魏大勇,譚傳東,崔藝馨,吳道明,李加納,梅家琴,錢偉
?
甘藍(lán)型油菜CMS育性恢復(fù)位點(diǎn)的全基因組關(guān)聯(lián)分析
魏大勇,譚傳東,崔藝馨,吳道明,李加納,梅家琴,錢偉
(西南大學(xué)農(nóng)學(xué)與生物科技學(xué)院/重慶市油菜工程技術(shù)研究中心,重慶400716)
【目的】甘藍(lán)型油菜波里馬細(xì)胞質(zhì)雄性不育(CMS)在中國(guó)已被廣泛應(yīng)用于雜交種育種,其育性恢復(fù)程度表現(xiàn)出受1對(duì)主效基因的控制,并受微效修飾基因的影響。通過(guò)全基因組關(guān)聯(lián)分析方法挖掘育性恢復(fù)位點(diǎn),并對(duì)候選基因進(jìn)行比較分析?!痉椒ā客ㄟ^(guò)蕓薹屬60K SNP芯片對(duì)308份甘藍(lán)型油菜自然群體進(jìn)行基因型分型,并用CMS系301A作母本,與上述材料分別進(jìn)行雜交得到308份F1,每份F1分別于2013年和2014年進(jìn)行種植,每年2次重復(fù),于始花期根據(jù)花粉育性和花蕊發(fā)育情況調(diào)查F1植株的育性等級(jí),同時(shí)對(duì)測(cè)交父本自然群體進(jìn)行群體結(jié)構(gòu)分析和親緣關(guān)系評(píng)估,并結(jié)合測(cè)交父本的基因型分型結(jié)果和F1的育性等級(jí)進(jìn)行全基因組關(guān)聯(lián)分析(GWAS)。從GWAS分析中顯著的SNP左右100 kb區(qū)間或與顯著SNP處于同一單體型塊(2>0.5)的區(qū)間內(nèi)預(yù)測(cè)候選基因,并對(duì)候選基因進(jìn)行QTL比較分析和單體型或等位基因的效應(yīng)分析。【結(jié)果】方差分析結(jié)果顯示,兩年F1的育性等級(jí)存在顯著差異(<0.01),但相關(guān)分析發(fā)現(xiàn),兩年的育性等級(jí)存在顯著的正相關(guān)(= 0.52,<0.001)。群體結(jié)構(gòu)分析顯示,所有測(cè)交父本被分為3個(gè)亞群(冬性、春性和半冬性),親緣關(guān)系分析發(fā)現(xiàn),任何2個(gè)材料之間平均親緣關(guān)系值為0.072,73%的任意材料間親緣關(guān)系值小于0.1,其中,約53%的材料親緣關(guān)系值為0。GWAS分析共檢測(cè)到13個(gè)與育性恢復(fù)程度顯著關(guān)聯(lián)的SNP,構(gòu)成了6個(gè)候選區(qū)間,分別位于A01、A09、C03、C06和C08 5條染色體上,單個(gè)SNP解釋的表型變異介于2.53%—9.96%。從中共預(yù)測(cè)到6個(gè)與育性恢復(fù)位點(diǎn)相關(guān)的候選基因,其中4個(gè)編碼的蛋白含有恢復(fù)基因特有的PPR保守基序。共線性分析發(fā)現(xiàn),4個(gè)候選基因中的2個(gè)(和)位于A09和C08染色體部分同源區(qū)間,且與已克隆的CMS育性恢復(fù)位點(diǎn)同源。另外2個(gè)新鑒定到的候選基因(和)連鎖的SNP等位基因或單體型變化都與育性等級(jí)顯著相關(guān)(<0.001)?!窘Y(jié)論】通過(guò)GWAS分析鑒定到多個(gè)與油菜育性恢復(fù)有關(guān)的候選基因,開發(fā)基于與這些基因連鎖位點(diǎn)或SNP的功能標(biāo)記將有助于對(duì)該不育系統(tǒng)進(jìn)行恢復(fù)系和保持系的篩選。
甘藍(lán)型油菜;波里馬細(xì)胞質(zhì)雄性不育;育性恢復(fù)基因;全基因組關(guān)聯(lián)分析;SNP
【研究意義】雄性不育在植物界普遍存在,早在1763年,德國(guó)植物學(xué)家K?lreuter觀察到雄性不育現(xiàn)象。目前,雄性不育主要包括由線粒體基因和核基因共同控制的細(xì)胞質(zhì)雄性不育(cytoplasmic male sterility,CMS)和由核基因單獨(dú)控制的細(xì)胞核雄性不育(genic male sterility,GMS)兩種[1]。油菜是世界上繼大豆和油棕之后的第三大油料作物,菜油是中國(guó)主要食用油之一。作為第一個(gè)有實(shí)用價(jià)值的油菜細(xì)胞質(zhì)雄性不育類型,波里馬細(xì)胞質(zhì)雄性不育(Polima CMS)已被廣泛應(yīng)用于油菜雜交種的制種[2]。早前關(guān)于甘藍(lán)型油菜CMS恢復(fù)基因的研究多數(shù)是基于分離群體構(gòu)建的連鎖圖譜進(jìn)行QTL定位,費(fèi)時(shí)費(fèi)力。隨著甘藍(lán)型油菜參考基因組的釋放和高通量測(cè)序成本的不斷降低,新型技術(shù)比如高通量SNP芯片的出現(xiàn),加快了候選基因識(shí)別的進(jìn)程。因此,本研究通過(guò)全基因組關(guān)聯(lián)分析快速挖掘影響CMS的育性恢復(fù)位點(diǎn),對(duì)加快雜種油菜的育種進(jìn)程具有重要現(xiàn)實(shí)意義?!厩叭搜芯窟M(jìn)展】由于CMS在油菜育種中的廣泛應(yīng)用,恢復(fù)基因()的定位越來(lái)越受到關(guān)注。前人對(duì)育性恢復(fù)性狀的遺傳分析說(shuō)明,該性狀受1對(duì)顯性基因控制[3]。由于在白菜型油菜(AA)、芥菜型油菜(AABB)和甘藍(lán)型油菜(AACC)中都發(fā)現(xiàn)了,因此,推測(cè)可能位于A組染色體[4]。蔡強(qiáng)[5]通過(guò)連續(xù)回交構(gòu)建的CMS育性恢復(fù)基因近等基因系群體,將與恢復(fù)基因連鎖的標(biāo)記定位在N9連鎖圖上,位于分子標(biāo)記pW123bE和CNU008之間;Li等[6]找到一個(gè)與遺傳距離為0.2 cM的SSR標(biāo)記KBrDP1,并與DH系遺傳連鎖圖整合,將定位在9號(hào)連鎖群上;Liu等[7]將CMS育性恢復(fù)位點(diǎn)定位在白菜()的A09染色體29.2 kb內(nèi),并預(yù)測(cè)區(qū)間內(nèi)一個(gè)開放閱讀框?yàn)楹蜻x位點(diǎn);Liu等[8]驗(yàn)證了上述開放閱讀框,并且發(fā)現(xiàn)是通過(guò)減少的表達(dá)來(lái)恢復(fù)油菜CMS的育性。截止到目前,已在七大作物中克隆了13個(gè)植物育性恢復(fù)基因,分別為玉米的[9-10],矮牽牛的[11],蘿卜的和[12-14],水稻的()[15-18]、[18]、[19]、[20]、[21]和[22],高粱的[23],甜菜的()[24-25]以及甘藍(lán)型油菜的[8]。