• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Preparation and Properties of the Graphene Functional Layer by the Spray Coating Method

    2017-10-13 03:46:20WANGXiaojuXURuxiangDUNTaoQIKangchengCAOGuichuanandLINZulun
    電子科技大學(xué)學(xué)報 2017年1期
    關(guān)鍵詞:掃描電鏡結(jié)果表明活性劑

    WANG Xiao-ju, XU Ru-xiang, DUN Tao, QI Kang-cheng, CAO Gui-chuan, and LIN Zu-lun

    ?

    Study on Preparation and Properties of the Graphene Functional Layer by the Spray Coating Method

    WANG Xiao-ju1,2, XU Ru-xiang1, DUN Tao2, QI Kang-cheng2, CAO Gui-chuan2, and LIN Zu-lun2

    (1. General Hospital of Beijing Military Region Dongcheng Beijing 100700; 2. School of Opto-Electronic Information, University of Electronic Science and Technology of China Chengdu 610054)

    Stable aqueous graphene dispersion with sodium dodecyl benzene sulfonate (SDBS) surfactant was prepared by using an ultrasonic dispersing process. Graphene films were deposited on glass and silicon substrate as functional layers by the spray coating method. The study of the influence of SDBS concentration on graphene dispersing performance show that SDBS concentration of 15% is adequate for preparing stable graphene dispersion. Optical and morphological properties of the resulting graphene films are also investigated by ultraviolet-visible spectrophotometer and scanning electron microscopy, respectively. The results indicate that the visible light transmittance of graphene coating is higher than 82% and the graphene film shows a cluster structure with blade-like edges. The field emission analyses were carried out by a diode test cell in a vacuum system, which confirms that this graphene functional layer has good field-emission performance with low turn-on field of 3 V/μm and large enhancement factor of 3 580. Collectively, this deposition method may be a viable and cost-effective route for fabricating graphene films.

    dispersions; field emission; graphene; surfactant; transmittance

    Graphene is a flat layer of Sp2-bonded carbon with one-atom thick. Due to its optical, thermal, mechanical and electronic properties[1-3], graphene has stimulated intense researches over past decades. These unique features make graphene a promising material in many potential applications. For example, it can be used as anodes of organic solar cells[4], electrodes for batteries with high capacity[5-6], and surface plasmon resonance based fiber optic sensors[7-8].Moreover, graphene is one of excellent field-emission materials. Graphene field-emission has high field emitting current taking an advantage of high aspect ratio (ratio of lateral size to thickness). Moreover, graphene field emission has excellent field emitting stability for its unique mechanical and conductive properties.

    To date, numerous methods have been reported regarding the preparation of graphene thin films, such as vacuum filtration[9], spin coating[10], self-assembly[11], and electrophoretic deposition approach[12]. These reports focused mainly on the optimization of depositing conditions, as well as the electrical and optical properties of fabricated films. However, no systematic study has been performed to investigate the field emitting characteristics of graphene films by using the spray coating method.

    Spray coating has been widely used as an economical and versatile processing technique for deposition of various nanomaterials and films, such as LaB6film[13]and CNTs[14], owing to its good uniformity, controlled thickness, and high deposition rate and throughput. For example, Ostfeld et al. fabricated P3HT-PCBM organic solar cells by utilizing spray-coated transparent conductive CNT films as the electrode material, and achieved power conversion efficiency of 2.3%, which was comparable to those of solar cells by using indium tin oxide transparent electrodes[14]. In this work, we demonstrate the fabrication of spray-coated graphene films from sodium dodecyl benzene sulfonate (SDBS) aqueous dispersed graphene solution. Optically, morphological and field-emission characterizations are presented and discussed.

    1 Experiments

    The graphene nanomaterials used in our experiments were commercially provided by Nanjing Kefu Nano Technology Co. Ltd., Beijing, China. The powder mainly consisted of multi-layer graphene (MLG) flakes, having an average primary particle size of less than 5 μm, average thickness of 1~6 nm, and layers of less than ten. The process of producing the graphene functional layer included two key steps: fabricating uniform and stable graphene dispersion, and depositing graphene on Si substrate. First, the graphene (0.06 g) was dispersed in deionized water (60 mL) by sonication for 30 min. Sodium dodecyl benzene sulfonate as surfactant was then added and ultrasonic vibrated for 5 h to form a type of uniform solution. Because SDBS was a kind of viscous liquid, the weight of SDBS was selected not only to prevent the aggregation of graphene sheets but also avoid a significant viscous phenomenon. The stable dispersion of graphene was held at room temperature for 48 h. Next, the graphene films were coated on the clean glass and silicon substrate using a spray gun, followed by annealing at 400 ℃ in air for 30 min.

