• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Preparation and Properties of the Graphene Functional Layer by the Spray Coating Method

    2017-10-13 03:46:20WANGXiaojuXURuxiangDUNTaoQIKangchengCAOGuichuanandLINZulun
    電子科技大學(xué)學(xué)報 2017年1期
    關(guān)鍵詞:掃描電鏡結(jié)果表明活性劑

    WANG Xiao-ju, XU Ru-xiang, DUN Tao, QI Kang-cheng, CAO Gui-chuan, and LIN Zu-lun

    ?

    Study on Preparation and Properties of the Graphene Functional Layer by the Spray Coating Method

    WANG Xiao-ju1,2, XU Ru-xiang1, DUN Tao2, QI Kang-cheng2, CAO Gui-chuan2, and LIN Zu-lun2

    (1. General Hospital of Beijing Military Region Dongcheng Beijing 100700; 2. School of Opto-Electronic Information, University of Electronic Science and Technology of China Chengdu 610054)

    Stable aqueous graphene dispersion with sodium dodecyl benzene sulfonate (SDBS) surfactant was prepared by using an ultrasonic dispersing process. Graphene films were deposited on glass and silicon substrate as functional layers by the spray coating method. The study of the influence of SDBS concentration on graphene dispersing performance show that SDBS concentration of 15% is adequate for preparing stable graphene dispersion. Optical and morphological properties of the resulting graphene films are also investigated by ultraviolet-visible spectrophotometer and scanning electron microscopy, respectively. The results indicate that the visible light transmittance of graphene coating is higher than 82% and the graphene film shows a cluster structure with blade-like edges. The field emission analyses were carried out by a diode test cell in a vacuum system, which confirms that this graphene functional layer has good field-emission performance with low turn-on field of 3 V/μm and large enhancement factor of 3 580. Collectively, this deposition method may be a viable and cost-effective route for fabricating graphene films.

    dispersions; field emission; graphene; surfactant; transmittance

    Graphene is a flat layer of Sp2-bonded carbon with one-atom thick. Due to its optical, thermal, mechanical and electronic properties[1-3], graphene has stimulated intense researches over past decades. These unique features make graphene a promising material in many potential applications. For example, it can be used as anodes of organic solar cells[4], electrodes for batteries with high capacity[5-6], and surface plasmon resonance based fiber optic sensors[7-8].Moreover, graphene is one of excellent field-emission materials. Graphene field-emission has high field emitting current taking an advantage of high aspect ratio (ratio of lateral size to thickness). Moreover, graphene field emission has excellent field emitting stability for its unique mechanical and conductive properties.

    To date, numerous methods have been reported regarding the preparation of graphene thin films, such as vacuum filtration[9], spin coating[10], self-assembly[11], and electrophoretic deposition approach[12]. These reports focused mainly on the optimization of depositing conditions, as well as the electrical and optical properties of fabricated films. However, no systematic study has been performed to investigate the field emitting characteristics of graphene films by using the spray coating method.

    Spray coating has been widely used as an economical and versatile processing technique for deposition of various nanomaterials and films, such as LaB6film[13]and CNTs[14], owing to its good uniformity, controlled thickness, and high deposition rate and throughput. For example, Ostfeld et al. fabricated P3HT-PCBM organic solar cells by utilizing spray-coated transparent conductive CNT films as the electrode material, and achieved power conversion efficiency of 2.3%, which was comparable to those of solar cells by using indium tin oxide transparent electrodes[14]. In this work, we demonstrate the fabrication of spray-coated graphene films from sodium dodecyl benzene sulfonate (SDBS) aqueous dispersed graphene solution. Optically, morphological and field-emission characterizations are presented and discussed.

