三酸酐及其與HEMA反應(yīng)物中的酸酐官能團(tuán)水解,合成出含3~6個(gè)羧基官能團(tuán)丙烯酸酯改性的桐油衍生物。產(chǎn)物結(jié)構(gòu)經(jīng)紅外光譜和核磁共振氫譜表征。測(cè)定了桐油基衍生物鈉鹽的表面張力及CMC值,考察了改性桐油基乳化劑對(duì)丙烯酸酯類單體及低聚物的乳化性能。結(jié)果表明,隨著桐油基衍生物中的羧酸鈉基團(tuán)的增加,衍生物的親水性增強(qiáng),CMC值呈上升趨勢(shì),乳化性能增強(qiáng)。丙烯酸酯改性桐油基衍生物及其復(fù)配物可以光固化,可以通過調(diào)節(jié)光固化體系的組分得到耐水性很好的光固化膜。
生物質(zhì);桐油;多子乳化劑;合成;乳液;紫外光固化;可持續(xù)性
隨著化石能源的日益枯竭和環(huán)境問題的日益嚴(yán)峻,人們對(duì)于可再生資源的開發(fā)利用越來越重 視[1-3]。桐油是一種可再生資源,因其固化后的涂層具有耐水、耐腐蝕等特性,受到人們的廣泛關(guān)注[4-5]。熟桐油常被用作涂料或與其他涂料復(fù)配以改善涂料性能[6],但目前桐油產(chǎn)品相對(duì)單一,技術(shù)水平低,產(chǎn)品附加值低,對(duì)桐油改性以提高其物理性能、應(yīng)用及經(jīng)濟(jì)價(jià)值,具有重要理論意義及應(yīng)用前景[7-8]。
桐油的主要成分是十八碳共軛三烯-9,11,13-酸三甘油酯,其改性位點(diǎn)主要是酯基和共軛三鍵。目前桐油主要用于酚醛樹脂[9]、環(huán)氧樹脂[10]、乙烯基樹脂[11]以及醇酸樹脂[12]等的改性。黃玉剛等[13]以桐油馬來酸酐為原料,制備出桐油二酸酐,利用酸酐的酯化反應(yīng)制備了可光固化的桐油基樹脂。利用桐油分子上的3個(gè)共軛鏈的反應(yīng),可以進(jìn)一步拓展桐油的改性空間。本文系統(tǒng)研究了桐油和馬來酸酐的反應(yīng),制備出桐油二酸酐、桐油三酸酐,進(jìn)一步與甲基丙烯酸β羥乙酯(HEMA)反應(yīng)合成出系列可光固化及可乳化的桐油基衍生物,表征了其結(jié)構(gòu),探討了其在光固化涂料方面的應(yīng)用性能。
1.1 原料和儀器
試劑:桐油(tung oil),綿陽(yáng)匯恒貿(mào)易有限公司,桐酸甘油酯的含量約為84%;馬來酸酐(MA),上海試劑三廠;甲基丙烯酸β羥乙酯(HEMA),三乙胺,天津化學(xué)試劑有限公司;對(duì)甲氧基苯酚,天津希恩斯生化科技有限公司;1,6-己二醇二丙烯酸酯(HDDA),聚氨酯丙烯酸酯(PUA),天津市久日化學(xué)有限公司;1173光引發(fā)劑,汽巴精化公司;雙季戊四醇六丙烯酸酯(DPHA),實(shí)驗(yàn)室自制。
儀器:紅外光譜儀,Bruker Tensor-27,德國(guó)布魯克公司;核磁共振波譜儀,AVANCE 400 Ultrashield,德國(guó)布魯克;DDSJ-308A型電導(dǎo)率儀,上海儀電科學(xué)儀器股份有限公司;JYW-200A新型全自動(dòng)表面張力儀,承德金和儀器制造有限公司。UV光固化箱,東莞市優(yōu)威通用機(jī)械設(shè)備有限公司;QHQ-A型漆膜鉛筆劃痕硬度儀、QFH 型漆膜劃格儀,天津市中亞材料試驗(yàn)機(jī)廠。
1.2 桐油酸酐(TM2、TM3)的合成