除了玉米的、水稻的和甜菜的外,其他10個(gè)恢復(fù)基因的編碼蛋白都含有PPR(pentatrieopeptide repeat)基序。PPR基序是由Small和Peeters于2000年發(fā)現(xiàn)和命名的,由35個(gè)氨基酸組成的序列單元經(jīng)串聯(lián)重復(fù)排列而成的一個(gè)基因家族[26]。大部分PPR蛋白N端具有線粒體和葉綠體定位序列,是研究植物核質(zhì)互作的理想模型[27]。目前研究?jī)A向于認(rèn)為,恢復(fù)基因的功能是通過(guò)抑制線粒體基因組中CMS相關(guān)嵌合基因的表達(dá),來(lái)抑制或消除雄性不育的毒害效應(yīng),但是具體機(jī)制仍不清楚。由于多個(gè)物種的恢復(fù)基因中存在PPR保守基序,因此,PPR特征可以作為鑒定植物恢復(fù)基因候選基因的有效手段?!颈狙芯壳腥朦c(diǎn)】盡管油菜CMS育性恢復(fù)主效基因已被鑒定,但育性恢復(fù)仍存在微效多基因的影響,因此,本研究采用CMS系301A作母本,與308份甘藍(lán)型油菜自然群體分別進(jìn)行雜交得到308份F1,通過(guò)甘藍(lán)型油菜自然群體(測(cè)交父本)的SNP芯片數(shù)據(jù)對(duì)308份F1的育性等級(jí)進(jìn)行全基因組關(guān)聯(lián)分析。【擬解決的關(guān)鍵問(wèn)題】本研究通過(guò)GWAS期望尋找更多的甘藍(lán)型油菜CMS育性恢復(fù)位點(diǎn)或基因(包括微效基因),并通過(guò)等位基因或單體型效應(yīng)分析,尋找與育性相關(guān)的SNP位點(diǎn),為以后的功能標(biāo)記開發(fā)奠定基礎(chǔ),應(yīng)用于該不育系統(tǒng)恢復(fù)系和保持系的篩選鑒定。
1.1 供試材料和表型測(cè)定
甘藍(lán)型油菜CMS 301A作母本,與308份不同來(lái)源的甘藍(lán)型油菜分別雜交產(chǎn)生308份F1,分別于2013年和2014年播種在重慶市油菜工程技術(shù)研究中心試驗(yàn)地(重慶北碚),3行區(qū)播種,每行10株,每年2次重復(fù)。于始花期(每個(gè)株系有一半植株至少開花3朵)觀察5株長(zhǎng)勢(shì)一致F1植株的花粉育性和雄蕊/雌蕊發(fā)育情況,統(tǒng)計(jì)每個(gè)F1的育性等級(jí)用于后續(xù)分析。同時(shí)也記錄了始花期當(dāng)天和前10天的日平均溫度。參考楊光圣等[4]方法,根據(jù)花粉的多少和雄蕊/雌蕊發(fā)育情況劃定材料育性等級(jí):1級(jí),花藥發(fā)育正常,大量花粉;2級(jí),花藥發(fā)育基本正常,中量花粉;3級(jí),花藥退化成三角形,雄蕊低于雌蕊,少量花粉;4級(jí),花藥退化成三角形,雄蕊明顯低于雌蕊,極少花粉;5級(jí),花藥退化成三角形且呈乳白色,雄蕊明顯低于雌蕊,沒(méi)有花粉。其中1級(jí)和2級(jí)為可育,4級(jí)和5級(jí)為不育,3級(jí)為部分可育(圖1)。
a:F1育性等級(jí)的劃分依據(jù),P1為不育母本,P2為可育父本;b:2013和2014年育性等級(jí)的頻率分布
1.2 SNP基因型分型和數(shù)據(jù)過(guò)濾
于苗期選擇鮮嫩葉片提取總DNA,提取及純化使用TIANGEN?植物基因組DNA提取試劑盒(DP305),濃度最后統(tǒng)一稀釋成100 ng·μl-1,-20℃保存?zhèn)溆谩2捎肐llumina公司開發(fā)的60K SNP芯片對(duì)上述材料進(jìn)行基因型分型[28]。將芯片數(shù)據(jù)得到的52 157個(gè)SNP位點(diǎn)與法國(guó)公布的甘藍(lán)型油菜品種“Darmor- Bzh”的基因組v4.1(http://www.genoscope.cns.fr/brassicanapus/data/)進(jìn)行本地Blastn,比對(duì)的閾值設(shè)為e-10。比對(duì)結(jié)果參考Schiessl等[29]的條件過(guò)濾:序列一致性(identity)>95%,沒(méi)有g(shù)aps,比對(duì)長(zhǎng)度(alignment length)>49 bp。
1.3 群體結(jié)構(gòu)和親緣關(guān)系評(píng)估
群體結(jié)構(gòu)分析采用STRUCTURE v2.3.4[30],亞群數(shù)目k設(shè)置為1到9 ,5次模擬運(yùn)算,蒙特卡羅迭代(MCMC)和模擬參數(shù)迭代(length of bum in period)都設(shè)置為1í105次循環(huán),在混合模型和頻率相關(guān)模型下進(jìn)行獨(dú)立運(yùn)算。最后輸出的k值通過(guò)后驗(yàn)概率值結(jié)果LnP (D)和2個(gè)連續(xù)的后驗(yàn)概率值的變化速率Dk來(lái)矯正并確定群體中存在的最優(yōu)類群數(shù)目[31]。數(shù)據(jù)的可視化通過(guò)基于R語(yǔ)言的SelectionTools包(http://www. uni-giessen.de/population-genetics/downloads)來(lái)實(shí)現(xiàn)。利用SPAGeDi v1.4軟件[32]對(duì)甘藍(lán)型油菜自然群體進(jìn)行親緣關(guān)系(relative kinship)評(píng)估。
1.4 全基因組關(guān)聯(lián)分析和候選基因預(yù)測(cè)
利用R語(yǔ)言的GenABEL包進(jìn)行GWAS分析[33],采用PCA + K的混合線性模型對(duì)性狀和標(biāo)記進(jìn)行關(guān)聯(lián)位點(diǎn)的檢測(cè),閾值設(shè)定為<4.25×10-5(1/所使用的標(biāo)記,-log10= 4.37)。結(jié)果通過(guò)Manhattan圖和Q-Q圖顯示[34]。通過(guò)R語(yǔ)言的p.adjusted命令計(jì)算假陽(yáng)性率(false discovery rate,F(xiàn)DR)。將顯著SNP位置左右各延伸100 kb或者與顯著SNP處于同一單體型塊(r2>0.5)的區(qū)間,定義為候選關(guān)聯(lián)區(qū)間,在此區(qū)間參考以下條件預(yù)測(cè)候選基因:1)在甘藍(lán)型油菜或擬南芥參考基因組上與性狀相關(guān)的已知功能的基因;2)SNP直接落在基因內(nèi)部;3)參考已報(bào)道QTL定位的結(jié)果。