    To study the dispersing properties of graphene, the solutions were treated by centrifugal processing and upper stable dispersions were analyzed by an ultraviolet-visible spectrophotometer relative to air. Surface morphologies and transmission measurements of graphene films were carried out with a scanning electron microscope and a UV-VIS spectrophotometer, respectively. The field-emission properties were characterized via a diode system in vacuum. Figure 1 shows the simple schematic diagram of the field emission test system. The silicon substrate with graphene functional layer was used as cathode and a stainless steel plate was introduced as anode. The distance between the cathode and anode was ~0.1 mm.

    Fig. 1 Schematic diagram of the diode configuration used for an investigation of field emitting properties of graphene films

    2 Results and Discussions

    Figure 2 shows the UV-vis absorption spectra for the stable graphene dispersions with different concentrations of SDBS surfactant (10 wt %, 15 wt %). Two samples exhibited similar spectrums and both displayed an obvious absorption maximum at about 255 nm with tailing to 800 nm. It verified that graphene has been successfully dispersed in the solvents. In more detail, the peak value raised along with an increase in SDBS. However, when the concentration of SDBS increased to 20 wt %, the solution became too viscous in our experiment, which was unfit for spraying. In addition, the aqueous dispersion (15 wt % SDBS) was found to be very stable and homogeneous even if the storage time was over 60 days, which indicated that SDBS surfactant combining with an ultrasound technology was efficient to assist preparation of the high-quality graphene dispersion. The fantastic dispersibility of SDBS- graphene was attributed to the presence of small amounts of-OH and SO3-groups introduced by SDBS.

    Figure 3 shows the transmittance spectrum of sprayed graphene coating on glass substrate. By using a clean glass slide as a reference, the transmittance in the visible wavelength range was greater than 82%. Especially, in the 650~800 nm wavelength range, the transmittance was higher than 90%. There were many other literatures focusing on the optical properties of graphene films. According to their research, a graphene coating deposited on glass substrate with a high visible light transmittance of more than 96% could be achieved by air-brush spraying of a chemically converted graphene solution[15]. The relationship between the transmittance and the layers of graphene films was defined by the following equation:

    whereis the layers of graphene films,and0are transmittance of fabricated graphene films and single layer graphene, respectively. According to Eq. (1), we can consider that the lower transmittance in our experiment may be attributed to the overlapping and clustering of graphene.

    Figure 4 shows the SEM image of the fabricated graphene functional layer. Due to the coarse nature of the coating procedure, the graphene flakes overlapped irregularly, and film thickness ranged from hundreds of nanometers to a few micrometers. This morphology was consistent with the previous results of the slightly lower transmittance in Fig.3. It also can be seen that, the graphene cluster consisted of a number of sheet-like structures. Making use of these blade-like edges with atomic thickness, it could greatly increase the electric field enhancement factor.

    Fig.3 A transmission spectrum of a graphene functional layer coated on a glass slide by spraying of graphene solution (15 wt % SDBS)

    Fig.4 SEM image of graphene functional layer coated on silicon substrate by spraying of graphene solution (15 wt % SDBS)

    Figure 5a shows the field emitting current density-voltage (-) characteristics of graphene functional layer coated on silicon substrate at 6×10-5Pa in diode geometry. With the increase of anode voltage, the emission current density increased very rapidly, finally reached 5 mA/cm2at electric field of 17.5 V/μm. Furthermore, it exhibited a low turn-on field of 3 V/μm, which was well comparable to other cold cathodes, including a Si nanotip array of 8.5 V/μm[16]and CNT field emitters of 2~5 V/μm[17]. We suggested that this satisfactory field emitting performance of graphene film was not only due to its unique high aspect ratio but also due to its special appearance presented in the SEM photograph (Fig.4). As shown in Fig.4, graphene films were made of flat graphene sheets laminated together. Although this flat sheet structure was contrary to conventional field-emission cathodes with sharp surface (i.e. Spindt emitters and CNTs), when there was a strong vertical electric field applied, the graphene sheets would be pulled up and more edges exposed. Owing to the special edge-field enhancing effect, lots of electrons emitted from graphene films. Moreover, because the pulled up graphene sheets were separated, the influence of electric field shielding effect may be reduced and field emitting performance would be improved further.