    1 Experiments

    The graphene nanomaterials used in our experiments were commercially provided by Nanjing Kefu Nano Technology Co. Ltd., Beijing, China. The powder mainly consisted of multi-layer graphene (MLG) flakes, having an average primary particle size of less than 5 μm, average thickness of 1~6 nm, and layers of less than ten. The process of producing the graphene functional layer included two key steps: fabricating uniform and stable graphene dispersion, and depositing graphene on Si substrate. First, the graphene (0.06 g) was dispersed in deionized water (60 mL) by sonication for 30 min. Sodium dodecyl benzene sulfonate as surfactant was then added and ultrasonic vibrated for 5 h to form a type of uniform solution. Because SDBS was a kind of viscous liquid, the weight of SDBS was selected not only to prevent the aggregation of graphene sheets but also avoid a significant viscous phenomenon. The stable dispersion of graphene was held at room temperature for 48 h. Next, the graphene films were coated on the clean glass and silicon substrate using a spray gun, followed by annealing at 400 ℃ in air for 30 min.

    To study the dispersing properties of graphene, the solutions were treated by centrifugal processing and upper stable dispersions were analyzed by an ultraviolet-visible spectrophotometer relative to air. Surface morphologies and transmission measurements of graphene films were carried out with a scanning electron microscope and a UV-VIS spectrophotometer, respectively. The field-emission properties were characterized via a diode system in vacuum. Figure 1 shows the simple schematic diagram of the field emission test system. The silicon substrate with graphene functional layer was used as cathode and a stainless steel plate was introduced as anode. The distance between the cathode and anode was ~0.1 mm.

    Fig. 1 Schematic diagram of the diode configuration used for an investigation of field emitting properties of graphene films

    2 Results and Discussions

    Figure 2 shows the UV-vis absorption spectra for the stable graphene dispersions with different concentrations of SDBS surfactant (10 wt %, 15 wt %). Two samples exhibited similar spectrums and both displayed an obvious absorption maximum at about 255 nm with tailing to 800 nm. It verified that graphene has been successfully dispersed in the solvents. In more detail, the peak value raised along with an increase in SDBS. However, when the concentration of SDBS increased to 20 wt %, the solution became too viscous in our experiment, which was unfit for spraying. In addition, the aqueous dispersion (15 wt % SDBS) was found to be very stable and homogeneous even if the storage time was over 60 days, which indicated that SDBS surfactant combining with an ultrasound technology was efficient to assist preparation of the high-quality graphene dispersion. The fantastic dispersibility of SDBS- graphene was attributed to the presence of small amounts of-OH and SO3-groups introduced by SDBS.

    Figure 3 shows the transmittance spectrum of sprayed graphene coating on glass substrate. By using a clean glass slide as a reference, the transmittance in the visible wavelength range was greater than 82%. Especially, in the 650~800 nm wavelength range, the transmittance was higher than 90%. There were many other literatures focusing on the optical properties of graphene films. According to their research, a graphene coating deposited on glass substrate with a high visible light transmittance of more than 96% could be achieved by air-brush spraying of a chemically converted graphene solution[15]. The relationship between the transmittance and the layers of graphene films was defined by the following equation:

    whereis the layers of graphene films,and0are transmittance of fabricated graphene films and single layer graphene, respectively. According to Eq. (1), we can consider that the lower transmittance in our experiment may be attributed to the overlapping and clustering of graphene.

    Figure 4 shows the SEM image of the fabricated graphene functional layer. Due to the coarse nature of the coating procedure, the graphene flakes overlapped irregularly, and film thickness ranged from hundreds of nanometers to a few micrometers. This morphology was consistent with the previous results of the slightly lower transmittance in Fig.3. It also can be seen that, the graphene cluster consisted of a number of sheet-like structures. Making use of these blade-like edges with atomic thickness, it could greatly increase the electric field enhancement factor.