在裝有冷凝管、溫度計(jì)的100mL三口燒瓶中加入20.02g桐油(其中桐酸甘油酯的含量約為84%,桐酸甘油酯16.80g,0.01924mol),3.77g馬來酸酐(2倍摩爾量),磁力攪拌,反應(yīng)初期升溫至70℃,待固體溶解后升溫至100℃反應(yīng)1h后,得到淺黃色透明液體。產(chǎn)物經(jīng)紅外、核磁表征。桐油與3倍摩爾量馬來酸酐時(shí)可制得TM3。
1.3 桐油三酸酐與甲基丙烯酸β羥乙酯的反應(yīng)
在100mL三口瓶中加入26.62g桐油三酸酐,加入一定量的甲基丙烯酸β羥乙酯(HEMA),總質(zhì)量1%的三乙胺催化劑及0.5%的對(duì)甲氧基苯酚阻聚劑,升溫至100℃,反應(yīng)1.5h,得到棕黃色透明黏稠液體。產(chǎn)物稍微降溫趁熱轉(zhuǎn)移至黑色塑料瓶中保存。產(chǎn)物經(jīng)紅外、核磁表征。
1.4 乳化劑溶液的配制及光固化膜的制備
(1)將TM3與HEMA反應(yīng)產(chǎn)物用等當(dāng)量NaOH水溶液中和,桐油基衍生物中的酸酐水解成羧酸,羧酸全部轉(zhuǎn)化為羧酸鈉,即得到多子乳化劑溶液。
(2)將合成的丙烯酸酯改性桐油衍生物與其他光固化單體及樹脂復(fù)配成光固化膠及光固化乳液體系,在4%光引發(fā)劑1173的引發(fā)下,在500J/ (cm2·min)紫外光固化箱中光固化。
1.5 測(cè)試與表征
1.5.1 表面張力的測(cè)定
配制不同濃度的乳化劑溶液,用吊環(huán)法測(cè)定不同濃度下的表面張力。
1.5.2 CMC值的測(cè)定
配制6mmol/L的乳化劑溶液,不斷稀釋下測(cè)得不同濃度的乳化劑溶液的電導(dǎo)率,分別對(duì)低濃度 和高濃度段電導(dǎo)率作曲線擬合,其交點(diǎn)為乳化劑CMC值。
1.5.3 乳液穩(wěn)定性測(cè)試
用60mmol/L的乳化劑與不同量單體及樹脂在機(jī)械攪拌最大轉(zhuǎn)速下攪拌1h乳化,靜置記錄其分層時(shí)間。
1.5.4 固化膜性能測(cè)試
參考GB/T 1728—2006 用指觸法測(cè)涂膜表干時(shí)間;參照0047B/T 6739—2006測(cè)試涂膜的鉛筆硬度;參照GB/T 9286—1998測(cè)試涂膜在玻璃上的附著力;參照GB/T 1733—1993測(cè)試涂膜的耐水性。
2.1 丙烯酸酯改性桐油基衍生物的合成
2.1.1 桐油酸酐的合成
桐油中的共軛不飽和鍵與馬來酸酐易發(fā)生Diels-Alder(D-A)反應(yīng),生成桐油酸酐,反應(yīng)條件對(duì)產(chǎn)物的分布具有重要影響[14]。由于桐油為混合物,每分子中有3條不飽和鏈,控制MA的加入量及反應(yīng)條件,可以控制桐油二酸酐(TM2)和桐油三酸酐(TM3)的形成。文獻(xiàn)報(bào)道大多數(shù)桐油和馬來酸酐反應(yīng)以有機(jī)錫為催化劑[13],經(jīng)過研究發(fā)現(xiàn),溫度對(duì)馬來酸酐與桐油反應(yīng)影響較大,溫度低反應(yīng)很慢,有機(jī)錫催化劑并不能明顯降低反應(yīng)溫度。在無催化劑的條件下,以紅外光譜跟蹤80℃、100℃、120℃及140℃下桐油與3倍量的馬來酸酐反應(yīng)的情況,結(jié)果表明80℃下反應(yīng)緩慢,100℃反應(yīng)1h后桐油的共軛三鍵的紅外吸收峰幾乎完全消失,反應(yīng)程度能達(dá)到96%。桐油及桐油酸酐的FTIR如圖1所示,991cm–1為桐油共軛三鍵的面外彎曲振動(dòng)紅外吸收峰,兩倍量馬來酸酐與桐油反應(yīng)的產(chǎn)物(TM2)中991cm–1的吸收峰明顯減弱但未消失,3倍量馬來酸酐與桐油反應(yīng)的產(chǎn)物中該峰完全消失,說明桐油分子上的共軛三鍵可以同馬來酸酐反應(yīng)形成三酸酐TM3。