    Figure 5b shows the Fowler-Nordheim (-) plots of measured graphene films. The-points formed a straight line approximately, which confirmed that the current was indeed the result of field emission. According to the Fowler-Nordheim theory, electric field enhancement factor () of emitter surface was evaluated by using the Fowler-Nordheim equation, i.e.,

    (2)

    whereis work function in eV;is field-dependent correction factor, which is approximated asfor most applications;is electric field strength in V/cm;is field emitting current density in A/cm2. Consequently, the slope of the-plot in Fig.5b was given by:

    Assuming that the work function of multilayer graphene films was 4.3 eV[18], the field enhancement factor of graphene film was determined to be 3 580 from the constant-slope. This large enhancement factor allowed for sufficient tunneling of electrons from graphene through surface barriers and resulted in the low turn-on voltage as previously described.

    3 Conclusions

    We developed a simple and practical method to obtain a graphene functional layer with remarkable field-emission performance by using the spray-coating method. The UV-vis absorption spectra for the stable graphene dispersions were measured to examine their dispersion properties. The optical transmittance and morphological of the prepared films were investigated. The results revealed that the visible light transmittance of graphene film was higher than 82% and graphene flakes overlapped irregularly on silicon substrate with numerous blade-like edges. In addition, the graphene films showed excellent field-emission properties, with low turn-on field of 3 V/μm and large enhancement factor of 3 580. These results provide a convenient approach to create new graphene-based devices.

    [1] CANTY R, GONZALEZ E, MACDONALD C, et al. Reduction expansion synthesis as strategy to control nitrogen doping level and surface area in graphene[J]. Materials, 2015, 8(10): 7048-7058.

    [2] FAN Y, IGARASHI G, JIANG W, et al. Highly strain tolerant and tough ceramic composite by incorporation of graphene[J]. Carbon, 2015, 90: 274-283.

    [3] OTHMAN M, RITIKOS R, MUHAMMAD H, et al. Low -temperature plasma-enhanced chemical vapour deposition of transfer-free graphene thin films[J]. Materials Letters, 2015, 158: 436-438.

    [4] VAIANELLA F, ROSOLEN G, MAES B. Graphene as a transparent electrode for amorphous silicon-based solar cells[J]. Journal of Applied Physics, 2015, 117(24): 243102.

    [5] ERVIN M H. Etching holes in graphene supercapacitor electrodes for faster performance[J]. Nanotechnology, 2015, 26(23): 234003.

    [6] LAI L, YANG H, WANG L, et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities[J]. ACS Nano, 2012, 6(7): 5941- 5951.

    [7] VADIVAAMBIGAI A, SENTHILVASAN P A, KOTHURKAR N, et al. Graphene-oxide-based electro chemical sensor for salicylic acid[J]. Nanoscience and Nanotechnology Letters, 2015, 7(2): 140-146.

    [8] LEE J S, OH J, JUN J, et al. Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag[J]. ACS Nano, 2015, 9(8): 7783-7790.

    [9] EDA G, FANCHINI G, CHHOWALLA M. large area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3(5): 270-274.

    [10] GUO Y L, DI C A, LIU H T, et al. General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating[J]. ACS Nano, 2010, 4(10): 5749-5754.

    [11] ARAPOV K, GORYACHEV A, WITH G D, et al. A simple and ?exible route to large-area conductive transparent graphene thin-?lms[J]. Synthetic Metals, 2015, 201: 67-75.

    [12] WU Z S, PEI S F, REN W C, et al. Field emission of single-layer graphene films prepared by electrophoretic deposition[J]. Advanced Materials, 2009, 21:1756-1760.

    [13] DENG J, ZENG B Q, WANG X J, et al. Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB6 film on the MgO protective layer[J]. AIP Advance, 2014(4): 037109.

    [14] OSTFELD A E, CATHELINE A, LIGSAY K, et al. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics[J]. Applied Physics Letters, 2014, 105: 253301.

    [15] LI D, MüLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2): 101-105.

    [16] HUANG G S, WU X L, CHENG Y C, et al. Fabrication and field emission property of a Si nanotip array[J]. Nanotechnology, 2006, 17: 5573-5576.

    [17] JUNG M S, KO Y K, JUNG D H, et al. Electrical and field-emission properties of chemically anchored single-walled carbon nanotube patterns[J]. Appied Physics Letters,2005, 87: 013114.

    [18] PARK S J, PARK H, LEE Y, et al. Increasing the effective work function of multilayer rapheme films using silver nanoparticles[J]. Journal of Vacuum Science and Technology B, 2014, 32(1): 011214.

    編 輯 漆 蓉

    噴涂法制備石墨烯功能層及性能研究

    王小菊1,2,徐如祥1,敦 濤2,祁康成2,曹貴川2,林祖?zhèn)?

