宋維富,周 超,楊雪峰,張延濱,宋慶杰,張春利,辛文利,肖志敏,張延明,李集臨
(1.黑龍江省農(nóng)業(yè)科學(xué)院作物育種研究所,黑龍江哈爾濱 150086; 2.黑龍江省農(nóng)業(yè)科學(xué)院齊齊哈爾分院,黑龍江齊齊哈爾 161006; 3.哈爾濱師范大學(xué)生命科學(xué)與技術(shù)學(xué)院,黑龍江哈爾濱 150025)
灌漿期不同階段高溫脅迫對(duì)春小麥籽粒生長(zhǎng)的影響
宋維富1,周 超2,楊雪峰1,張延濱1,宋慶杰1,張春利1,辛文利1,肖志敏1,張延明3,李集臨3
(1.黑龍江省農(nóng)業(yè)科學(xué)院作物育種研究所,黑龍江哈爾濱 150086; 2.黑龍江省農(nóng)業(yè)科學(xué)院齊齊哈爾分院,黑龍江齊齊哈爾 161006; 3.哈爾濱師范大學(xué)生命科學(xué)與技術(shù)學(xué)院,黑龍江哈爾濱 150025)
灌漿期短暫高溫脅迫嚴(yán)重影響小麥產(chǎn)量。為了明確灌漿期不同階段短暫高溫脅迫對(duì)春小麥籽粒生長(zhǎng)的影響,以強(qiáng)筋春小麥品種龍麥26和龍麥30為試材,在人工氣候室(25 ℃/15 ℃)精確控溫和人工溫室形成絕對(duì)高溫脅迫的條件下,分析了灌漿期不同階段5 d短暫高溫脅迫對(duì)粒重的影響。結(jié)果表明,在灌漿期不同階段短暫高溫脅迫處理中,兩個(gè)小麥品種均表現(xiàn)為:前期高溫脅迫對(duì)粒重影響最大,達(dá)極顯著水平(P<0.01);隨著高溫脅迫處理時(shí)期的后移,粒重降低幅度逐漸減?。缓笃?花后25 d)高溫脅迫對(duì)粒重影響不顯著。灌漿期縮短是導(dǎo)致粒重降低的主要原因。
小麥;高溫脅迫;灌漿期;灌漿速率;粒重
Abstract: Short period heat stress is a significant factor limiting wheat yield in many wheat-growing areas. In order to examine the effect of short period heat stress on grain growth throughout the whole grain-filling period, two strong-gluten spring wheat varieties(Longmai 26 and Longmai 30) were grown in pots at diurnal temperatures(25/15 ℃) in climate-controlled growth cabinets and exposed to a 5-day heat stress at 5-day intervals throughout grain filling from anthesis to mature in the glasshouse. The results showed that kernel weight was most sensitive to heat stress during early stage of grain filling and became progressively less sensitive throughout grain filling, for both varieties. From the 25 days after anthesis, the short period of heat stress had no significant effect on kernel weight. Reductions in kernel weight resulted primarily from the shortening of grain filling stage.