圖1 桐油、TM2和TM3的紅外光譜圖
桐油及桐油酸酐的1H NMR見圖2,從圖中可以看出,隨著加成反應(yīng)的進(jìn)行,桐油中的烯鍵上的氫信號(hào)(8~13),TM2烯鍵上的氫信號(hào)(11~17)及TM3烯鍵上的氫信號(hào)(11~13)明顯減弱,峰型也發(fā)生很大變化。依據(jù)圖2(b)中的各峰積分面積比例確定桐油與兩個(gè)馬來酸酐反應(yīng)形成TM2,進(jìn)一步與馬來酸酐反應(yīng),共軛三烯的氫信號(hào)[圖2(b)中14~17]完全消失。由于桐油結(jié)構(gòu)較復(fù)雜,1H NMR歸屬較困難,TM 2經(jīng)1H-1H COSY譜(圖3)分析,從圖3中可以看出,信號(hào)3和6相關(guān),為甘油酯緊連的兩個(gè)亞甲基氫;6′和8相關(guān),為新生成的六元環(huán)相鄰的兩個(gè)氫;5和5′分別與12和12′相關(guān),7和13、13′相關(guān),9和10相關(guān),11和14相關(guān),14和17相關(guān),12、17與15、16相關(guān)。結(jié)合圖2(b)、圖2(c)中信號(hào)7、8、9的積分比例分別為1∶2∶2及3∶6∶4,及TM2的1H-1H COSY譜分析,TM2及TM3結(jié)構(gòu)各質(zhì)子信號(hào)歸屬如圖2所示。
2.1.2 丙烯酸酯改性桐油及衍生物的合成
在100℃以三乙胺為催化劑,桐油三酸酐與甲基丙烯酸β羥乙酯以摩爾比1∶1、1∶2、1∶3反應(yīng)1.5h后,選擇性地合成了桐油三酸酐單β羥乙酯(TM3H1),桐油三酸酐二β羥乙酯(TM3H2)和桐油三酸酐三β羥乙酯(TM3H3),產(chǎn)物經(jīng)紅外光譜和核磁共振氫譜表征。桐油三酸酐與3倍甲基丙烯酸β羥乙酯反應(yīng)前后的FTIR如圖4所示,加入HEMA時(shí),體系中在3508cm–1的羥基吸收峰,1848cm–1、1778cm–1、1035cm–1的酸酐特征吸收峰反應(yīng)后幾乎消失,說明甲基丙烯酸β羥乙酯中的羥基與酸酐完全反應(yīng),生成了目標(biāo)產(chǎn)物TM3H3。
2.2 多子乳化劑表面張力測(cè)試
將桐油三酸酐和桐油三酸酐與甲基丙烯酸β羥乙酯反應(yīng)后的產(chǎn)物TM3H1及TM3H2水解,形成羧基官能團(tuán)數(shù)為4~6的丙烯酸酯改性的桐油基衍生物,TM3H3含有3個(gè)羧基。將羧酸改性的桐油用堿等當(dāng)量中和,形成含3~6個(gè)羧酸鈉基團(tuán)的桐油基衍生物,簡(jiǎn)稱為3~6子乳化劑。桐油及乳化劑的表面張力測(cè)試結(jié)果如圖5所示,與純水(實(shí)測(cè)表面張力69mN/m)相比,4種多子乳化劑均能降低水的表面張力。表面張力隨其濃度的增加而下降,當(dāng)乳化劑濃度大于2.5mmol時(shí),溶液的表面張力隨濃度的變化趨于平穩(wěn),逐漸接近水平。乳化劑濃度為1.5mmol/L時(shí),3~6子乳化劑表面張力分別為50.2mN/m、48.8mN/m、47.2mN/m和45.2mN/m。
圖2 桐油、TM2、TM3的1H NMR圖
圖3 桐油二酸酐TM2的二維核磁圖
圖4 TM3與HEMA混合物反應(yīng)前后紅外對(duì)比圖