    (1. 北京軍區(qū)總醫(yī)院 北京東城區(qū) 100700;2. 電子科技大學(xué)光電信息學(xué)院 成都 610054)

    以十二烷基苯磺酸鈉(SDBS)為表面活性劑,采用超聲分散工藝制備出穩(wěn)定的石墨烯水分散液,并采用噴涂法分別在玻璃和n-Si基底上形成石墨烯薄膜。研究了表面活性劑濃度對石墨烯分散效果的影響。結(jié)果表明,采用濃度為15%的SDBS可獲得穩(wěn)定的石墨烯水溶液分散液。利用分光光度計和掃描電鏡對石墨烯薄膜的透過率和表面形貌進行表征,結(jié)果表明其可見光透過率超過82%,薄膜具有刀刃狀的邊緣結(jié)構(gòu)。采用二極管結(jié)構(gòu)對石墨烯薄膜的場發(fā)射性能進行測試,其開啟電場為3 V/μm,場增強因子為3 580。實驗結(jié)果表明,這是一種可行的、低成本的制作石墨烯功能層的有效方法。

    分散液; 場發(fā)射; 石墨烯; 表面活性劑; 透過率

    O462.4

    A

    2016-02-16;

    2016-06-21

    10.3969/j.issn.1001-0548.2017.01.020

    2016-02-16;Revised date:2016-06-21

    Biography:WANG Xiao-ju was born in 1981, female, associate professor, her research interest includes vacuum materials and devices.

    王小菊(1981-),女,博士,副教授,主要從事電真空材料與器件方面的研究.