每個(gè)SNP或單體型解釋的表型變異采用SAS軟件的proc glm進(jìn)行計(jì)算,所用模型為y = geno,其中,y為表型觀測(cè)值,geno為SNP或單體型的基因型。
2.1 甘藍(lán)型油菜F1的育性等級(jí)分析
前期研究發(fā)現(xiàn),CMS系301A屬于低溫敏感型,持續(xù)低溫易形成微粉,所有父本材料不受環(huán)境影響,都正??捎?01A與308份正??捎母仕{(lán)型油菜分別雜交所得F1,育性調(diào)查結(jié)果方差分析顯示,兩年的F1育性等級(jí)存在顯著差異(<0.01),說(shuō)明環(huán)境對(duì)育性有一定的影響。但相關(guān)分析發(fā)現(xiàn),兩年的育性等級(jí)存在顯著的正相關(guān)(= 0.52,<0.01)(圖1)??紤]到CMS系301A對(duì)溫度的敏感,記錄調(diào)查育性等級(jí)當(dāng)天及前10天的日平均溫度,相關(guān)性結(jié)果顯示,育性等級(jí)與始花期前10 d的日平均溫度存在顯著的負(fù)相關(guān)(=-0.41—-0.20,<0.01),但和始花期當(dāng)天的日平均溫度沒(méi)有顯著的相關(guān)性(2013=-0.039,2013=0.338;2014=-0.082,2014=0.526),說(shuō)明該育性恢復(fù)位點(diǎn)受雄蕊分化期間溫度的影響但不受調(diào)查時(shí)溫度的影響(電子附表1)。
2.2 SNP評(píng)價(jià)和分布
利用Illumina公司的GenomeStudio軟件對(duì)308份甘藍(lán)型油菜的60K芯片進(jìn)行基因型分型。參考Schiessl等[29]方法,剔除沒(méi)有定位到甘藍(lán)型油菜參考基因組和定位在random染色體上的標(biāo)記,同時(shí)刪除MAF小于0.05和缺失加雜合大于25%的標(biāo)記,最后剩下23 489個(gè)定位到唯一染色體上的SNP標(biāo)記,用于后續(xù)分析(電子附表2,http://pan.baidu.com/s/ 1mhVbk04)。
通過(guò)SNP在基因組上的分布發(fā)現(xiàn),SNP數(shù)目最多的是C04染色體,占10.3%(2 425個(gè)SNP);最少的是C09染色體,占2.80%。A和C亞基因組平均每條染色體分布1 093和1 396個(gè)SNP,結(jié)合甘藍(lán)型油菜A、C亞基因組的大小得出,A亞基因組SNP的密度(平均每100 kb有4.6個(gè)SNP)是C亞基因組的1.5倍,說(shuō)明A亞基因組發(fā)生了更多的重組交換,這可能是由于油菜從歐洲引入亞洲后導(dǎo)入了油菜的親本之一白菜的遺傳成分,拓寬了油菜A亞基因組的遺傳多樣性。
2.3 群體結(jié)構(gòu)和親緣關(guān)系
從19條染色體上均勻選取5 700個(gè)SNP(MAF>0.05)用于群體結(jié)構(gòu)和親緣關(guān)系的估測(cè)。群體結(jié)構(gòu)的亞群通過(guò)獨(dú)立的k值無(wú)法確定,因?yàn)長(zhǎng)nP(D)值隨著k值的增加而增大,沒(méi)有出現(xiàn)拐點(diǎn),因此,采用Evanno等[35]方法計(jì)算Δk值,Dk在k = 3時(shí)出現(xiàn)峰值(圖2-a)。所有308份父本最后被分為3個(gè)亞群,亞群1主要由冬性材料構(gòu)成,亞群2主要是春性材料,而半冬性材料主要構(gòu)成了亞群3(圖2-b),該結(jié)果與生態(tài)型的來(lái)源一致。
親緣關(guān)系分析發(fā)現(xiàn),任何2個(gè)材料之間平均親緣關(guān)系值為0.072,73%的任意材料間親緣關(guān)系值小于0.1,其中,約53%的材料親緣關(guān)系值為0(圖2-c)。以上結(jié)果表明所用材料之間的親緣關(guān)系較遠(yuǎn),適合GWAS的研究。
2.4 全基因組關(guān)聯(lián)分析和QTL比較
為了消除年度間的環(huán)境影響,采用Merk等[36]方法對(duì)2年的表型數(shù)據(jù)進(jìn)行最佳線性無(wú)偏預(yù)測(cè)(best linear unbiased prediction,BLUP),估計(jì)育性等級(jí)的BLUP值,并結(jié)合SNP基因型數(shù)據(jù)采用基于R語(yǔ)言GenABEL包的PCA + K混合線性模型進(jìn)行GWAS分析。
GWAS分析共檢測(cè)到13個(gè)SNP與育性等級(jí)顯著關(guān)聯(lián)(<4.26×10-5,-log10>4.37),分布在A01、A09、C03、C06和C08 5條染色體上,單個(gè)位點(diǎn)解釋的表型變異介于2.53%—9.96%,Q-Q圖顯示該模型很好地控制了假陽(yáng)性概率的產(chǎn)生(圖3,表1)。根據(jù)位點(diǎn)間的連鎖不平衡(r2>0.5),檢測(cè)到的13個(gè)SNP被分為6個(gè)候選區(qū)間,預(yù)測(cè)到6個(gè)與育性相關(guān)的候選基因,其中4個(gè)候選基因的編碼蛋白含有育性恢復(fù)基因特有的PPR(pentatricopeptide repeat)保守基序(表1)。
A09染色體上顯著SNP(Bn-A09-p34393068和Bn-scaff_16445_1-p932699)構(gòu)成的候選區(qū)間與C08染色體顯著SNP(Bn-A09-p34437367)所對(duì)應(yīng)的候選區(qū)間有極高的共線性(圖3),且都定位在遠(yuǎn)古祖先染色體核型A block(24個(gè)祖先染色體核型block之一,擬南芥對(duì)應(yīng)位置在chr1:202 136—204 189,基因從到)。同時(shí)該區(qū)間與已報(bào)道的A09染色體上1個(gè)CMS恢復(fù)基因精細(xì)定位區(qū)間重疊,候選基因都對(duì)應(yīng)同一個(gè)擬南芥基因,進(jìn)一步驗(yàn)證了該分析方法的準(zhǔn)確性。
a:后驗(yàn)概率LnP(D)估計(jì)值和Δk值,k值取1到9;b:聚類結(jié)果;c:親緣關(guān)系的分布
表1 GWAS結(jié)果和候選基因預(yù)測(cè)
圖中橫的虛線代表閾值(1/23490,-log10p = 4.37),豎的虛線代表在A09和C08部分同源區(qū)間共定位的SNP。紅色標(biāo)記表示本研究和Liu等[7]共同預(yù)測(cè)的候選基因