圖5 多子乳化劑的表面張力-濃度曲線
2.3 多子乳化劑的CMC的測(cè)定
乳化劑的CMC值是評(píng)價(jià)乳化劑性能的重要指標(biāo)。參照文獻(xiàn)[15]的方法,以電導(dǎo)率法測(cè)得了多子乳化劑的CMC值,與表面張力擬合結(jié)果對(duì)比,電導(dǎo)率法得到的結(jié)果擬合度更高,結(jié)果也更準(zhǔn)確。3~6子乳化劑的CMC測(cè)試曲線經(jīng)擬合得到的CMC值分別為1.42mmol/L、1.64mmol/L、1.81mmol/L及1.88mmol/L。CMC測(cè)試結(jié)果表明,從3子到6子,分子中親水性基團(tuán)增多,乳化劑的CMC值呈現(xiàn)逐漸升高的趨勢(shì)。對(duì)于含有多個(gè)羧基的化合物而言,不同中和度的多羧基化合物乳化能力也不同。三羧基、四羧基改性桐油衍生物在二倍量堿中和時(shí)有較多渾濁,無法得到澄清溶液。四羧基改性桐油衍生物經(jīng)3倍堿及4倍堿中和時(shí)CMC值變化不大。五羧基改性桐油衍生物經(jīng)三倍堿中和時(shí)CMC值在1.45mmol/L,4倍堿中和時(shí)CMC值在1.65mmol/L,變化較為明顯。六羧基改性桐油衍生物經(jīng)4倍堿、5倍堿中和時(shí)其CMC值均在1.88mmol/L左右,無明顯降低。
2.4 多子乳化劑的乳化性能
中和后得到的桐油基多子乳化劑能夠乳化黏度較大的光固化單體及低聚物形成穩(wěn)定的水乳液。不同乳化劑乳化性能不同,其穩(wěn)定性和外觀也有較大差別,乳液性能列于表1。6子乳化劑乳化的HDDA水乳液(固含量60%)的穩(wěn)定性能達(dá)到3個(gè)月以上,乳液長(zhǎng)期放置分層后經(jīng)攪拌能二次乳化形成均勻的乳液。
2.5 改性桐油衍生物的光固化性能
合成的丙烯酸酯改性桐油衍生物既含有可光固化的丙烯酸基團(tuán),也含有可經(jīng)中和形成親水性的基團(tuán)的羧酸,丙烯酸酯改性的桐油基乳化劑可以光固化,光交聯(lián)的乳化劑的水溶性大大下降,固化后的膜材料的耐水性可望得到改善。改性桐油基衍生物及其復(fù)配物的光固化結(jié)果列于表2。丙烯酸酯改性的桐油衍生物乳化的光固化體系及改性桐油復(fù)配的光固化體系在紫外光照下快速固化形成不同硬度的膜,膜的硬度及光固化速度與光固化體系中的丙烯酸酯官能團(tuán)的含量有關(guān),丙烯酸酯官能團(tuán)越多,固化越快,膜的硬度也越高。交聯(lián)密度過大后會(huì)導(dǎo)致膜的附著力下降,丙烯酸酯改性桐油衍生物TM3H3與HDDA、DPHA組合的水乳液具有較快的光固化速度,可形成綜合性能良好的光固化膜。丙烯酸酯改性的桐油衍生物與HDDA直接復(fù)配物也具有很好的光固化速度,形成的膜綜合性能較好。丙烯酸酯改性的桐油衍生物及其光固化體系的進(jìn)一步應(yīng)用研究還在進(jìn)行中。
表1 多子乳化劑乳化性能
注:所用乳化劑溶液濃度均為0.06mol/L的鈉鹽溶液。
表2 改性桐油及其復(fù)配物的光固化性能
注:所用乳化劑溶液濃度均為0.06mol/L的鈉鹽溶液,以4%的1173引發(fā)光固化。
(1)在無催化劑條件下,以桐油、馬來酸酐以摩爾比為1∶2及1∶3于100℃反應(yīng)1h可以形成桐油二馬來酸酐及桐油三馬來酸酐加合物,轉(zhuǎn)化率達(dá)96%以上。進(jìn)一步與甲基丙烯酸羥乙酯反應(yīng)及酸酐的水解,制備出不同羧基含量的改性桐油基衍生物。產(chǎn)物結(jié)構(gòu)經(jīng)紅外光譜、1H NMR、二維核磁譜圖確定。