    Fig.3 A transmission spectrum of a graphene functional layer coated on a glass slide by spraying of graphene solution (15 wt % SDBS)

    Fig.4 SEM image of graphene functional layer coated on silicon substrate by spraying of graphene solution (15 wt % SDBS)

    Figure 5a shows the field emitting current density-voltage (-) characteristics of graphene functional layer coated on silicon substrate at 6×10-5Pa in diode geometry. With the increase of anode voltage, the emission current density increased very rapidly, finally reached 5 mA/cm2at electric field of 17.5 V/μm. Furthermore, it exhibited a low turn-on field of 3 V/μm, which was well comparable to other cold cathodes, including a Si nanotip array of 8.5 V/μm[16]and CNT field emitters of 2~5 V/μm[17]. We suggested that this satisfactory field emitting performance of graphene film was not only due to its unique high aspect ratio but also due to its special appearance presented in the SEM photograph (Fig.4). As shown in Fig.4, graphene films were made of flat graphene sheets laminated together. Although this flat sheet structure was contrary to conventional field-emission cathodes with sharp surface (i.e. Spindt emitters and CNTs), when there was a strong vertical electric field applied, the graphene sheets would be pulled up and more edges exposed. Owing to the special edge-field enhancing effect, lots of electrons emitted from graphene films. Moreover, because the pulled up graphene sheets were separated, the influence of electric field shielding effect may be reduced and field emitting performance would be improved further.

    Figure 5b shows the Fowler-Nordheim (-) plots of measured graphene films. The-points formed a straight line approximately, which confirmed that the current was indeed the result of field emission. According to the Fowler-Nordheim theory, electric field enhancement factor () of emitter surface was evaluated by using the Fowler-Nordheim equation, i.e.,

    (2)

    whereis work function in eV;is field-dependent correction factor, which is approximated asfor most applications;is electric field strength in V/cm;is field emitting current density in A/cm2. Consequently, the slope of the-plot in Fig.5b was given by:

    Assuming that the work function of multilayer graphene films was 4.3 eV[18], the field enhancement factor of graphene film was determined to be 3 580 from the constant-slope. This large enhancement factor allowed for sufficient tunneling of electrons from graphene through surface barriers and resulted in the low turn-on voltage as previously described.

    3 Conclusions

    We developed a simple and practical method to obtain a graphene functional layer with remarkable field-emission performance by using the spray-coating method. The UV-vis absorption spectra for the stable graphene dispersions were measured to examine their dispersion properties. The optical transmittance and morphological of the prepared films were investigated. The results revealed that the visible light transmittance of graphene film was higher than 82% and graphene flakes overlapped irregularly on silicon substrate with numerous blade-like edges. In addition, the graphene films showed excellent field-emission properties, with low turn-on field of 3 V/μm and large enhancement factor of 3 580. These results provide a convenient approach to create new graphene-based devices.

    [1] CANTY R, GONZALEZ E, MACDONALD C, et al. Reduction expansion synthesis as strategy to control nitrogen doping level and surface area in graphene[J]. Materials, 2015, 8(10): 7048-7058.

    [2] FAN Y, IGARASHI G, JIANG W, et al. Highly strain tolerant and tough ceramic composite by incorporation of graphene[J]. Carbon, 2015, 90: 274-283.

    [3] OTHMAN M, RITIKOS R, MUHAMMAD H, et al. Low -temperature plasma-enhanced chemical vapour deposition of transfer-free graphene thin films[J]. Materials Letters, 2015, 158: 436-438.

    [4] VAIANELLA F, ROSOLEN G, MAES B. Graphene as a transparent electrode for amorphous silicon-based solar cells[J]. Journal of Applied Physics, 2015, 117(24): 243102.

    [5] ERVIN M H. Etching holes in graphene supercapacitor electrodes for faster performance[J]. Nanotechnology, 2015, 26(23): 234003.

    [6] LAI L, YANG H, WANG L, et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities[J]. ACS Nano, 2012, 6(7): 5941- 5951.

