周建偉
摘 要: 為了提高運(yùn)動(dòng)損傷病理診斷有效性,提出基于三維傳感跟蹤的運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征提取方法。采用三維傳感跟蹤識(shí)別方法進(jìn)行運(yùn)動(dòng)損傷動(dòng)作的圖像采集,對(duì)采集的三維圖像進(jìn)行邊緣輪廓檢測(cè)和角點(diǎn)檢測(cè),提取反應(yīng)運(yùn)動(dòng)損傷細(xì)節(jié)特征的關(guān)鍵特征點(diǎn),采用損傷部位的形變位移估計(jì)方法實(shí)現(xiàn)運(yùn)動(dòng)損傷動(dòng)作的統(tǒng)計(jì)信息特征提取和損傷程度評(píng)估,結(jié)合圖像的塊分割方法實(shí)現(xiàn)運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征提取。仿真結(jié)果表明,采用該方法進(jìn)行運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征提取和三維傳感跟蹤識(shí)別,對(duì)運(yùn)動(dòng)損傷動(dòng)作圖像的特征表達(dá)能力較好,實(shí)現(xiàn)可視化的運(yùn)動(dòng)損傷病理診斷和治療。
關(guān)鍵詞: 三維傳感跟蹤; 圖像采集; 運(yùn)動(dòng)損傷; 動(dòng)作細(xì)節(jié); 特征提取
中圖分類(lèi)號(hào): TN911?34; TP391 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2017)20?0101?03
Abstract: In order to improve the effectiveness of pathological diagnosis of sports injury, a method of sports injury motion detail feature extraction based on 3D sensing tracking is proposed. The 3D sensing tracking and recognition method is used to carry out the image acquisition for the sports injury action. The edge contour detection and corner detection of the acquired 3D image are performed to extract the key feature points embodying the sports injury detail features. The deformational displacement estimation method for an injured part is used to extract the statistical information characteristics of the sports injury action and estimate the injury degree, and combined with the image block segmentation method to extract the motion detail feature of sports injury. The simulation results show that the method, used to perform the motion detail feature extraction and 3D sensing tracking recognition of sports injury, has high feature expression ability for sports injury motion image, and can realize the visual pathological diagnosis and treatment for sports injury.
Keywords: 3D sensing tracking; image acquisition; sports injury; motion detail; feature extraction
隨著圖像處理技術(shù)的發(fā)展,采用圖像特征分析和提取方法進(jìn)行運(yùn)動(dòng)損傷治療分析得到廣泛應(yīng)用。采用CT成像技術(shù)提取運(yùn)動(dòng)損傷部位的圖像,結(jié)合三維圖像重構(gòu)和三維傳感器跟蹤方法進(jìn)行運(yùn)動(dòng)損傷部位分析,可有效實(shí)現(xiàn)對(duì)運(yùn)動(dòng)損傷的診斷。對(duì)運(yùn)動(dòng)損傷病理分析和診斷的基礎(chǔ)在于運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征提取[1]。當(dāng)前,對(duì)運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征提取方法主要有灰度檢測(cè)方法、角點(diǎn)匹配方和分塊分割方法等[2],對(duì)運(yùn)動(dòng)損傷圖像的輪廓、邊緣特征點(diǎn)進(jìn)行準(zhǔn)確標(biāo)定和分塊分割,進(jìn)行圖像的活動(dòng)輪廓線標(biāo)記,實(shí)現(xiàn)運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征提取,但上述方法存在收斂性不好和抗干擾能力不強(qiáng)等問(wèn)題。對(duì)此,本文提出一種基于三維傳感跟蹤的運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征提取,采用損傷部位的形變位移估計(jì)方法實(shí)現(xiàn)運(yùn)動(dòng)損傷動(dòng)作的統(tǒng)計(jì)信息特征提取和損傷程度評(píng)估,具有較好的應(yīng)用效果。