    猜你喜歡
    掃描電鏡結(jié)果表明活性劑
    掃描電鏡能譜法分析紙張的不均勻性
    智富時代(2018年7期)2018-09-03 03:47:26
    掃描電鏡在雙金屬層狀復(fù)合材料生產(chǎn)和研究中的應(yīng)用
    電線電纜(2017年4期)2017-07-25 07:49:48
    AOS-AA表面活性劑的制備及在浮選法脫墨中的應(yīng)用
    中國造紙(2015年7期)2015-12-16 12:40:48
    基于PSO-GRG的背散射模式掃描電鏡的數(shù)字處理及應(yīng)用
    化學(xué)降解表面活性劑的開發(fā)
    來源于微生物的生物表面活性劑
    掃描電鏡法觀察雞蛋殼超微結(jié)構(gòu)形貌
    陰離子表面活性劑的應(yīng)用與創(chuàng)新
    體育鍛煉也重要
    闊世瑪與世瑪用于不同冬小麥品種的安全性試驗
    看免费成人av毛片| 久久影院123| 欧美乱码精品一区二区三区| 老司机靠b影院| 免费少妇av软件| 国产精品二区激情视频| 又大又爽又粗| 激情五月婷婷亚洲| 国产老妇伦熟女老妇高清| 中文字幕亚洲精品专区| 尾随美女入室| 国产福利在线免费观看视频| 国产精品亚洲av一区麻豆 | 久久毛片免费看一区二区三区| 国产精品一区二区在线观看99| 亚洲av国产av综合av卡| 国产精品三级大全| 欧美日韩av久久| 91成人精品电影| 不卡视频在线观看欧美| 国产精品成人在线| 精品第一国产精品| 亚洲熟女毛片儿| 国产又爽黄色视频| 免费女性裸体啪啪无遮挡网站| 哪个播放器可以免费观看大片| 日本猛色少妇xxxxx猛交久久| 99久久综合免费| 性色av一级| 一区二区日韩欧美中文字幕| 久久99一区二区三区| 亚洲国产av新网站| av在线播放精品| 欧美精品亚洲一区二区| 日韩 欧美 亚洲 中文字幕| 成年人免费黄色播放视频| 电影成人av| 亚洲精品乱久久久久久| 亚洲国产欧美网| 纯流量卡能插随身wifi吗| 午夜福利乱码中文字幕| 中文字幕人妻丝袜制服| 一本色道久久久久久精品综合| 亚洲,一卡二卡三卡| 欧美成人午夜精品| 午夜福利,免费看| 99国产综合亚洲精品| 街头女战士在线观看网站| 色吧在线观看| 免费日韩欧美在线观看| 午夜福利视频在线观看免费| 啦啦啦 在线观看视频| 麻豆av在线久日| 欧美日韩一级在线毛片| av卡一久久| 三上悠亚av全集在线观看| 亚洲视频免费观看视频| 波野结衣二区三区在线| 最近最新中文字幕大全免费视频 | 久久精品aⅴ一区二区三区四区| av在线播放精品| 亚洲国产av新网站| 十八禁网站网址无遮挡| 如何舔出高潮| 成年人午夜在线观看视频| 精品一区二区免费观看| av在线观看视频网站免费| 久久久久久久久久久久大奶| 国产精品无大码| 一区在线观看完整版| 精品一区二区三区四区五区乱码 | 亚洲av国产av综合av卡| 国产一区二区三区av在线| 久久精品久久久久久噜噜老黄| 少妇人妻久久综合中文| 国产精品欧美亚洲77777| 久久青草综合色| 在现免费观看毛片| 韩国高清视频一区二区三区| 18禁观看日本| 国产av一区二区精品久久| 色94色欧美一区二区| 久久天躁狠狠躁夜夜2o2o | 在线观看免费午夜福利视频| 免费久久久久久久精品成人欧美视频| 青青草视频在线视频观看| 少妇猛男粗大的猛烈进出视频| 下体分泌物呈黄色| 精品人妻一区二区三区麻豆| 亚洲男人天堂网一区| 丝袜美腿诱惑在线| 欧美黄色片欧美黄色片| 日本黄色日本黄色录像| 中文字幕人妻丝袜制服| 国产成人精品久久久久久| 亚洲精品视频女| 日韩伦理黄色片| av又黄又爽大尺度在线免费看| 亚洲av电影在线观看一区二区三区| 在线观看免费高清a一片| 中文字幕精品免费在线观看视频| 久久人人爽人人片av| av在线app专区| 亚洲精品久久成人aⅴ小说| 欧美黑人精品巨大| 看免费成人av毛片| 亚洲精品自拍成人| 精品久久久久久电影网| 亚洲欧美清纯卡通| 国产日韩欧美亚洲二区| 高清黄色对白视频在线免费看| av片东京热男人的天堂| av不卡在线播放| 男人添女人高潮全过程视频| 超色免费av| 亚洲av电影在线观看一区二区三区| 亚洲熟女毛片儿| 欧美黄色片欧美黄色片| 亚洲伊人久久精品综合| 丰满少妇做爰视频| 亚洲第一av免费看| 十八禁人妻一区二区| 在线观看国产h片| 一边摸一边做爽爽视频免费| 久热这里只有精品99| 国产福利在线免费观看视频| 成人漫画全彩无遮挡| 久久精品久久久久久久性| 熟女av电影| 国产精品成人在线| 丁香六月欧美| 韩国精品一区二区三区| 满18在线观看网站| 免费av中文字幕在线| 最近的中文字幕免费完整| 国产一卡二卡三卡精品 | 亚洲四区av| 国产精品香港三级国产av潘金莲 | 免费久久久久久久精品成人欧美视频| 国产乱来视频区| 国产成人一区二区在线| 黄片无遮挡物在线观看| 亚洲成人手机| 亚洲成人免费av在线播放| 中文字幕人妻丝袜制服| 国产精品 欧美亚洲| 久热爱精品视频在线9| 亚洲,欧美精品.