2.5 單體型效應(yīng)
除了上述2個(gè)候選基因與已有報(bào)道的結(jié)果一致,另外2個(gè)含有PPR保守基序的候選基因未發(fā)現(xiàn)相對(duì)應(yīng)的QTL報(bào)道,接下來(lái)對(duì)這兩個(gè)候選區(qū)間進(jìn)行單體型效應(yīng)分析。C03染色體上候選基因位于顯著SNP(Bn-scaff_26320_1-p297674)上游45 kb處,該區(qū)域SNP平均2大于0.8,構(gòu)成一個(gè)單體型塊,所有7個(gè)SNP構(gòu)成5種單體型,單體型效應(yīng)分析發(fā)現(xiàn),68.9%的材料具有單體型G-T-A-T-G-A-G,平均育性等級(jí)為3.9±1.44,20.1%的材料具有單體型A-C-C-C-N-C-A,平均育性等級(jí)為2.1±1.53,剩下3種單體型共占10.5%,2種比例最大的單體型與育性等級(jí)顯著關(guān)聯(lián)(<0.001)。C06染色體候選基因位于顯著SNP(Bn-scaff_15818_1- p374433)下游100 kb處,編碼的蛋白同樣含有PPR保守基序,該100 kb區(qū)間內(nèi)所有SNP處于極高的LD(r2>0.9)(圖4-a),只存在2種單體型,通過(guò)一個(gè)位點(diǎn)的效應(yīng)分析可以預(yù)測(cè)整個(gè)區(qū)間的效應(yīng)。隨后對(duì)候選基因上游最近的1個(gè)SNP(Bn-scaff_15818_1-p471106,上游2.9 kb)等位基因(C/T)效應(yīng)分析發(fā)現(xiàn),當(dāng)SNP位點(diǎn)從CC變?yōu)門T時(shí),可育材料(1和2級(jí))增加了71.7%,不育材料(4和5級(jí))降低了37.8%(圖4-b),該位點(diǎn)與育性等級(jí)顯著關(guān)聯(lián)(<0.001)。
a:C06候選區(qū)間LD分析,*代表顯著的SNP,藍(lán)色字體代表預(yù)測(cè)的候選基因,基因結(jié)構(gòu)顯示在基因的下方。b:候選基因上游最近的SNP(Bn-scaff_15818_1-p471106)等位基因效應(yīng)分析
本研究所使用的60K SNP芯片已被廣泛應(yīng)用在基于自然群體的全基因組關(guān)聯(lián)分析[37]和基于分離群體的QTL定位研究中[38]。利用該SNP芯片對(duì)308份油菜F1的育性等級(jí)進(jìn)行GWAS分析,最終預(yù)測(cè)了4個(gè)含PPR保守基序的候選基因,其中2個(gè)落在A09和C08染色體的部分同源區(qū)間,且與已克隆的A09上的CMS恢復(fù)基因位點(diǎn)()相同,對(duì)應(yīng)同一個(gè)擬南芥基因。該候選區(qū)間被多個(gè)群體的QTL定位重復(fù)檢測(cè)到[5-7]。另外2個(gè)候選基因?qū)?yīng)的區(qū)間未發(fā)現(xiàn)相應(yīng)的QTL報(bào)道,貢獻(xiàn)率都不到5%,可能是由微效多基因控制,因而在早前基于雙親的分離群體中不容易被檢測(cè)到。進(jìn)一步單體型分析說(shuō)明,與2個(gè)候選基因處于同一單體型塊的SNP的等位基因或單體型的變化與CMS的育性顯著相關(guān),通過(guò)這些SNP的差異可以開發(fā)功能標(biāo)記,應(yīng)用于甘藍(lán)型油菜CMS恢復(fù)系和保持系的篩選。
高通量測(cè)序技術(shù)的迅猛發(fā)展,將基因組學(xué)水平的研究帶入了一個(gè)新的時(shí)期。蕓薹屬60K SNP芯片的開發(fā)和甘藍(lán)型油菜參考基因組的釋放,使我們能夠快速、準(zhǔn)確地挖掘重要農(nóng)藝性狀的候選基因和進(jìn)一步的深入研究。本研究采用目前在植物中廣泛應(yīng)用的全基因組關(guān)聯(lián)分析方法,成功鑒定出與甘藍(lán)型油菜CMS育性恢復(fù)相關(guān)的位點(diǎn),省時(shí)省力,同時(shí)該自然群體可以對(duì)其他農(nóng)藝性狀和品質(zhì)性狀進(jìn)行定位,成為快速解碼大量未知基因功能的重要途徑。同時(shí)該研究將有助于其他CMS系統(tǒng)育性恢復(fù)候選基因的快速挖掘,促進(jìn)油菜的雜種優(yōu)勢(shì)利用。
通過(guò)GWAS分析,成功鑒定出13個(gè)可能影響CMS育性恢復(fù)有關(guān)的SNP位點(diǎn),分布在5條染色體上。預(yù)測(cè)了4個(gè)含PPR保守基序的候選基因,其中2個(gè)候選基因在A09和C08染色體的部分同源區(qū)間,且與早前報(bào)道的一個(gè)CMS育性恢復(fù)位點(diǎn)一致。另外2個(gè)為新鑒定到的微效基因,與候選基因處于同一單體型塊內(nèi)的SNP變化與育性等級(jí)顯著相關(guān)。
[1] Chen L, Liu Y G. Male sterility and fertility restoration in crops., 2014, 65: 579-606.
[2] Fu T D, Yang G S, Yang X N. Studies on three line Polima cytoplasmic male sterility developed in., 1990,104: 115-120.
[3] Yang G S, Fu T D, Ma C Z, Yang X N. Screening and genetic analysis of the restoring genes of polima cytoplasmic male sterility in., 1996, 29: 17-22.
[4] 楊光圣, 傅廷棟. 油菜細(xì)胞質(zhì)雄性不育恢保關(guān)系的研究. 作物學(xué)報(bào), 1991, 17(2): 151-156.
Yand G S, Fu T D. A preliminary study on the restoring-maintaining relationship in rapeseed., 1991, 17(2): 151-156. (in Chinese)
[5] 蔡強(qiáng). 甘藍(lán)型油菜波里馬細(xì)胞質(zhì)雄性不育恢復(fù)基因的分子標(biāo)記篩選與初步定位[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2009.
