皮樹斌,楊建文,韓炎兵,張 群
(復(fù)旦大學(xué) 材料科學(xué)系 TFT-LCD關(guān)鍵材料及技術(shù)國(guó)家工程實(shí)驗(yàn)室,上海 200433)
鉍摻雜氧化銦鋅薄膜晶體管的研究
皮樹斌,楊建文,韓炎兵,張 群
(復(fù)旦大學(xué) 材料科學(xué)系 TFT-LCD關(guān)鍵材料及技術(shù)國(guó)家工程實(shí)驗(yàn)室,上海 200433)
采用射頻磁控濺射法制備了以非晶鉍摻雜氧化銦鋅(a-IZBO)為溝道層的薄膜晶體管(TFTs).相比本征的氧化銦鋅薄膜晶體管,a-IZBO-TFTs顯示出更低的關(guān)態(tài)電流,正向偏移的開啟電壓,表明鉍摻雜能有效抑制載流子濃度.在鉍摻雜含量為原子百分比8.6%時(shí)達(dá)到最佳的電學(xué)性能: 載流子遷移率為7.5cm2/(V·s),開關(guān)比為3×108,亞閾值擺幅為0.41V/decade.使用光致發(fā)光激發(fā)譜和X射線光電子能譜評(píng)價(jià)了a-IZBO溝道層中的氧空位缺陷,分析結(jié)果證實(shí)了鉍的摻雜確實(shí)有效地減少了氧空位,從而抑制了半導(dǎo)體溝道層中的載流子濃度,對(duì)a-IZO-TFTs的總體電學(xué)性能改善起到較大的作用.
鉍摻雜; 氧化銦鋅鉍(IZBO); 薄膜晶體管(TFT)
近年來,作為影響顯示技術(shù)的重要元件,薄膜晶體管(Thin-Film Transistors, TFTs)已經(jīng)被廣泛研究與應(yīng)用.通常來說,溝道層的特性對(duì)TFTs器件的電學(xué)性能和穩(wěn)定性影響較大.目前,氫化非晶硅(a-Si∶H)和低溫多晶硅(Low-Temperature Polycrystalline-Silicon, LTPS)已經(jīng)實(shí)現(xiàn)量產(chǎn).然而,a-Si∶H的載流子遷移率相對(duì)較低,一般低于1cm2/(V·s),而且穩(wěn)定性不好.而LTPS由于其表面均勻性差,成本高,較難應(yīng)用于大尺寸的顯示面板.相比之下,非晶氧化物半導(dǎo)體(Amorphous Oxide Semiconductors, AOS)TFTs表現(xiàn)出優(yōu)異的性能,具有高載流子遷移率,可見光范圍內(nèi)高透射率,良好的均勻性,低溫制備工藝以及能與a-Si∶H TFT技術(shù)兼容等特點(diǎn)[1-4].因此,AOS-TFTs正在成為顯示技術(shù)最具前景的下一代TFTs[5],有望在有源液晶顯示、有源有機(jī)發(fā)光二極管顯示、3D顯示及柔性顯示等領(lǐng)域得到廣泛研究和應(yīng)用.
近年來,在抑制AOS溝道層材料中過多的載流子濃度,進(jìn)而改善TFTs性能方面,已經(jīng)有許多研究論文發(fā)表.例如,在氧化銦鋅(IZO)材料體系中摻雜其他元素.目前為止,鎵、鉿[6]、硅[7]、鋯[8]、鎂[9]、鈰[10]、鎢[11]和鈦[12]等已經(jīng)作為改善AOS-TFTs性能的摻雜元素被報(bào)道過.在非晶氧化物半導(dǎo)體中,構(gòu)型為(n-1)d10ns0(n4)的金屬離子呈現(xiàn)出較高的載流子遷移率,如In3+(4d105s0), Zn2+(3d104s0)和Bi5+(5d106s0)等.與各向異性的晶體硅sp3軌道相比,這種結(jié)構(gòu)由于銦離子5s軌道的球面對(duì)稱性,其電子傳輸受結(jié)晶狀態(tài)影響較小[2,13-14].本課題組已經(jīng)報(bào)道了鎢摻雜和鉬摻雜氧化銦鋅薄膜晶體管的研究工作[11,15],也報(bào)道了非晶氧化錫薄膜晶體管因摻鉍而改善了TFTs電學(xué)性能的研究工作[16].本研究工作中,我們制備了具有半導(dǎo)體特性的非晶鉍摻雜氧化銦鋅(a-IZBO)薄膜,進(jìn)而制備了以a-IZBO薄膜為溝道層的TFTs器件,研究了鉍摻雜含量對(duì)器件性能的影響,并對(duì)摻鉍影響載流子濃度的機(jī)理進(jìn)行了分析研究.