| 欧美人与性动交α欧美精品济南到| 久久97久久精品| 久久精品国产a三级三级三级| 人人妻人人澡人人爽人人夜夜| 成人国产麻豆网| 精品久久久精品久久久| 久久天堂一区二区三区四区| 精品一区二区三区四区五区乱码 | 欧美精品亚洲一区二区| 国产探花极品一区二区| 狂野欧美激情性xxxx| av女优亚洲男人天堂| 国产午夜精品一二区理论片| 国产一区二区在线观看av| 高清欧美精品videossex| 亚洲精品久久成人aⅴ小说| 久久精品亚洲av国产电影网| 欧美日韩国产mv在线观看视频| 午夜影院在线不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 在线 av 中文字幕| 亚洲久久久国产精品| 亚洲av成人精品一二三区| 一本久久精品| 深夜精品福利| 亚洲成国产人片在线观看| a 毛片基地| 91精品三级在线观看| 亚洲伊人久久精品综合| 亚洲熟女毛片儿| 久久久国产精品麻豆| 18禁裸乳无遮挡动漫免费视频| 老司机在亚洲福利影院| 亚洲精品美女久久av网站| 精品一区二区三区四区五区乱码 | 韩国高清视频一区二区三区| 国产av精品麻豆| 一级片'在线观看视频| 99热全是精品| 美女高潮到喷水免费观看| 精品久久蜜臀av无| 999精品在线视频| 欧美日韩亚洲综合一区二区三区_| www.精华液| 悠悠久久av| 久久精品国产亚洲av高清一级| 久久久精品94久久精品| av线在线观看网站| 永久免费av网站大全| 亚洲综合色网址| av不卡在线播放| 日本欧美视频一区| 黄频高清免费视频| 男女边摸边吃奶| av天堂久久9| 狂野欧美激情性bbbbbb| 巨乳人妻的诱惑在线观看| 国产有黄有色有爽视频| 哪个播放器可以免费观看大片| 亚洲情色 制服丝袜| av女优亚洲男人天堂| 精品人妻一区二区三区麻豆| 不卡视频在线观看欧美| 欧美精品一区二区免费开放| 久久午夜综合久久蜜桃| 曰老女人黄片| 久久国产精品男人的天堂亚洲| 精品国产露脸久久av麻豆| 亚洲国产av影院在线观看| 国精品久久久久久国模美| 18禁动态无遮挡网站| 国产一区二区三区综合在线观看| 亚洲人成电影观看| 国产一区二区 视频在线| 欧美 日韩 精品 国产| 久久精品久久久久久久性| 国产成人精品福利久久| 久久热在线av| 国产又爽黄色视频| 精品久久久久久电影网| 亚洲精品中文字幕在线视频| 中文天堂在线官网| 一本久久精品| 精品酒店卫生间| 国产97色在线日韩免费| 久久久久久久大尺度免费视频| 中文天堂在线官网| 午夜福利影视在线免费观看| www.av在线官网国产| 色综合欧美亚洲国产小说| 婷婷色av中文字幕| 亚洲av欧美aⅴ国产| 一二三四中文在线观看免费高清| 国产精品久久久人人做人人爽| 久久这里只有精品19| 亚洲欧美精品综合一区二区三区| av.在线天堂| 国产成人av激情在线播放| 久久久国产欧美日韩av| 国产国语露脸激情在线看| 一边摸一边抽搐一进一出视频| 看免费成人av毛片| 精品第一国产精品| 秋霞伦理黄片| 一本—道久久a久久精品蜜桃钙片| 国产乱来视频区| 你懂的网址亚洲精品在线观看| 制服人妻中文乱码| 无遮挡黄片免费观看| 免费人妻精品一区二区三区视频| 久久精品亚洲熟妇少妇任你| 国产男女超爽视频在线观看| 人人妻人人添人人爽欧美一区卜| 秋霞伦理黄片| 777米奇影视久久| 亚洲精品国产av蜜桃| 美女大奶头黄色视频| 久久国产亚洲av麻豆专区| 久久久精品免费免费高清| 日韩一卡2卡3卡4卡2021年| 建设人人有责人人尽责人人享有的| 大陆偷拍与自拍| 中国国产av一级| 无遮挡黄片免费观看| 成人黄色视频免费在线看| 国产精品嫩草影院av在线观看| 久久鲁丝午夜福利片| 国产精品免费大片| 高清在线视频一区二区三区| 亚洲天堂av无毛| 2021少妇久久久久久久久久久| 十八禁网站网址无遮挡| 亚洲精品国产色婷婷电影| av在线app专区| 免费人妻精品一区二区三区视频| 9热在线视频观看99| 国产在线免费精品| 人人澡人人妻人| 欧美av亚洲av综合av国产av | 天天躁夜夜躁狠狠躁躁| 丝袜人妻中文字幕| 久久久久网色| 成人亚洲欧美一区二区av| 9色porny在线观看| 人妻 亚洲 视频| 七月丁香在线播放| 成年av动漫网址| 18在线观看网站| 欧美日韩视频高清一区二区三区二| 国产亚洲av片在线观看秒播厂| 黄片无遮挡物在线观看| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av涩爱| 一级片'在线观看视频| 免费黄网站久久成人精品| 国产福利在线免费观看视频| 一本久久精品| 久久女婷五月综合色啪小说| 青青草视频在线视频观看| 一区二区日韩欧美中文字幕| 久久久国产一区二区| 午夜精品国产一区二区电影| 亚洲精品,欧美精品| 在线 av 中文字幕| av.