    [7] VADIVAAMBIGAI A, SENTHILVASAN P A, KOTHURKAR N, et al. Graphene-oxide-based electro chemical sensor for salicylic acid[J]. Nanoscience and Nanotechnology Letters, 2015, 7(2): 140-146.

    [8] LEE J S, OH J, JUN J, et al. Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag[J]. ACS Nano, 2015, 9(8): 7783-7790.

    [9] EDA G, FANCHINI G, CHHOWALLA M. large area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3(5): 270-274.

    [10] GUO Y L, DI C A, LIU H T, et al. General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating[J]. ACS Nano, 2010, 4(10): 5749-5754.

    [11] ARAPOV K, GORYACHEV A, WITH G D, et al. A simple and ?exible route to large-area conductive transparent graphene thin-?lms[J]. Synthetic Metals, 2015, 201: 67-75.

    [12] WU Z S, PEI S F, REN W C, et al. Field emission of single-layer graphene films prepared by electrophoretic deposition[J]. Advanced Materials, 2009, 21:1756-1760.

    [13] DENG J, ZENG B Q, WANG X J, et al. Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB6 film on the MgO protective layer[J]. AIP Advance, 2014(4): 037109.

    [14] OSTFELD A E, CATHELINE A, LIGSAY K, et al. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics[J]. Applied Physics Letters, 2014, 105: 253301.

    [15] LI D, MüLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2): 101-105.

    [16] HUANG G S, WU X L, CHENG Y C, et al. Fabrication and field emission property of a Si nanotip array[J]. Nanotechnology, 2006, 17: 5573-5576.

    [17] JUNG M S, KO Y K, JUNG D H, et al. Electrical and field-emission properties of chemically anchored single-walled carbon nanotube patterns[J]. Appied Physics Letters,2005, 87: 013114.

    [18] PARK S J, PARK H, LEE Y, et al. Increasing the effective work function of multilayer rapheme films using silver nanoparticles[J]. Journal of Vacuum Science and Technology B, 2014, 32(1): 011214.

    編 輯 漆 蓉

    噴涂法制備石墨烯功能層及性能研究

    王小菊1,2,徐如祥1,敦 濤2,祁康成2,曹貴川2,林祖?zhèn)?

    (1. 北京軍區(qū)總醫(yī)院 北京東城區(qū) 100700;2. 電子科技大學(xué)光電信息學(xué)院 成都 610054)

    以十二烷基苯磺酸鈉(SDBS)為表面活性劑,采用超聲分散工藝制備出穩(wěn)定的石墨烯水分散液,并采用噴涂法分別在玻璃和n-Si基底上形成石墨烯薄膜。研究了表面活性劑濃度對石墨烯分散效果的影響。結(jié)果表明,采用濃度為15%的SDBS可獲得穩(wěn)定的石墨烯水溶液分散液。利用分光光度計和掃描電鏡對石墨烯薄膜的透過率和表面形貌進行表征,結(jié)果表明其可見光透過率超過82%,薄膜具有刀刃狀的邊緣結(jié)構(gòu)。采用二極管結(jié)構(gòu)對石墨烯薄膜的場發(fā)射性能進行測試,其開啟電場為3 V/μm,場增強因子為3 580。實驗結(jié)果表明,這是一種可行的、低成本的制作石墨烯功能層的有效方法。

    分散液; 場發(fā)射; 石墨烯; 表面活性劑; 透過率

    O462.4

    A

    2016-02-16;

    2016-06-21

    10.3969/j.issn.1001-0548.2017.01.020

    2016-02-16;Revised date:2016-06-21

    Biography:WANG Xiao-ju was born in 1981, female, associate professor, her research interest includes vacuum materials and devices.

    王小菊(1981-),女,博士,副教授,主要從事電真空材料與器件方面的研究.