1.1溝道層a-IZBO薄膜的制備
本實(shí)驗(yàn)采用射頻磁控濺射法在玻璃基板上沉積50nm厚的a-IZBO薄膜,通過表征a-IZBO薄膜特性,來研究不同鉍摻雜含量對(duì)薄膜結(jié)構(gòu)及性能的影響.本實(shí)驗(yàn)中使用IZO靶材,m(In2O3)∶m(ZnO)=90∶10,鉍的摻雜方法是通過在直徑為60mm,純度為99.99%的IZO靶材的濺射環(huán)上放置若干純度也為99.99%的氧化鉍薄片實(shí)現(xiàn)的.固定濺射功率為60W,濺射總氣強(qiáng)為0.8Pa,氧氣和氬氣的流量比固定在1sccm∶50sccm,氣體的純度均為99.99%.
1.2a-IZBO薄膜晶體管的制備
本實(shí)驗(yàn)所制備的a-IZBO-TFTs為底柵層錯(cuò)結(jié)構(gòu),制備在重?fù)诫s的P型硅襯底上,硅襯底作為柵極.上面通過熱氧化的方法生長(zhǎng)了一層100nm厚的SiO2柵絕緣層.器件結(jié)構(gòu)的截面示意圖如圖1中插圖所示.同樣,采用射頻磁控濺射法濺射50nm厚a-IZBO薄膜作為溝道層,濺射功率為60W,濺射時(shí)總氣壓為0.8Pa,氧氬比固定在1sccm∶50sccm.采用射頻磁控濺射的方法濺射60nm的ITO薄膜作為源漏電極.通過掩膜板控制溝道的寬長(zhǎng)比為500μm∶100μm.整個(gè)制備過程在室溫下完成.器件制備完成之后在350℃空氣氛圍中退火1h.
1.3分析測(cè)試方法
使用Bruker D8 AdvancedX射線衍射(X-Ray Diffraction, XRD) 和Edinburgh Instruments FLS920光致發(fā)光激發(fā)譜(PhotoLuminescence, PL)來表征在相同條件下濺射制備的IZBO薄膜樣品的結(jié)晶特性和缺陷態(tài).通過X射線光電子能譜(X-ray Photoelectron Spectroscopy, XPS)來測(cè)定不同摻雜含量樣品中鉍原子的摩爾比例.TFTs器件的電學(xué)特性是在空氣條件下通過Keithley 4200半導(dǎo)體測(cè)試系統(tǒng)來測(cè)量.
2.1溝道層a-IZBO薄膜的性能表征
圖1 玻璃襯底上不同鉍摻雜含量a-IZBO薄膜的XRD譜圖Fig.1 XRD patterns of a-IZBO thin films deposited on glass substrates with different Bi doping contents
用于XRD測(cè)試的薄膜樣品是沉積在玻璃襯底上的,其譜圖如圖1所示.圖中可以看到,隨著鉍摻雜含量原子百分比(RBi)從0增加到13.0%,始終沒有明顯的衍射峰,表明盡管鉍含量在變化,IZBO溝道層薄膜始終保持非晶結(jié)構(gòu).圖2(a)是a-IZBO薄膜樣品隨鉍摻雜含量其O 1s峰變化的XPS譜圖.為了觀察薄膜沉積時(shí)鉍含量的影響,O 1s峰均通過高斯擬合分解為3個(gè)峰位: OL、OM、OH,分別是在529.3eV,530.4eV和531.9eV.其中,低能量峰(OL)是與金屬離子結(jié)合的氧離子的峰位;中等能量峰(OM)是a-IZBO薄膜中缺陷氧的峰位;高能量峰(OH)則是吸附氧的峰位,包括吸附的H2O,-CO3或O2[17-18].3種能量峰面積比例(Oi/(OL+OM+OH),i=H,M,L)的變化反映了不同鉍摻雜含量對(duì)應(yīng)3種不同狀態(tài)氧含量的變化.