Cai Q. Identification of molecular markers and perliminary mapping of fertility restorer gene () for the ‘polima’ CMS inL.[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)
[6] Li Y, Liu Z, Cai Q, Yang G S, He Q B, Liu P W. Identification of a microsatellite marker linked to the fertility-restoring gene for a polima cytoplasmic male-sterile line inL.., 2011, 10(47): 9563-9569.
[7] Liu Z, Liu P W, Long F R, Hong D F, He Q B, Yang G SFine mapping and candidate gene analysis of the nuclear restorer geneforCMS in rapeseed (L.)., 2012, 125(4): 773-779.
[8] Liu Z, Yang Z H, Wang X, Li K D, An H, Liu J, Yang G S, Fu T D, Yi B, Hong D FA mitochondria-targeted PPR protein restorescytoplasmic male sterility by reducingtranscript levels in oilseed rape., 2016, 9(7): 1082-1084.
[9] Cui X, Wise R P, Schnable P S. Thenuclear restorer gene of male-sterile T-cytoplasm maize., 1996, 272: 1334-1336.
[10] Liu F, Cui X Q, Horner H T, Weiner H, Schnable P S. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize., 2001, 13(5): 1063-1078.
[11] Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants., 2002, 99(16): 10887-10892.
[12] Brown G G, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J F, Cheung W Y, Landry B SThe radishrestorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats., 2003, 35(2): 262-272.
[13] Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane AIdentification of the fertility restoration locus,, in radish, as a member of the pentatricopeptide-repeat protein family., 2003, 4(6): 588-594.
[14] Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura JGenetic characterization of a pentatricopeptide repeat protein gene,, that restores fertility in the cytoplasmic male-sterile Kosena radish., 2003, 34(4): 407-415.
[15] Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura TPositional cloning of the ricegene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein., 2004, 108(8): 1449-1457.
[16] Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q, Ji Y, Qin X, Wan L, Zhu R, Li S, Yang D, Zhu YThe rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162., 2012, 24(1): 109-122.
[17] Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta NMap-based cloning of a fertility restorer gene,, in rice (L.)., 2004, 37(3): 315-325.
[18] Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y GCytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing., 2006, 18(3): 676-687.
[19] Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K. The fertility restorer gene,, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein., 2011, 65(3): 359-367.
[20] Fujii S, Toriyama K. Suppressed expression of retrograde- regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants., 2009, 106(23): 9513-9518.
[21] Tang H W, Luo D P, Zhou D H, Zhang Q Y, Tian D S, Zheng X M, Chen L T, Liu Y G. The rice restorerfor wild-abortive cytoplasmic male sterility encodes a mitochondrial- localized PPR protein that functions in reduction oftranscripts., 2014, 7(9): 1497-1500.