    猜你喜歡
    掃描電鏡結(jié)果表明活性劑
    掃描電鏡能譜法分析紙張的不均勻性
    智富時代(2018年7期)2018-09-03 03:47:26
    掃描電鏡在雙金屬層狀復(fù)合材料生產(chǎn)和研究中的應(yīng)用
    電線電纜(2017年4期)2017-07-25 07:49:48
    AOS-AA表面活性劑的制備及在浮選法脫墨中的應(yīng)用
    中國造紙(2015年7期)2015-12-16 12:40:48
    基于PSO-GRG的背散射模式掃描電鏡的數(shù)字處理及應(yīng)用
    化學(xué)降解表面活性劑的開發(fā)
    來源于微生物的生物表面活性劑
    掃描電鏡法觀察雞蛋殼超微結(jié)構(gòu)形貌
    陰離子表面活性劑的應(yīng)用與創(chuàng)新
    體育鍛煉也重要
    闊世瑪與世瑪用于不同冬小麥品種的安全性試驗
    亚洲国产日韩一区二区| 久久99热6这里只有精品| 狠狠精品人妻久久久久久综合| 国产精品不卡视频一区二区| 纵有疾风起免费观看全集完整版| 母亲3免费完整高清在线观看 | 欧美亚洲日本最大视频资源| 国产伦理片在线播放av一区| 久久热精品热| 亚洲一级一片aⅴ在线观看| 在线观看美女被高潮喷水网站| 美女cb高潮喷水在线观看| 国产69精品久久久久777片| 久热这里只有精品99| 国产男女超爽视频在线观看| 如日韩欧美国产精品一区二区三区 | 在线观看免费日韩欧美大片 | 国产在线免费精品| 亚洲欧美成人综合另类久久久| 国产精品女同一区二区软件| 香蕉精品网在线| 欧美老熟妇乱子伦牲交| 日本色播在线视频| 国产视频首页在线观看| 欧美精品亚洲一区二区| 热99久久久久精品小说推荐| 纵有疾风起免费观看全集完整版| 国产一区二区在线观看日韩| 如日韩欧美国产精品一区二区三区 | 国产亚洲av片在线观看秒播厂| 尾随美女入室| 午夜免费男女啪啪视频观看| 成年美女黄网站色视频大全免费 | 99视频精品全部免费 在线| 这个男人来自地球电影免费观看 | 一本大道久久a久久精品| 在线 av 中文字幕| 亚洲美女搞黄在线观看| 国产精品人妻久久久久久| 免费观看av网站的网址| 午夜av观看不卡| 精品国产乱码久久久久久小说| 九色成人免费人妻av| 黑人欧美特级aaaaaa片| 成年人午夜在线观看视频| 久热久热在线精品观看| 亚洲第一av免费看| 十八禁网站网址无遮挡| 91久久精品电影网| 亚洲av.av天堂| 久久青草综合色| 天堂俺去俺来也www色官网| 久久国产精品男人的天堂亚洲 | 国产高清不卡午夜福利| 日本av免费视频播放| 最近最新中文字幕免费大全7| 精品少妇久久久久久888优播| 99热这里只有是精品在线观看| av专区在线播放| 国产av码专区亚洲av| 五月伊人婷婷丁香| 亚洲av电影在线观看一区二区三区| 校园人妻丝袜中文字幕| 免费黄色在线免费观看| 熟妇人妻不卡中文字幕| 国产又色又爽无遮挡免| 母亲3免费完整高清在线观看 | 国产精品蜜桃在线观看| 亚洲欧美一区二区三区国产| 熟妇人妻不卡中文字幕| 精品一区二区三卡| 在线精品无人区一区二区三| 国产av精品麻豆| 男的添女的下面高潮视频| 欧美人与性动交α欧美精品济南到 | videossex国产| 黄色视频在线播放观看不卡| 