在线天堂| 高清不卡的av网站| 日本黄色日本黄色录像| 亚洲国产精品一区三区| 日韩欧美一区视频在线观看| 啦啦啦在线观看免费高清www| 日韩制服丝袜自拍偷拍| 99香蕉大伊视频| 国产精品一区二区精品视频观看| 男女之事视频高清在线观看 | 高清不卡的av网站| 在线精品无人区一区二区三| 亚洲情色 制服丝袜| 美女中出高潮动态图| 亚洲欧美成人综合另类久久久| 欧美国产精品va在线观看不卡| 赤兔流量卡办理| 国产精品人妻久久久影院| 亚洲伊人色综图| 国产精品一国产av| 婷婷色av中文字幕| 观看av在线不卡| 一边摸一边做爽爽视频免费| 亚洲精品自拍成人| 欧美日韩精品网址| 最近最新中文字幕大全免费视频 | 日日啪夜夜爽| 日本vs欧美在线观看视频| 青春草国产在线视频| 午夜福利网站1000一区二区三区| 国产片特级美女逼逼视频| 大陆偷拍与自拍| 美女福利国产在线| 国产欧美亚洲国产| 综合色丁香网| 国产探花极品一区二区| xxxhd国产人妻xxx| 在线天堂中文资源库| 免费av中文字幕在线| 精品国产一区二区三区四区第35| 人成视频在线观看免费观看| 在线观看免费高清a一片| 尾随美女入室| 久久热在线av| 热99久久久久精品小说推荐| 国产男女内射视频| 久热这里只有精品99| 国产一区亚洲一区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 色吧在线观看| 欧美精品高潮呻吟av久久| 国产精品秋霞免费鲁丝片| 久久久久久人人人人人| bbb黄色大片| 日韩中文字幕欧美一区二区 | 伦理电影免费视频| 在线观看一区二区三区激情| av片东京热男人的天堂| 国产亚洲av片在线观看秒播厂| 精品一区二区免费观看| 极品少妇高潮喷水抽搐| 成人国语在线视频| 欧美 日韩 精品 国产| 两性夫妻黄色片| 久久精品亚洲熟妇少妇任你| 成人毛片60女人毛片免费| 最近手机中文字幕大全| 精品国产一区二区三区久久久樱花| 热re99久久国产66热| 亚洲av电影在线进入| 天堂8中文在线网| 一本一本久久a久久精品综合妖精| 国产精品免费大片| 午夜免费男女啪啪视频观看| 伦理电影免费视频| 一本一本久久a久久精品综合妖精| 亚洲精品国产色婷婷电影| 国产精品久久久人人做人人爽| 亚洲精品国产色婷婷电影| 80岁老熟妇乱子伦牲交| 9色porny在线观看| 久久鲁丝午夜福利片| 高清av免费在线| 人人妻人人澡人人爽人人夜夜| 多毛熟女@视频| av在线app专区| 国产一区二区三区av在线| av女优亚洲男人天堂| 美女脱内裤让男人舔精品视频| 青春草亚洲视频在线观看| 黄色 视频免费看| 国产精品av久久久久免费| 一边亲一边摸免费视频| 免费看av在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 国产一区二区 视频在线| 国产野战对白在线观看| 最新的欧美精品一区二区| 久久精品国产综合久久久| 久久av网站| 成人国语在线视频| 晚上一个人看的免费电影| 黄网站色视频无遮挡免费观看| 免费在线观看完整版高清| 中国三级夫妇交换| 另类精品久久| 天天躁夜夜躁狠狠久久av| 中文字幕av电影在线播放| 欧美精品高潮呻吟av久久| 欧美精品一区二区免费开放| 一本久久精品| 黄色一级大片看看| 欧美少妇被猛烈插入视频| 国产亚洲av片在线观看秒播厂| 中文字幕人妻熟女乱码| 秋霞在线观看毛片| 久久精品国产亚洲av高清一级| 日本爱情动作片www.在线观看| 另类亚洲欧美激情| 777米奇影视久久| 亚洲精品一区蜜桃| 香蕉国产在线看| 亚洲欧美精品综合一区二区三区| 色网站视频免费| 人人妻人人添人人爽欧美一区卜| 久久久精品免费免费高清| 国产成人欧美在线观看 | 亚洲免费av在线视频| 国产精品久久久久久久久免| 婷婷色麻豆天堂久久| a级毛片黄视频| 伦理电影大哥的女人| 青青草视频在线视频观看| 日韩一区二区视频免费看| 色婷婷av一区二区三区视频| 欧美 日韩 精品 国产| 久久99精品国语久久久| a级毛片黄视频| 叶爱在线成人免费视频播放| 黄色怎么调成土黄色| 秋霞伦理黄片| av又黄又爽大尺度在线免费看| 国产乱人偷精品视频| 国产欧美日韩综合在线一区二区| 