[22] Huang W C, Yu C C, Hu J, Wang, L L, Dan Z W, Zhou W, He C L, Zeng, Y F, Yao G X, Qi J Z, Zhang Z H, Zhu R S, Chen X F, Zhu Y G. Pentatricopeptide-repeat family proteinfunctions with hexokinase 6 to rescue rice cytoplasmic male sterility., 2015, 112(48): 14984-14989.
[23] Klein R R, Klein P E, Mullet J E, Minx P, Rooney W L, Schertz K FFertility restorer locus[corrected] of sorghum (L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12., 2005, 111(6): 994-1012.
[24] Hagihara E, Itchoda N, Habu Y, Iida S, Mikami T, Kubo TMolecular mapping of a fertility restorer gene for Owen cytoplasmic male sterility in sugar beet., 2005, 111(2): 250-255.
[25] Matsuhira H, Kagami H, Kurata M, Kitazaki K, Matsunaga M, Hamaguchi Y, Hagihara E, Ueda M, Harada M, Muramatsu A, Yui-Kurino R, Taguchi K, Tamagake H, Mikami T, Kubo TUnusual and typical features of a novel restorer-of-fertility gene of sugar beet (L.)., 2012, 192(4): 1347-1358.
[26] Small I D, Peeters N. The PPR motif - a TPR-related motif prevalent in plant organellar proteins., 2000, 25(2): 46-47.
[27] 丁安明, 屈旭, 李凌, 孫玉合. 植物PPR蛋白家族研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2014, 9: 218-224.
Ding A M, Qu X, Li L, Sun Y H. The progress of PPR protein family in plants., 2014, 9: 218-224. (in Chinese)
[28] Edwards D, Batley J, Snowdon R J. Accessing complex crop genomes with next-generation sequencing., 2013, 126(1): 1-11.
[29] Schiessl S, Iniguez-Luy F, Qian W, Snowdon R J. Diverse regulatory factors associate with flowering time and yield responses in winter-type., 2015, 16(1): 737-797.
[30] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data., 2000, 155(2): 945-959.
[31] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study., 2005, 14(8): 2611-2620.
[32] Hardy O J, Vekemans X. SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels., 2002, 2(4): 618-620.
[33] Aulchenko Y S, Ripke S, Isaacs A, Van Duijn C M. GenABEL: an R library for genome-wide association analysis., 2007, 23(10): 1294-1296.
[34] Turner S D. qqman: an R package for visualizing GWAS results using QQ and manhattan plots., 2014, doi: http://dx.doi.org/ 10.1101/005165.
[35] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study., 2005, 14: 2611-2620.
[36] Merk H L, Yarnes S C, Van Deynze A, TONG N K, MENDA N, MUELLER L A, MUTSCHLER M A, LOEWEN S A, MYERS J R, FRANCIS D M. Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm., 2012, 137: 427-437.
[37] Wei L J, Jian H J, Lu K, Filardo F, Yin N W, Liu L Z, Qu C M, Li W, Du H, Li J N. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in., 2016, 14: 1368-1380.
[38] Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y, Snowdon R J, Li J N. A high-density SNP map for accurate mapping of seed fibre QTL inL.., 2013, 8(12): e83052.
(責(zé)任編輯 李莉)
附表1 供試材料及表型數(shù)據(jù)
Supplementary Table 1 List of rapeseed accessions used in this study
可育父本編號(hào)Fertility male parents accession生態(tài)型 Ecotype2013年育性等級(jí)Fertility levelsin 20132013年始花期當(dāng)天的日平均溫度Daily average temperature of beginning flowering in 2013 (℃)2013年始花期前10天的日平均溫度Daily average temperature 10 days ages from beginning flowering in 20132014年的育性等級(jí)Fertility levles in 20142014年始花期當(dāng)天的日平均溫度Daily average temperature of beginning floweringin 2014 (℃)2014年始花期前10天的日平均溫度Daily average temperature 10 days ages from beginning flowering in 2014 Bn-197W22015.621615.3 Bn-188W22015.611816.5 Bn-180W214.513.7115.516.8 Bn-203W314.513.7116.516.9 Bn-056W32014.151714.4 Bn-075W32014.1316.515 Bn-200W22015.6216.515 Bn-129W42014.1516.515 Bn-041W22014.1219.516 Bn-067W42014.741615.3 Bn-139W32014.1416.515 Bn-070W214.513.721615.3 Bn-141W2131141616.9 Bn-016W32014.7415.514.9 Bn-079W22015.6419.516 Bn-017W32015.621816.5 Bn-198W22014.1516.515 Bn-147W22014.741714.4 Bn-185W22015.631616.9 Bn-183W42014.1517.514.9 Bn-027W42015.641816.5 Bn-174W314.513.7218.515.5 Bn-064W21110.7219.516 Bn-191W214.513.7115.514.9 Bn-199W21315.5518.515.5 Bn-137W212.516.3416.515 Bn-160W212.516.3418.515.5 Bn-158W312.516.331616.9 Bn-213W312.516.321816.5 Bn-172W212.516.3216.515 Bn-103W22014.141616.9 Bn-133W41211.3415.514.9 Bn-121W32014.111816.5 Bn-168W21216.1215.514.9 Bn-156W32014.731816.5 Bn-119W52014.1316.515 Bn-120W32015.651814.4 Bn-134W21216.141816.5 Bn-054W217.513.7116.515 Bn-012W31712.1320.514.6 Bn-044W51311416.515 Bn-015W42010.941616.9 Bn-078W217.513.7215.514.9 Bn-028W31611.7319.516.7 Bn-040W217.513.7518.515.5 Bn-008W217.513.7516.515 Bn-072W215.512.742116.8 Bn-052W214.513.7315.514.9 Bn-059W41211.3420.514.6 Bn-085W32014.1216.515 Bn-061W215.512.741714.4 Bn-038W22419.2416.516.9 