1 運(yùn)動(dòng)損傷動(dòng)作圖像采集處理
1.1 三維傳感跟蹤采集
分析運(yùn)動(dòng)損傷動(dòng)作圖像的細(xì)節(jié)特征提取方法,首先采用三維傳感跟蹤采集方法進(jìn)行原始運(yùn)動(dòng)損傷圖像采集,采用三維傳感器跟蹤進(jìn)行圖像采集得到的運(yùn)動(dòng)損傷圖像的輪廓長(zhǎng)度為:
1.2 邊緣輪廓檢測(cè)和角點(diǎn)檢測(cè)
在采用三維傳感跟蹤方法進(jìn)行圖像采集的基礎(chǔ)上,進(jìn)行圖像的邊緣輪廓檢測(cè)和角點(diǎn)檢測(cè),提取反應(yīng)運(yùn)動(dòng)損傷細(xì)節(jié)特征的關(guān)鍵特征點(diǎn)[4],構(gòu)建運(yùn)動(dòng)損傷細(xì)節(jié)動(dòng)作特征重構(gòu)的三維數(shù)據(jù)場(chǎng),用圖像向量量化特征表達(dá)式描述為:
2 運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征提取實(shí)現(xiàn)
運(yùn)動(dòng)損傷動(dòng)作圖像的動(dòng)作細(xì)節(jié)特征量向量量化信息在[t]時(shí)刻的稀疏性特征分割閾值表示為[Ima(xt)=p(xtd0,1,2,…,t)],其第[N]個(gè)運(yùn)動(dòng)損傷動(dòng)作圖像的成像像素分布值為:
在對(duì)運(yùn)動(dòng)損傷動(dòng)作圖像塊分割處理后,計(jì)算圖像在每個(gè)尺度下的邊緣灰度值,并與當(dāng)前灰度值進(jìn)行比對(duì),求得統(tǒng)計(jì)量[Econ],采用損傷部位的形變位移估計(jì)方法實(shí)現(xiàn)運(yùn)動(dòng)損傷動(dòng)作的統(tǒng)計(jì)信息特征提取和損傷程度評(píng)估[8],得到形變位移估計(jì)值表達(dá)為:
3 仿真實(shí)驗(yàn)
基于Matlab圖像處理工具進(jìn)行仿真實(shí)驗(yàn)。實(shí)驗(yàn)中的運(yùn)動(dòng)損傷動(dòng)作圖像采集通過(guò)三維傳感器跟蹤識(shí)別方法實(shí)現(xiàn),采集地點(diǎn)為某大型醫(yī)院的骨科,運(yùn)動(dòng)損傷圖像的細(xì)節(jié)動(dòng)作特征的模板大小為200×200,灰度標(biāo)準(zhǔn)差σ取值范圍為(0.25,2),圖像三維傳感跟蹤識(shí)別的時(shí)間步長(zhǎng)t=0.1 s,灰度總級(jí)數(shù)為280。根據(jù)上述仿真環(huán)境設(shè)定,進(jìn)行運(yùn)動(dòng)損傷動(dòng)作圖像分析和細(xì)節(jié)動(dòng)作特征提取仿真,得到兩組圖像的原始圖像采集結(jié)果如圖1所示。
以圖2提取的運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征為數(shù)據(jù)基礎(chǔ),進(jìn)行運(yùn)動(dòng)損傷動(dòng)作的統(tǒng)計(jì)信息特征提取和損傷程度評(píng)估,實(shí)現(xiàn)損傷判斷和治療。為了定量分析本文方法的應(yīng)用性能,以損傷點(diǎn)的準(zhǔn)確判斷率為測(cè)試指標(biāo),采用不同的判斷方法,得到對(duì)比結(jié)果如圖3所示。分析得知,采用本文方法進(jìn)行運(yùn)動(dòng)損傷判斷和治療的準(zhǔn)確性較高。
4 結(jié) 語(yǔ)
本文提出基于三維傳感跟蹤的運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征提取方法,并進(jìn)行實(shí)驗(yàn)對(duì)比。研究表明,采用該方法進(jìn)行運(yùn)動(dòng)損傷動(dòng)作細(xì)節(jié)特征提取和三維傳感跟蹤識(shí)別,對(duì)運(yùn)動(dòng)損傷動(dòng)作圖像的特征表達(dá)能力較好,為實(shí)現(xiàn)可視化的運(yùn)動(dòng)損傷病理診斷和治療奠定基礎(chǔ)。
參考文獻(xiàn)
[1] 程明,黃曉陽(yáng),黃紹輝,等.定向區(qū)域生長(zhǎng)算法及其在血管分割中的應(yīng)用[J].中國(guó)圖象圖形學(xué)報(bào),2011,16(1):44?49.
[2] 湯敏,陳秀梅,陳峰.基于Contourlet變換和SPHIHT算法的彩色醫(yī)學(xué)圖像壓縮[J].計(jì)算機(jī)科學(xué),2014,41(1):303?306.
[3] 王建,王必寧,楊根善,等.基于形態(tài)學(xué)金字塔的醫(yī)學(xué)圖像融合技[J].兵工自動(dòng)化,2014,31(1):82?84.
[4] 江淮,趙惠昌,漢敏,等.基于擴(kuò)展方位NLCS的斜視TOPSAR成像算法[J].電子與信息學(xué)報(bào),2017,39(7):1606?1611.
[5] 王駿飛,黃樟燦,TALAB A M A.一種針對(duì)圖像細(xì)節(jié)優(yōu)化的BM二值化方法[J].武漢理工大學(xué)學(xué)報(bào),2014,36(8):127?132.
[6] 魯周迅,張彬彬.一種新的手背靜脈分割方法[J].微電子學(xué)與計(jì)算機(jī),2014,31(8):25?28.
[7] 蘭紅,張璐.分水嶺優(yōu)化的Snake模型肝臟圖像分割[J].中國(guó)圖象圖形學(xué)報(bào),2012,17(7):873?879.
[8] 楊軍,李震宇,孫光才,等.一種新的大斜視TOPSSAR全孔徑成像方法[J].西安電子科技大學(xué)學(xué)報(bào),2015,42(1):47?51.