Keywords: Wheat; Heat stress;Grain filling stage; Rate of grain filling; Kernel weight
小麥(TriticumaestivumL.)遺傳基礎(chǔ)的復(fù)雜性決定了其廣泛的適應(yīng)性[1]。小麥?zhǔn)侨蚍N植面積最大、年產(chǎn)量最高的糧食作物[2]。生物脅迫(如病害、蟲害、雜草)和非生物脅迫(如干旱、高溫、高鹽、洪澇、凍害等)可對(duì)小麥產(chǎn)量造成嚴(yán)重影響。在眾多非生物脅迫因子中,高溫是限制小麥產(chǎn)量最重要的環(huán)境因素[2]。灌漿期高溫不僅損傷小麥小花器官,使穗粒數(shù)減少,而且導(dǎo)致灌漿天數(shù)縮短、灌漿速率變小,使成熟時(shí)粒重降低[3-4],所以小麥灌漿期被認(rèn)為是產(chǎn)量對(duì)高溫的最敏感階段。
研究認(rèn)為,平均溫度在15 ℃到20 ℃之間是小麥灌漿的最適溫度,在此溫度范圍內(nèi),小麥灌漿期較長(zhǎng),籽粒中淀粉積累量較大[5]。長(zhǎng)期高溫(25~32 ℃)和短期高溫脅迫(>35 ℃)均使小麥灌漿天數(shù)縮短,導(dǎo)致產(chǎn)量降低[6-8]。平均溫度每升高1 ℃,小麥產(chǎn)量將降低3%~4%[9-10]。高溫對(duì)籽粒產(chǎn)量的影響程度主要取決于品種及高溫發(fā)生時(shí)期[9]。在灌漿期最敏感階段,持續(xù)4 d高溫脅迫(>35 ℃)使小麥籽粒產(chǎn)量降低23%[11]。隨著全球氣候變暖趨勢(shì)加劇,極端氣候出現(xiàn)的頻率也隨之增加[12],減少高溫對(duì)小麥產(chǎn)量影響的最好辦法就是培育耐熱型小麥新品種。
東北春麥區(qū)是我國(guó)優(yōu)質(zhì)強(qiáng)筋小麥的重要生產(chǎn)基地,具有發(fā)展優(yōu)質(zhì)強(qiáng)筋“硬紅春”面包麥生產(chǎn)的資源優(yōu)勢(shì)。在該麥區(qū),小麥生育后期雨熱同季,易形成短暫高溫脅迫,出現(xiàn)高溫逼熟現(xiàn)象,嚴(yán)重影響小麥產(chǎn)量。隨著全球氣溫升高,該區(qū)小麥生育后期溫度也有所升高,對(duì)小麥產(chǎn)量的影響也有加重的趨勢(shì)。明確該區(qū)強(qiáng)筋小麥灌漿期不同階段遇短暫高溫脅迫后的產(chǎn)量變化規(guī)律,對(duì)該區(qū)強(qiáng)筋小麥生產(chǎn)和培育抗(耐)熱性小麥品種具有重要意義。
以強(qiáng)筋小麥品種龍麥26和龍麥30為試材,于2012年3月在黑龍江省農(nóng)業(yè)科學(xué)院盆栽場(chǎng)(N45°41′,E126°37′)進(jìn)行。土壤采自黑龍江省農(nóng)業(yè)科學(xué)院試驗(yàn)田,黑土,自然風(fēng)干后過篩,三次充分混勻,裝入直徑28 cm、高25 cm的聚乙烯塑料桶,每桶裝土15 kg,保苗12株,每桶施基肥二胺127 mg,尿素63 mg,硫酸鉀63 mg。每個(gè)材料種植60桶,小麥生育前期在自然條件下生長(zhǎng)。掛牌記錄每盆中每株小麥主穗開花期,以各株小麥開花期的平均值作為此盆的開花期。花后移入人工氣侯室或人工溫室進(jìn)行控溫處理,直至生理成熟。
人工氣侯室溫度設(shè)定為25 ℃(8:00-18:00)/15 ℃(18:00-8:00),晝夜溫度變化過程需30 min;自然光照,相對(duì)濕度為80%。利用人工溫室進(jìn)行高溫脅迫(>35 ℃),用自走式溫度記錄儀(DWHJ2型)監(jiān)測(cè)溫度,最高可達(dá)43 ℃(圖1)。高溫脅迫時(shí)間為5 d,花后每5 d處理一批次,每次處理4桶,直至小麥生理成熟。人工氣候室中的小麥為對(duì)照。
圖1 人工溫室內(nèi)最高和最低溫度的變化
自開花后每個(gè)處理每5 d取樣一次,每次每個(gè)處理取3~4株的主穗,脫粒后于40 ℃烘箱烘干48 h,測(cè)定籽粒干重,取樣至花后40 d。