Bn-001W32015.6417.516.8 Bn-086W314.513.7316.516.9 Bn-002W32014.1517.514.9 Bn-018W32014.1316.516.9 Bn-045W22015.611816.5 Bn-053W21216.151714.4 Bn-023W21215.8317.516.9 Bn-055W312.516.3118.515.5 Bn-202W317.513.731816.5 Bn-186W22014.1219.516.7 Bn-031W314.513.731816.5 Bn-107W217.513.7119.516.7 8Q 263W21611.751614.9 8Q 265W21215.9115.514.9 8Q 264S31310.831716.8 Bn-311S31310.8518.516 Bn-395S31310.8519.514.4 Bn-273S21211.3315.514.9 Bn-320S21116.2317.516.5 Bn-238S11210.7316.516.9 Bn-364S21310.8315.514.9 Bn-245S21311.422116.8 Bn-274S21611.741716.8 Bn-279S21712.1219.516.7 Bn-343S11311.411816.5 Bn-309S31210.7517.514.9 Bn-316S21211.3516.515.3 Bn-269S3129.4416.516.9 Bn-339S412.513.5418.516 Bn-361S21211.3515.515.3 Bn-400S21210.8519.514.4 Bn-392S21210.7218.516 Bn-275S31210.851614.9 Bn-328S4129.451815.5 Bn-348S11712.112116.8 Bn-355S41210.7315.515.3 Bn-291S21110.7415.515.3 Bn-335S21211.332116.8 Bn-334S31310.8116.516.9 Bn-366S212.59419.516.7 Bn-248S4129.841815.5 Bn-313S3127.2319.516.7 Bn-330S31311316.516.9 Bn-360S21211.3119.516.7 Bn-292S412.5951815.5 Bn-340S515.512.7217.516.5 Bn-359S212.513.5416.516.9 Bn-363S31313.722116.8 Bn-365S31210.8417.516.5 Bn-376S21311219.516.7 Bn-483S21210.841815.5 Bn-299S41211.351615 Bn-342S31110.7518.516 Bn-350S3131151615 Bn-323S213.511.451714.6 Bn-314S312.5931615 Bn-290S41110.751815.5 Bn-333S21311.4120.516.9 Bn-289S21611.751615 Bn-281S21310.831616.9 Bn-240S21310.831616.9 Bn-259S42014.741716.8 Bn-283S31611.7417.516.5 Bn-393S21112.531815.5 Bn-357S2131141616.9 8Q 268S3129.841616.9 8Q 269S41210.8516.515.3 8Q 271S31310.8319.514.6 8Q 272S21611.751815.5 Bn-322S21611.741616.9 9w237SW39.55.8317.516.5 9w238SW11211.3215.515.3 9w239SW1131111716.8 9w240SW112.516215.515.3 9w241SW11212116.516.9 9w242SW11210.7116.516.7 9w243SW11210.822116.8 9w244SW31311518.516 9w245SW11311116.516.8 9w246SW11213.8117.516.5 9w247SW31211.3518.516 9w248SW4129.4519.514.6 9w249SW31611.7417.516.5 9w251SW11611.7219.516.7 9w252SW11210.8119.516.7 9w253SW21611.7515.515.3 9w255SW51110.751714.6 9w256SW11310.8114.516.7 9w257SW21310.8418.515.1 9w259SW413.511.4419.516.7 9w261SW11611.7115.515.3 9w262SW31211.3520.515.3 9w263SW31712.1520.515.3 9w264SW11311115.515.3 9w266SW11310.8116.516.8 9w267SW31611.751815.5 9w268SW31211.3518.515.3 9w269SW41712.131815.5 9w270SW11210.811815.5 9w271SW41210.8418.515.1 9w272SW21611.7516.514.9 9w273SW51210.8415.515.3 9w274SW4129.8516.514.9 9w275SW211.510.351615 9w276SW11611.721615 9w277SW311.510.351815.5 9w279SW513.511.4419.516.7 9w280SW21112.151815.5 9w281SW41311515.515.3 9w282SW41311519.514.4 9w283SW31110.7516.514.9 9w284SW313.511.4516.514.9 9w285SW41210.7315.515.3 9w286SW415.512.7316.514.9 9w287SW31311319.514.6 9w288SW1129.411615 9w289SW11210.811815.5 9w290SW41211.3515.515.3 9w292SW21311515.515.3 9w294SW21712.1117.516.5 9w295SW313.511.411815.5 9w297SW31311515.515.3 9w298SW31311519.514.6 9w299SW31611.7416.514.9 9w300SW315.512.7516.514.9 9w301SW31611.7420.517.2 9w302SW31311.4418.515.1 9w303SW2131132116.8 9w304SW513.511.4515.515.3 9w305SW11210.711616.9 9w306SW31311516.514.4 9w307SW21211.351615 9w309SW41211.3516.514.4 9w313SW212.59519.514.6 9w314SW31211.3518.515.3 9w315SW31611.7417.516.5 9w317SW41311.441615 9w318SW31211.3515.515.3 9w319SW311.510.3516.514.9 9w320SW1129.8216.514.9 9w321SW213.511.441615 9w322SW51310.8419.514.6 9w324SW41310.8519.514.6 9w325SW4129.8516.514.9 9w327SW41210.8416.514.9 9w328SW51110.7515.515.3 9w330SW31211.3416.514.9 9w333SW4127.9516.514.9 9w335SW41210.8415.515.3 9w336SW1129.411815.5 9w337SW21210.8116.514.9 9w340SW2129.4218.515.1 9w341SW21210.822116.8 9w342SW21311419.514.6 9w343SW41210.7515.515.3 9w345SW31210.741716.8 9w349SW21310.8518.515.3 9w350SW31210.8515.515.3 9w351SW41310.8516.514.9 9w354SW4127.2517.514.9 9w355SW11210.8218.515.1 9w356SW21210.751615 9w357SW465.922116.8 9w358SW211.510.351815.5 9w359SW31211.341815.5 OJ105SW31310.8519.514.6 OJ106SW411.510.3518.515.3 OJ107SW21310.8319.514.6 OJ108SW3131151615 OJ110SW21611.731615 OJ111SW51211.3518.515.3 OJ115SW3116517.514.4 OJ117SW41311.4415.515.3 OJ118SW31311515.515.3 OJ119SW410.58.4414.516.7 OJ120SW21211.3515.515.3 OJ121SW313.511.451714.6 OJ122SW31311.4516.514.9 0J125SW31311416.514.9 0Q230SW31110.7519.514.6 0Q231SW31110.7118.515.1 0Q232SW311.510.3215.515.3 0Q233SW31311515.515.3 0Q234SW21611.751815.5 0Q236SW411651615 0Q237SW11211.3416.514.9 0Q239SW51310.841815.5 0Q240SW51211.351714.6 0Q242SW21712.1518.516 0Q229SW311.510.3416.514.9 2Q 174SW41311416.514.4 2Q 175SW41210.751815.5 2Q 226SW11215.812116.8 2Q 237SW31311519.514.6 2Q 240SW41611.7516.514.9 2Q 426SW112.514.921815.5 2Q 430SW11210.8116.516.8 2Q 