91成人精品电影| 午夜久久久在线观看| a级片在线免费高清观看视频| 黄色怎么调成土黄色| 国产男女超爽视频在线观看| 国产乱人偷精品视频| 十八禁网站网址无遮挡| 日韩不卡一区二区三区视频在线| 少妇猛男粗大的猛烈进出视频| 秋霞在线观看毛片| 久久99一区二区三区| 夫妻午夜视频| 欧美成人精品欧美一级黄| 日韩av不卡免费在线播放| 亚洲色图综合在线观看| 免费黄频网站在线观看国产| 国产熟女欧美一区二区| av国产精品久久久久影院| 久久精品国产a三级三级三级| 美女大奶头黄色视频| 精品少妇内射三级| 青春草视频在线免费观看| 又大又爽又粗| 国产成人免费无遮挡视频| 免费看不卡的av| 一区二区av电影网| 在线亚洲精品国产二区图片欧美| 黄色一级大片看看| 国产精品一区二区在线不卡| 免费黄网站久久成人精品| 午夜av观看不卡| 美国免费a级毛片| 人人妻人人澡人人爽人人夜夜| av片东京热男人的天堂| 免费日韩欧美在线观看| 成人亚洲欧美一区二区av| 一本色道久久久久久精品综合| 中文字幕亚洲精品专区| 黑丝袜美女国产一区| 国产免费视频播放在线视频| 国产日韩欧美在线精品| 少妇的丰满在线观看| 天堂俺去俺来也www色官网| 一级,二级,三级黄色视频| 综合色丁香网| tube8黄色片| 国产亚洲精品第一综合不卡| 人成视频在线观看免费观看| 久久久久久久精品精品| 天天躁夜夜躁狠狠躁躁| 美女脱内裤让男人舔精品视频| 免费av中文字幕在线| 婷婷色av中文字幕| 日韩一本色道免费dvd| 国精品久久久久久国模美| 日韩精品免费视频一区二区三区| 国产精品人妻久久久影院| 999精品在线视频| 观看av在线不卡| 老司机亚洲免费影院| 久久人妻熟女aⅴ| av天堂久久9| 欧美av亚洲av综合av国产av | 欧美亚洲 丝袜 人妻 在线| 一级a爱视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 成人18禁高潮啪啪吃奶动态图| 国产精品一二三区在线看| 日韩一本色道免费dvd| 热99国产精品久久久久久7| 深夜精品福利| 综合色丁香网| 国产xxxxx性猛交| 各种免费的搞黄视频| 精品国产超薄肉色丝袜足j| 亚洲精品日韩在线中文字幕| 精品卡一卡二卡四卡免费| 极品人妻少妇av视频| 啦啦啦啦在线视频资源| 亚洲av欧美aⅴ国产| 男人爽女人下面视频在线观看| 高清视频免费观看一区二区| 国产亚洲最大av| 亚洲国产成人一精品久久久| 99精品久久久久人妻精品| a级毛片黄视频| 欧美精品一区二区大全| 黄色毛片三级朝国网站| av有码第一页| 成人18禁高潮啪啪吃奶动态图| 宅男免费午夜| 一级片'在线观看视频| 久久精品aⅴ一区二区三区四区| 国产精品秋霞免费鲁丝片| 高清在线视频一区二区三区| 91aial.com中文字幕在线观看| 亚洲精品中文字幕在线视频| 亚洲欧美精品自产自拍| 亚洲一区中文字幕在线| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 精品人妻熟女毛片av久久网站| av国产精品久久久久影院| av视频免费观看在线观看| 亚洲国产中文字幕在线视频| 18禁动态无遮挡网站| av福利片在线| 在线观看www视频免费| 观看av在线不卡| 日韩一区二区三区影片| 国产精品无大码| 欧美精品亚洲一区二区| 午夜日本视频在线| av不卡在线播放| 女人久久www免费人成看片| 久久久久精品久久久久真实原创| 久久人人爽人人片av| 国产精品一区二区在线观看99| 国产男人的电影天堂91| 午夜精品国产一区二区电影| 婷婷色综合大香蕉| 欧美精品亚洲一区二区| 欧美日韩一区二区视频在线观看视频在线| 欧美 亚洲 国产 日韩一| 91精品三级在线观看| √禁漫天堂资源中文www| 久久久久国产精品人妻一区二区| 欧美黄色片欧美黄色片| 亚洲精品日韩在线中文字幕| 99久久99久久久精品蜜桃| 精品人妻在线不人妻| 中文字幕最新亚洲高清| 老熟女久久久| 久久性视频一级片| 毛片一级片免费看久久久久| 午夜免费男女啪啪视频观看| 又大又黄又爽视频免费| 蜜桃国产av成人99| av福利片在线| 九色亚洲精品在线播放| 看免费成人av毛片| 美女福利国产在线| 美女中出高潮动态图| 久久ye,这里只有精品| av在线老鸭窝| 视频区图区小说| 国产日韩欧美亚洲二区| 国产黄频视频在线观看| 色婷婷久久久亚洲欧美| 国产av一区二区精品久久| 亚洲欧洲精品一区二区精品久久久 | 久久毛片免费看一区二区三区| 99久久精品国产亚洲精品| 人人妻,人人澡人人爽秒播 | 国产1区2区3区精品| 赤兔流量卡办理| 操美女的视频在线观看| 精品国产超薄肉色丝袜足j| 亚洲av国产av综合av卡|