應(yīng)用Excel和SPSS進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析。
如圖2和圖3所示,不同階段的5 d短暫高溫脅迫使兩個(gè)強(qiáng)筋小麥品種成熟時(shí)的粒重均降低,降低幅度隨高溫脅迫出現(xiàn)時(shí)期的后移而逐漸降低。
龍麥26在花后0~15 d經(jīng)短暫高溫脅迫可使粒重降低達(dá)極顯著水平(圖2A,2B,2C)(P<0.01);在花后15~25 d經(jīng)短暫高溫脅迫后,成熟期粒重降低達(dá)顯著水平(圖2D,2E)(P<0.5);花后25 d以后,短暫高溫脅迫對(duì)成熟期粒重?zé)o顯著影響(圖2F,2G,2H)。
橫坐標(biāo)上的━表示高溫脅迫時(shí)期;**,*分別表示處理間在0.01和0.05水平上差異顯著。下同。
━on x-axis mean period of heat treatment; **,*: Significant difference at 0.01 and 0.05 levels between treatments,respectively. The same in figure 3.
圖2灌漿不同時(shí)期短暫高溫脅迫對(duì)龍麥26籽粒生長(zhǎng)的影響
Fig.2EffectofheatstressatdifferentstagesonkernelweightofLongmai26duringgrainfilling
圖3 灌漿不同時(shí)期短暫高溫脅迫對(duì)龍麥30籽粒生長(zhǎng)的影響
龍麥30在花后0~20 d短暫高溫脅迫后,使成熟期粒重降低達(dá)極顯著水平(圖3A,3B,3C,3D)(P<0.01);在花后20~25 d經(jīng)短暫高溫脅迫后,成熟期粒重降低達(dá)顯著水平(圖3E)(P<0.5);花后25 d以后,短暫高溫脅迫對(duì)粒重?zé)o顯著影響(圖3F,3G,3H)。
龍麥26灌漿高峰期在花后15~20 d,5 d期間粒重增加10.5 mg,占籽粒干物質(zhì)總量的32.6%;龍麥30灌漿高峰期分別在花后10~15 d和20~25 d,5 d期間粒重分別增加7.7和7.1 mg,分別占籽粒干物質(zhì)總量的30.1%和26.8%。
同對(duì)照相比,花后0~5 d(圖2A;圖3A)和5~10 d(圖2B; 圖3B)高溫脅迫處理使兩個(gè)小麥品種的灌漿速率有所提高;兩個(gè)處理使龍麥26的灌漿速率于花后15 d開始低于對(duì)照,使龍麥30于花后20 d開始低于對(duì)照;兩個(gè)處理均使兩個(gè)品種的灌漿天數(shù)明顯縮短,龍麥26在花后30 d干物質(zhì)積累基本停止;龍麥30在花后25 d后干物質(zhì)無明顯增加。說明高溫脅迫導(dǎo)致粒重降低的主要原因是由于灌漿期明顯縮短和灌漿后期灌漿速率降低。
同對(duì)照相比,花后10~15 d(圖2C;圖3C)的高溫脅迫,使龍麥26的灌漿速率略有升高,使龍麥30的灌漿速率一直降低。對(duì)龍麥26的灌漿天數(shù)影響較大,干物質(zhì)在花后30 d停止積累,對(duì)龍麥30的灌漿天數(shù)無影響,直到花后30 d之后干物質(zhì)還增加明顯。說明此時(shí)期的高溫脅迫導(dǎo)致粒重降低的主要原因在品種間存在差異,龍麥26是由于灌漿期縮短和灌漿后期灌漿速率降低共同作用,而龍麥30則是因?yàn)楣酀{速率降低。
同對(duì)照相比,花后15~20 d(圖2D;圖3D)和20~25 d(圖2E; 圖3E)高溫脅迫,使兩個(gè)小麥品種的灌漿后期灌漿速率均降低,而對(duì)兩個(gè)小麥品種的灌漿天數(shù)無影響。說明這兩個(gè)時(shí)期高溫脅迫導(dǎo)致粒重降低的主要原因是灌漿速率的降低。
同對(duì)照相比,25~30 d(圖2F;圖3F)、30~35 d(圖2G; 圖3G)和35~40 d(圖2H; 圖3H)高溫脅迫,使兩個(gè)小麥品種的灌漿速率略有降低,對(duì)灌漿天數(shù)和成熟時(shí)粒重均無顯著影響。說明小麥灌漿后期的高溫脅迫對(duì)小麥產(chǎn)量影響較小。