431SW41210.8516.514.4 2Q 433SW313.511.4216.514.4 2Q 435SW11310.8119.516.8 2Q 440SW31311419.514.6 2Q 451SW213.511.451815.5 2Q 463SW31210.841616.9 2Q 466SW41110.751615.3 2Q 467SW11210.8115.515.3 2Q 474SW31311516.514.4 2Q 476SW312.59119.516.8 2Q 477SW3129.4119.516.8 2Q 483SW4131131615 2Q 484SW21311417.516.5 2Q 494SW213.511.4318.516 2Q 495SW21211.3115.515.3 2Q 496SW31311317.516.5 2Q 511SW412.59416.514.9 2Q 516SW511.58.651615 2Q 518SW11212.5116.514.9 2Q 522SW111.510.3119.516.8 2Q 525SW11310.8115.515.3 2Q 528SW213.511.442116.8 2Q 531SW2129.4516.514.4 2Q 542SW410.58.431615 2Q 544SW11212.6116.516.8 2Q 547SW3129.8516.514.4 2Q 551SW41210.7515.515.3 2Q 553SW11210.7115.515.3 2Q 554SW31210.8515.515.3 2Q 558SW3131152114.9 2Q 560SW31110.7415.515.3 2Q 561SW31611.7316.514.4 2Q 583SW11310.8119.516.8 2Q 592SW5129.841615 2Q 594SW412.59216.514.9 2Q 605SW31611.7318.516 2Q 607SW31211.341716.8 2Q 609SW47.55.951714.6 2Q 612SW31210.7518.516 2Q 622SW111.510.311716.8 2Q 645SW21712.151714.9 2Q 706SW31210.7515.515.3 2Q 731SW21611.7216.514.9 2Q 813SW31311316.514.9 2Q 853SW2129.4518.516 2Q 002SW1131111815.5 2Q 031SW5129.4516.514.4 2Q 038SW21712.151615.3 2Q 055SW41611.751815.5 2Q 057SW21712.1418.516 2Q 071SW311.58.6518.516 2Q 073SW11311116.515 2Q 079SW31210.7516.514.4 2Q 081SW21110.751714.9 2Q 101SW41311.4515.515.3 2Q 114SW31712.1316.514.9 2Q 132SW112.5911615 2Q 135SW111.515.8116.515 2Q 151SW212.59516.514.4
Genome-wide association study of the fertility restorer loci forCMS in rapeseed (L.)
WEI DaYong, TAN ChuanDong, CUI YiXin, WU DaoMing, LI JiaNa, MEI JiaQin, QIANWei
(College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed, Chongqing 400716)
【Objective】 Polima system of cytoplasmic male sterility (CMS) in(rapeseed), controlled by a major gene as well as polygenes, has been widely used in China for hybrid rapeseed breeding. Genome-wide association study (GWAS) was performed in a rapeseed population to identify genetic loci and candidate genes for fertility restorer ofCMS. 【Method】 301A, a rapeseedCMS line, was chosen as the female parent to cross with a panel of 308 accessions in natural population of rapeseed which has been genotyped previously using the 60 kSNP array. The F1hybrids were grown for fertility evaluation in 2013 and 2014, respectively, with two replications each year. The fertility of F1was classified according to pollen fertility and performance of pistil and stamen, and population structure and relative kinship of 308 male accessions were analyzed. GWAS was conducted by associating the fertility of F1with the single nucleotide polymorphisms (SNPs) of males. Candidate genes was identified from the region of 100 kb each side of the peak SNP or trait-associated SNPs at LD (2>0.5). Comparative analysis of QTL and haplotype effect evaluation for candidate genes were performed. 【Result】A significant difference (<0.01) was found in the fertility of F1between two years, but a high correlation was detected in it between two years (= 0.52,<0.001). The population structure analysis classified the 308 male accessions into three genetic groups (winter, spring and semi-winter). The relative kinships analysis found that 73% of the kinship coefficients between lines were <0.1 and 53% were equal to 0. A total of 13 SNPs were detected to be with significant association with the fertility of F1, formed six genetic intervals on chromosomes A01, A09, C03, C06 and C08. Six genes related to fertility were predicted from the six intervals, and four of these could encode the PPR type proteins which is a conserve structure encoded by fertility restorer genes. Collinearity analysis revealed two PPR type candidate genes (and) detected in homoeologous regions between chromosome A09 and C08 were homology with, an open reading frame functioning as the reported rapeseed nuclear restorer gene ofCMS. The other two PPR type candidates (and) were novel candidate restorer genes forrapeseedCMS, of which the linked alleles or haplotypes of SNPs were found to significantly associated with the fertility level of the F1(<0.001).【Conclusion】The present study identified several fertility restorer genes forCMS in rapeseed from both A and C subgenomes. Developing functional markers from the alleles or SNPs linked with the candidate genes will benefit the screening of restorer and maintainer lines in theCMS system.
; polima CMS; fertility restorer gene; GWAS; SNP
2016-09-23;接受日期:2016-12-12
國(guó)家“973”計(jì)劃(2015CB150201)、國(guó)家自然科學(xué)基金(31601333)
魏大勇,E-mail:dylanmay@swu.edu.cn。通信作者梅家琴,Tel:023-68250701;E-mail:jiaqinmay@163.com