(2)所得羧酸衍生物鈉鹽多子乳化劑能夠明顯降低水溶液的表面張力,當(dāng)乳化劑濃度為1.5mmol/L時(shí),3~6子乳化劑表面張力分別為50.2mN/m、48.8mN/m、47.2mN/m和45.2mN/m。通過電導(dǎo)率法測(cè)定出3~6子乳化劑CMC值分別為1.42mmol/L、1.64mmol/L、1.81mmol/L及1.88mmol/L。
(3)多羧酸改性桐油衍生物不僅可以用作乳化劑,也可以直接用于光固化樹脂直接光固化,作為乳化劑可以乳化黏度較大的丙烯酸酯及丙烯酸酯基樹脂形成均勻乳液,乳液沉降分層后可以經(jīng)攪拌二次乳化。所得乳液可光固化成膜。
[1] TATIYA P D,MAHULIKAR P P,GITE V V.Designing of polyamidoamine-based polyurea microcapsules containing tung oil for anticorrosive coating applications[J]. Journal of Coatings Technology and Research,2016,13(4):715-726.
[2] ADEKUNLE A,ORSAT V,RAGHAVAN V.Lignocellulosic bioethanol: a review and design conceptualization study of production from cassava peels[J].Renewable and Sustainable Energy Reviews,2016,64:518-530.
[3] SINDHU R,GNANSOUNOU E,BINOD P,et al.Bioconversion of sugarcane crop residue for value added products-an overview[J].Renewable Energy,2016,98:203-215.
[4] WU J B,ZHANG T,MA G Z,et al.Synthesis of a tung oil-rosin adductthe Diels-Alder reaction:its reaction mechanism and properties in an ultraviolet-curable adhesive[J].Journal of Applied Polymer Science,2013,130(6):4201-4208.
[5] FAYYAD E M,ALMAADEED M A,JONES A.Encapsulation of tung oil for self-healing coatings in corrosion applications[J].Science of Advanced Materials,2015,7(12):2628-2638.
[6] 萬長(zhǎng)鑫,肖邵博,黃瓊濤,等.改性天然生漆復(fù)合涂料的制備與性能研究[J].林產(chǎn)工業(yè),2016,43(3):24-28.
WAN C X,XIAO S B,HUANG Q T,et al.Preparation and properties of modified raw lacquer composite coating[J].China Forest Products Industry,2016,43(3):24-28.