灌漿期是小麥產(chǎn)量形成的關(guān)鍵時(shí)期,遇高溫脅迫使小麥嚴(yán)重減產(chǎn)[13]。國(guó)內(nèi)外學(xué)者就灌漿期高溫對(duì)小麥產(chǎn)量的影響已開展了大量研究[6,8,14-15]。主要升溫方法包括人工氣候室、田間覆蓋透光膜及人工溫室和田間相結(jié)合,精確控制溫度是開展這一研究的前提[6,8,14-15]。本研究利用人工氣候室(25 ℃/15 ℃)精確控溫和人工溫室形成絕對(duì)高溫脅迫(>35 ℃)的條件下,對(duì)灌漿期短暫高溫脅迫對(duì)籽粒生長(zhǎng)的影響進(jìn)行了研究,試驗(yàn)條件控制嚴(yán)格,結(jié)果準(zhǔn)確、可靠。
研究表明,小麥成熟籽粒重量取決于灌漿期長(zhǎng)短和灌漿速率大小[16];高溫導(dǎo)致粒重降低的主要原因是灌漿天數(shù)和灌漿速率降低[4,17]。由于不同研究所設(shè)定的處理溫度、處理時(shí)期及選用品種不同,關(guān)于高溫脅迫對(duì)灌漿速率影響的結(jié)果存在分歧,一些研究認(rèn)為灌漿期高溫使小麥灌漿速率增加[18-19],也有研究認(rèn)為灌漿期高溫使小麥灌漿速率降低[6]。Jenner等[20]研究認(rèn)為,灌漿速率的降低是在高溫處理之后而不是高溫處理期間發(fā)生。關(guān)于高溫脅迫對(duì)灌漿天數(shù)影響的研究結(jié)果較為一致,普遍認(rèn)為提高溫度使灌漿天數(shù)縮短[18,19],溫度每升高1 ℃,灌漿天數(shù)將縮短2.8 d[21]。灌漿速率的增加并不能彌補(bǔ)由于灌漿天數(shù)縮短而引起的干物質(zhì)損失量,導(dǎo)致粒重降低[18,19]。本研究在25 ℃/15 ℃精確控溫條件下,在灌漿期不同階段對(duì)兩個(gè)強(qiáng)筋小麥品種進(jìn)行5 d高溫脅迫處理的結(jié)果表明,高溫脅迫對(duì)兩個(gè)小麥品種的灌漿天數(shù)和灌漿速率的影響程度因品種和高溫出現(xiàn)階段而不同,前期高溫脅迫可使兩小麥品種灌漿速率有短期提高,隨后降低;中期高溫脅迫可使兩小麥品種灌漿速率降低;后期高溫處理對(duì)兩小麥品種灌漿速率無明顯影響。綜上所述,小麥灌漿期遇高溫脅迫后,灌漿速率變化較為復(fù)雜,主要與高溫脅迫的時(shí)期和品種有關(guān)。關(guān)于在不同溫度水平時(shí)遇短暫高溫脅迫灌漿速率的變化還有待于進(jìn)一步研究。
小麥灌漿過程包括漸增期,快增期和緩增期三個(gè)階段[22]。一般花后11~25 d為灌漿高峰期(即快增期)[23],由于漸增期是胚乳細(xì)胞的分裂階段,是決定產(chǎn)量庫(kù)容形成的關(guān)鍵時(shí)期[23],此時(shí)期的高溫脅迫易使后續(xù)灌漿干物質(zhì)積累不足,灌漿過程提早結(jié)束,導(dǎo)致粒重降低。關(guān)于此時(shí)期高溫脅迫后籽粒物質(zhì)成分的變化還待進(jìn)一步研究。
在小麥抗熱性種質(zhì)篩選方面,田間篩選耐熱性基因型仍是目前最經(jīng)濟(jì)有效的選擇方法。在選擇標(biāo)準(zhǔn)上,Tyagi等[24]和Singha等[25]認(rèn)為,熱脅迫條件下的籽粒重量是衡量品種抗熱性選擇的重要標(biāo)準(zhǔn)。Dias和Lidon[18]則認(rèn)為更高的灌漿速率和粒重潛力有利于品種耐熱性的提高。Tewolde等[14]認(rèn)為,早抽穗能夠延長(zhǎng)灌漿時(shí)間和避開灌漿早期高溫,是耐熱型小麥品種必備的性狀。關(guān)于基因型之間對(duì)高溫脅迫差異的遺傳基礎(chǔ)將在進(jìn)一步的研究中開展。
[1] FARIS J D,FRIEBE B,GILL B S.Wheat genomics:Exploring the polyploid model [J].Genomics,2002,3:580.