其中,OM-1s的面積比例RA(OM-1s)的變化如表1所示.結(jié)果顯示,隨著鉍摻雜含量原子百分比從0增加到13%,OM-1s的面積比例從55.5%降低到35.5%,這表明摻鉍能有效地抑制氧空位.這可以從化學(xué)鍵結(jié)合能來解釋: Bi-O(337.2kJ mol-1)鍵結(jié)合能大于In-O(320.1kJ mol-1)和Zn-O(159kJ mol-1)鍵結(jié)合能[19].在濺射和退火的過程中,氧更容易被鉍捕獲結(jié)合,這樣就減少了氧空位的產(chǎn)生[14].Bi 4f峰位區(qū)域如圖2(b)所示,盡管鉍含量變化,兩個(gè)分解峰位幾乎不偏移,保持在158.8eV和164.2eV位置.這兩個(gè)峰位分別來源于Bi 4f5/2和4f7/2能帶,根據(jù)Shimizugawa[20]的研究,它們屬于Bi5+.此外,In 3d和Zn 2p區(qū)域的XPS譜分別如圖2(c)和(d)所示,沒有明顯的偏移,這說明鉍的摻雜比例不影響薄膜中In和Zn的化學(xué)態(tài)[12].
表1 不同鉍摻雜含量a-IZBO-TFTs的OM-1s峰面積比例及器件性能參數(shù)
圖2 a-IZBO薄膜的XPS譜圖,(a) O 1s, (b) Bi4f, (c) In 3d, 和(d) Zn 2p3/2Fig. 2 XPS spectra of (a) O 1s, (b) Bi4f, (c) In 3d, and (d) Zn 2p3/2 of the a-IZBO thin films
圖3 不同鉍含量a-IZBO薄膜的光致發(fā)光激發(fā)譜Fig.3 Photoluminescence emission spectra of a-IZBO thin films with different Bi contents
用PL譜來測(cè)試鉍摻雜可能帶來的缺陷態(tài).a(chǎn)-IZBO薄膜樣品是用351nm波長(zhǎng)激發(fā)的,其PL譜如圖3所示.隨著鉍含量的增加,與缺陷相關(guān)的可見光帶(約400~470nm,藍(lán)光發(fā)射)強(qiáng)度降低.激發(fā)帶與氧空位有關(guān)[21],Vanheusden等人發(fā)現(xiàn),單電離的氧空位是造成藍(lán)光發(fā)射的原因[22].我們知道,氧空位存在3種電荷狀態(tài): 中性氧空位(VO),輕度電離氧空位(VO+)和雙電離氧空位(VO++).只有單電離的氧空位(VO+)才能作為光發(fā)射中心[21,23].隨著鉍含量的增加,可見光激發(fā)帶強(qiáng)度降低且出現(xiàn)藍(lán)移,這和氧空位的減少密切相關(guān).主要原因是摻雜的鉍原子取代了本征的In和Zn,與氧原子結(jié)合形成BiOx,使得綠光和黃光發(fā)射的減少,這樣造成了單電離氧空位(VO+)和藍(lán)移[24].
2.2a-IZBO薄膜晶體管的性能
圖4 (a) 不同鉍摻雜含量a-IZBO-TFTs器件轉(zhuǎn)移特性曲線對(duì)比和(b) 8.6% 鉍含量的a-IZBO溝道TFTs器件的輸出特性曲線Fig. 4 (a) Comparison of the transfer curves of the a-IZBO-TFTs with different Bi molar ratios and (b) Output curves of the TFTs with 8.6% a-IZBO channel layer
為驗(yàn)證摻雜是否均勻,我們制備了相當(dāng)數(shù)量的TFT器件進(jìn)行電學(xué)性能測(cè)量.對(duì)于IZBO-TFT,我們使用邊長(zhǎng)為20mm的正方形Si-SiO2襯底,每個(gè)襯底上有18個(gè)TFT,如圖5所示,其中(a)和(b)分別表示第一次和重復(fù)實(shí)驗(yàn)中所使用的樣品.在沉積IZBO薄膜時(shí),襯底是勻速旋轉(zhuǎn)的,我們測(cè)量了所有有效的器件,發(fā)現(xiàn)它們的性能沒有明顯差異,說明了良好的均勻性.我們?cè)谙嗤臈l件下重復(fù)實(shí)驗(yàn),所有器件顯示出相似的性能,表明良好的重復(fù)性,其中代表性位置的IZBO-TFT性能如圖6所示.另一方面,我們是在靶材濺射環(huán)表面對(duì)稱位置放置不同數(shù)量氧化鉍薄片的,這一方法主要用于不同鉍含量影響的初步研究.確定最佳成分比之后的實(shí)際應(yīng)用中,仍需制作含有最佳比例的氧化鉍的混合靶材.