[7] 黃坤,夏建陵.桐油及其衍生物的改性在高分子材料中的應(yīng)用進(jìn)展[J].化工進(jìn)展,2008,27(10):1588-1592.
HUANG K,XIA J L.Progress of modification of tung oil and its derivatives in the application of polymer materials[J].Chemical Industry and Engineering Progress,2008,27(10):1588-1592.
[8] MEIORIN C,ARANGUREN M I,MOSIEWICKI M A.Polymeric networks based on tung oil:reaction and modification with green oil monomers[J].European Polymer Journal,2015,67:551-560.
[9] ZHANG D B,ZE L,YU C J,et al.Preparation of nano- palygorskite/tung oil/boric acid triple modified resin reinforced composite woven brake band and its friction and wear properties[J]. Journal of the Balkan Tribological Assiociation,2016,22(1A):579-591.
[10] XIN J N,LI M,LI R,et al.Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt[J].ACS Sustainable Chemistry and Engineering,2016,4(5):2754-2761.
[11] YANG X J,LI S H,XIA J L,et al.Novel renewable resource-based UV-curable copolymers derived from myrcene and tung oil:preparation, characterization and properties[J].Industrial Crops and Products,2015,63:17-25.
[12] CHITTAVANICH P,MILLER K,SOUCEK M D.A photo-curing study of a pigmented UV-curable alkyd[J].Progress in Organic Coatings,2012,73(4):392-400.
[13] HUANG Y G,PANG L X,WANG H L,et al.Synthesis and properties of UV-curable tung oil based resinsmodification of Diels-Alder reaction, nonisocyanate polyurethane and acrylates[J]. Progress in Organic Coatings,2013,76(4):654-661.
[14] HUANG Y G,YE G D,YANG J W.Synthesis and properties of UV-curable acrylate functionalized tung oil based resinsDiels-Alder reaction[J].Progress in Organic Coatings, 2015,78:28-34.
[15] 陳玉煥,侯安宇,張姝明,等.電導(dǎo)法測(cè)定水溶性表面活性劑CMC實(shí)驗(yàn)的改進(jìn)[J].廣州化工,2016(6):130-132.
CHEN Y H,HOU A Y,ZHANG S M,et al.Experimental improvement on determination of critical micelle concentration of soluble surfactant by conductometric method[J]. Guangzhou Chemical Industry,2016(6):130-132.
Synthesis, characterization and UV curable property of acrylate modified tung oil-based emulsifier
ZHANG Haizhao,ZHOU Hongyong,WANG Jiaxi
(School of Chemical Engineering, Hebei University of Technology, Tianjin 300130,China)
Tung oil anhydrides(TM2 and TM3)were synthesized through the Diels-Alder reaction of tung oil and maleic anhydride(MA). The TM3 reacted with 2-hydroxyethyl methacrylate(HEMA)at different ratios forming tung oil ester, the rest anhydride hydrolyzed to yield tung oil derivatives with 3~6 carboxyl groups. The obtained products were characterized by FTIR and1H NMR.The CMC value and surface tension of the tung oil base derivatives were measured by conductivity. The emulsifying performance of sodium carboxylate for acrylic monomers and oligomers was evaluated.The results showed that the hydrophilic of derivatives and the CMC values were increased with the increase of sodium carboxylate group of derivative, and then the emulsifying ability enhanced. The acrylate modified tung oil derivatives and their composite were UV curable. The cured film with excellent water resistance can be obtained through the tuning the formula of UV curable composite.
biomass;tung oil;multi-head emulsifier;synthesis;emulsion;UV curable;sustainability
TQ630
A
1000–6613(2017)10–3860–06
10.16085/j.issn.1000-6613.2017-0270
2017-02-22;
2017-04-16。
張海召(1990—),男,碩士研究生。
王家喜,教授,博士生導(dǎo)師,主要從事功能高分子材料及其應(yīng)用研究。E-mail:wangjiaxi@hebut.edu.cn。