[2] PRADHAN G P.Effect of drought and/or high temperature stress on wild wheat relatives(Aegilopsspecies) and synthetic wheat [D].Kansas:Kansas State University,2011:4.
[3] WOLLENWEBER B,PORTER J R,SCHELLBERG J.Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat [J].JournalofAgronomyandCropScience,2003,189:143.
[4] VISWANATHAN C,KHANNA-CHOPRA R.Effect of heat stress on grain growth,starch synthesis and protein synthesis in grains of wheat(TriticumaestivumL.) varieties differing in grain weight stability [J].JournalofAgronomyandCropScience,2001,186:2.
[5] DUPONT F M,ALTENBACH S B.Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis [J].JournalofCerealScience,2003,38:140.
[6] STONE P J,NICOLAS M E.Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance.I.Grain growth [J].FunctionalPlantBiology,1995,22:927.
[7] JAGADISH R,SHANTHA N.High temperature index-for field evaluation of heat tolerance in wheat varieties [J].AgriculturalSystems,2004,79:244.
[8] TAHIR I S A,NAKATA N,ALI A M,etal.Genotypic and temperature effects on wheat grain yield and quality in a hot irrigated environment [J].PlantBreeding,2006,125:323.
[9] WARDLAW I,DAWSON I,MUNIBI P,etal.The tolerance of wheat to high temperatures during reproductive growth.I.Survey procedures and general response patterns [J].AustralianJournalofAgriculturalResearch,1989,40:1.
[10] WIEGAND C L,CUELLAR J A.Duration of grain filling and kernel weight of wheat as affected by temperature [J].CropScience,1981,21:95.
[11] HAWKER J S,JENNER C F.High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm [J].AustralianJournalPlantPhysiology,1993,20:206.
[12] 宋維富,肖志敏.辛文利,等.灌溉期高溫對(duì)小麥籽粒蛋白質(zhì)積累和品質(zhì)影響的研究進(jìn)展[J].黑龍江農(nóng)業(yè)科學(xué),2015(2):138.
SONG W F,XIAO Z M,XIN W L,etal.Effect of post-anthesis heat stress on grain protein accumnlation and qualty traits in wheat[J].HeilongjiangAgricultureScience,2015(2):138.