圖5第一次使用的正方形Si-SiO2基板(a)和重復(fù)實(shí)驗(yàn)中基板(b)上TFT的代表性位置Fig.5 The representative position of the TFT on the square Si-SiO2substrate (a) at first use and, (b) repetitive experiment
圖6 代表性位置上的TFT電學(xué)性能Fig.6 The electrical properties of TFTs on representative position
制備了以鉍摻雜IZO為溝道層的底柵層錯(cuò)結(jié)構(gòu)TFTs,并研究了摻鉍含量對(duì)IZO-TFTs的影響.a(chǎn)-IZBO-TFTs器件顯示出低的關(guān)態(tài)電流和可調(diào)節(jié)的閾值電壓,證明摻鉍能有效地抑制IZO溝道中載流子濃度.當(dāng)鉍的摻雜含量原子百分比從0增加到8.6%時(shí),與氧空位有關(guān)的O 1s峰強(qiáng)度降低,載流子濃度下降導(dǎo)致關(guān)態(tài)電流和亞閾值擺幅的降低.鉍含量原子百分比在8.6%時(shí)TFTs器件獲得較佳的綜合電學(xué)性能: 載流子遷移率為7.5cm2/(V·s),電流開關(guān)比為3×108,亞閾值擺幅為0.41V/decade.研究證明,鉍可以作為氧化物TFTs器件的載流子抑制劑.
[1] NOMURA K, OHTA H, TAKAGI A,etal. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J].Nature, 2004,432(7016): 488-492.
[2] KAMIYA T, NOMURA K, HOSONO H. Present status of amorphous In-Ga-Zn-O thin-film transistors [J].ScienceandTechnologyofAdvancedMaterials, 2010,11(4): 044305.
[3] PARK J S, MAENG W J, KIM H S,etal. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices [J].ThinSolidFilms, 2012,520(6): 1679-1693.
[4] NOH J H, RYU S Y, JO S J,etal. Indium oxide thin-film transistors fabricated by rfsputtering at room temperature [J].IEEEElectronDeviceLetters, 2010,31(6): 567-569.
[5] FORTUNATO E, BARQUINHA P, MARTINS R. Oxide semiconductor thin-film transistors: A Review of Recent Advances [J].Advanced.Material, 2012,24(22): 2945-2986.
[6] KIM C J, KIM S, LEE J H,etal. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors [J].AppliedPhysicsLetters, 2009,95(25): 252103.
[7] CHONG E, KIM S H, LEE S Y. Role of silicon in silicon-indium-zinc-oxide thin-film transistor [J].AppliedPhysicsLetters, 2010,97(25): 252112.
[8] PARK J S, KIM K, PARK Y G,etal. Novel ZrInZnO thin-film transistor with excellent stability [J].AdvancedMaterials, 2009,21(3): 329-333.
[9] KIM G H, JEONG W H, DU AHN B,etal. Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors [J].AppliedPhysicsLetters, 2010,96(16): 163506.
[10] KOO J H, KANG T S, KIM T Y,etal. Electrical and optical characteristics of co-sputtered amorphous Ce-doped indium-zinc-oxide thin-film transistors [J].JournaloftheKoreanPhysicalSociety, 2013,62(3): 527-530.
[11] LI H L, QU M Y, ZHANG Q. Influence of tungsten doping on the performance of indium-zinc-oxide thin-film transistors [J].IEEEElectronDeviceLetters, 2013,34(10): 1268-1270.
[12] YAO Q J, LI S,ZHANG Q. Study of Ti addition in channel layers for In-Zn-O thin film transistors [J].AppliedSurfaceScience, 2011,258(4): 1460-1463.
[13] HOSONO H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application [J].JournalofNon-CrystallineSolids, 2006,352(9): 851-858.
[14] YANG J W, MENG T, ZHANG Q,etal. Investigation of tungsten doped tin oxide thin film transistors [J].JournalofPhysicsD:AppliedPhysics, 2015,48(43): 435108.
[15] YANG Z, WANG N Q, QU M Y,etal. Preparation and characterization of molybdenum-doped indium-zinc-oxide thin film transistors [J].SemiconductorScienceandTechnology, 2015,30(4): 045008.
[16] YANG J W, PI S B, HAN Y B,etal. Characteristic of bismuth-doped tin oxide thin-film transistors [J].IEEETransactiononElectronDevices2016,63(5): 1904-1909.
[17] RIM Y S, KIM D L, JEONG W H,etal. Effect of Zr addition on ZnSnO thin-film transistors using a solution process [J].AppliedPhysicsLetters, 2010,97(23): 233502.
[18] SEO S J, HWANG Y H, BAE B S. Postannealing process for low temperature processed Sol-Gel Zinc Tin oxide thin film transistors [J].ElectrochemicalandSolid-StateLetters, 2010,13(10): H357-H359.
[19] LIDE D R. CRC Handbook of Chemistry and Physics, 2003—2004 [M]. 84th ed. Boca Raton: CRC Press, 2003.
[20] SHIMIZUGAWA Y, SUGIMOTO N, HIRAO K. X-ray absorption fine structure glasses containing Bi2O3with third-order non-linearities [J].JournalofNon-crystallineSolids, 1997,221(2): 208-212.
[21] KANG H S, KANG J S, Pang S S,etal. Variation of light emitting properties of ZnO thin films depending on post-annealing temperature [J].MaterialsScienceandEngineering: B, 2003,102(1): 313-316.
[22] VANHEUSDEN K, WARREN W L, SEAGERr C H,etal. Mechanisms behind green photoluminescence in ZnO phosphor powders [J].JournalofAppliedPhysics, 1996,79(10): 7983-7990.
[23] LI W, MAO D, ZHANG F,etal. Characteristics of ZnOZn phosphor thin films by post-deposition annealing [J].NuclInstrumMethB, 2000,169(1): 59-63.
[24] CHEN K, HUNG F Y, CHANG S J,etal. Microstructures, optical and electrical properties of In-doped ZnO thin films prepared by sol-gel method [J].AppliedSurfaceScience, 2009,255(12): 6308-6312.
FudanUniversity,Shanghai200433,China)
Abstract: Amorphous bismuth doped indium zinc oxide thin film transistors (a-IZBO-TFTs) were prepared by rf magnetron sputtering at room temperature. Compared with the intrinsic indium zinc oxide TFTs, a-IZBO-TFTs show lower off-current and positive turn-on voltage shift. The optimum a-IZBO-TFT performance in enhancement mode was obtained at Bi doping content of 8.6%, with the mobility of 7.5 cm2/(V·s), on/off current ratio of 3×108, and subthreshold swing of 0.41 V/decade. PL spectra as well as XPS spectra were used to evaluate the oxygen vacancy defects in the a-IZBO channel layers. It is found that Bi doping is effective on suppressing the oxygen vacancies and thus the carrier concentration and improving the comprehensive electrical performance of IZO-TFT devices.
Keywords: bismuth doping; indium-zinc-bismuth-oxide(IZBO); thin film transistors(TFT)
InvestigationofBismuthDopedIndium-Zinc-OxideThinFilmTransistors
PI Shubin, YANG Jianwen, HAN Yanbing, ZHANG Qun
(NationalEngineeringLabofTFT-LCDMaterialsandTechnologies,DepartmentofMaterialsScience,
TN321+.5
A
0427-7104(2017)03-0309-05
2017-03-04
國(guó)家自然科學(xué)基金(61471126);上海市科委科研計(jì)劃(16JC1400603)
皮樹斌(1991—),男,碩士研究生;張 群,男,教授,通信聯(lián)系人,E-mail: zhangqun@fudan.edu.cn.