[13] FAROOQ M,BRAMLEY H,PALTA J A,etal.Heat stress in wheat during reproductive and grain-filling phases [J].CriticalReviewsinPlantSciences,2011,30:493.
[14] TEWOLDE H,FEMANDEZ C J,ERICKSON C A.Wheat cultivars adapted to post-heading high temperature stress [J].JournalofAgronomyandCropScience,2006,192,117.
[15] 敬海霞,王晨陽(yáng),左學(xué)玲,等.花后高溫脅迫對(duì)小麥籽粒產(chǎn)量和蛋白質(zhì)含量的影響 [J].麥類作物學(xué)報(bào),2010,30(3):460.
JING H X,WANG C Y,ZUO X L,etal.Effect of post-anthesis high temperature stress on grain yield and protein content of different wheat cultivars [J].JournalofTriticeaeCrops,2010,30(3):460.
[16] SANTIVERI F,ROYO C,ROMAGOSA I.Patterns of grain filling of spring and winter hexaploid triticales [J].EuropeanJournalAgronomy,2002,16:220.
[17] GIBSON L R,PAULSEN G M.Yield components of wheat grown under high temperature stress during reproductive growth [J].CropScience,1999,39:1841.
[18] DIAS A S,LIDON F C.Evaluation of grain filling rate and duration in bread and durum wheat,under heat stress after anthesis [J].JournalofAgronomyandCropScience,2009,195:137.
[19] YIN X,GUO W,SPIERTZ J H J.A quantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes [J].FieldCropsResearch,2009,114:120.
[20] JENNER C F.Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars.Ⅱ.Carry-over effects [J].AustralianJournalofPlantPhysiology,1991,18:179.
[21] STRECK N A.Climate change and agroecosystems:The effect of elevated atmospheric CO2and temperature on crop growth,development and yield [J].CienciaRural,2005,35:730.
[22] 馮素偉,胡鐵柱,李 淦,等.不同小麥品種籽粒灌漿特性分析 [J].麥類作物學(xué)報(bào),2009,29(4):646.
FENG S W,HU T Z,LI G,etal.Analysis on grain fill ing characteristics of different wheat varieties [J].JournalofTriticeaeCrops,2009,29(4):646.
[23] 崔金梅,郭天財(cái).小麥的穗 [M].北京:中國(guó)農(nóng)業(yè)出版社,2008:197.
CUI J M,GUO T C.Spike of Wheat [M].Beijing:China Agriculture Press,2008:197.
[24] TYAGI P K,PANNU R K,SHARMA K D,etal.Response of different wheat(TriticumaestivumL.) cultivars to terminal heat stress [J].TestsofAgrochemicalsandCultivars,2003,24:20.
[25] SINGHA P,BHOWMICK J,CHAUDHURY B K.Effect of temperature on yield and yield components of fourteen wheat(TriticumaestivumL.) genotypes [J].EnvironmentandEcology,2006,24:551.
EffectofHeatStressduringGrainFillingonGrainGrowthofSpringWheatVarieties
SONGWeifu1,ZHOUChao2,YANGXuefeng1,ZHANGYanbin1,SONGQingjie1,ZHANGChunli1,XINWenli1,XIAOZhimin1,ZHANGYanming3,LIJilin3
(1.Heilongjiang Academy of Agricultural Sciences, Crop Breeding Institute, Harbin, Heilongjiang 150086, China; 2.Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang 161006, China; 3.College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjaing 150025, China)
時(shí)間:2017-09-13
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1359.S.20170913.1139.020.html
S512.1;S311
A
1009-1041(2017)09-1195-06
2017-02-06
2017-03-06
國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-3-1-6);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0101802);黑龍江省博士后基金項(xiàng)目(LBH-Z14185); 黑龍江省農(nóng)業(yè)科學(xué)院引進(jìn)人才科研啟動(dòng)金項(xiàng)目(201507-18)
E-mail:songweifu1121@126.com
肖志敏(E-mail:XZME@163.com)