亚洲av综合色区一区| 国产一区有黄有色的免费视频| 亚洲国产精品999| 亚洲成人av在线免费| 国产 一区精品| 日韩av免费高清视频| 91精品伊人久久大香线蕉| 亚洲欧美日韩另类电影网站| 日本欧美视频一区| 黄色一级大片看看| 汤姆久久久久久久影院中文字幕| 亚洲一级一片aⅴ在线观看| 高清不卡的av网站| 2021少妇久久久久久久久久久| 精品一区二区免费观看| 欧美国产精品一级二级三级| 色婷婷久久久亚洲欧美| 久久久久久久亚洲中文字幕| 美女中出高潮动态图| 亚洲人成77777在线视频| 永久免费av网站大全| 成人国产麻豆网| a级毛片免费高清观看在线播放| 精品久久久精品久久久| 国国产精品蜜臀av免费| 一区二区av电影网| 国产精品女同一区二区软件| 水蜜桃什么品种好| 99热这里只有精品一区| 一个人免费看片子| 黑丝袜美女国产一区| 国产 一区精品| 欧美日韩成人在线一区二区| 欧美亚洲 丝袜 人妻 在线| av又黄又爽大尺度在线免费看| 国产黄片视频在线免费观看| 亚洲四区av| 婷婷色av中文字幕| 黄色欧美视频在线观看| 免费大片黄手机在线观看| 母亲3免费完整高清在线观看 | 好男人视频免费观看在线| 一边摸一边做爽爽视频免费| 一个人免费看片子| 国产成人精品福利久久| 亚洲精品乱码久久久久久按摩| 久久久久久伊人网av| 久久 成人 亚洲| 亚洲国产欧美日韩在线播放| 你懂的网址亚洲精品在线观看| 国产男女内射视频| 18禁动态无遮挡网站| 色网站视频免费| 又粗又硬又长又爽又黄的视频| 九色亚洲精品在线播放| 精品酒店卫生间| 色婷婷av一区二区三区视频| 一级黄片播放器| 亚洲久久久国产精品| av福利片在线| 中文乱码字字幕精品一区二区三区| 另类亚洲欧美激情| 亚洲国产精品专区欧美| xxxhd国产人妻xxx| 丝瓜视频免费看黄片| 熟女电影av网| 伦理电影免费视频| 精品亚洲乱码少妇综合久久| 视频在线观看一区二区三区| 嫩草影院入口| 亚洲精品一二三| 欧美精品一区二区免费开放| 大香蕉97超碰在线| 十八禁网站网址无遮挡| 啦啦啦在线观看免费高清www| 少妇熟女欧美另类| 看十八女毛片水多多多| 国产亚洲午夜精品一区二区久久| 成人二区视频| 亚洲经典国产精华液单| 中文精品一卡2卡3卡4更新| 秋霞在线观看毛片| 久久久久久久久久人人人人人人| 亚洲av电影在线观看一区二区三区| 超碰97精品在线观看| 亚洲精品一二三| 91精品三级在线观看| 久久婷婷青草| 肉色欧美久久久久久久蜜桃| 亚洲国产av新网站| 中文字幕av电影在线播放| 韩国av在线不卡| 美女中出高潮动态图| 国产av精品麻豆| 亚洲美女视频黄频| 久久青草综合色| 久久99热6这里只有精品| 午夜免费男女啪啪视频观看| 人妻夜夜爽99麻豆av| 免费不卡的大黄色大毛片视频在线观看| 美女福利国产在线| 日本黄色片子视频| a级片在线免费高清观看视频| 欧美精品人与动牲交sv欧美| 精品久久蜜臀av无| 性色avwww在线观看| 中文字幕亚洲精品专区| 日韩成人伦理影院| 超色免费av| 国产亚洲午夜精品一区二区久久| 十八禁高潮呻吟视频| 久久免费观看电影| 插阴视频在线观看视频| 日本黄色日本黄色录像| 亚州av有码| 国产乱来视频区| 成人亚洲精品一区在线观看| 国产高清国产精品国产三级| 日韩视频在线欧美| 少妇丰满av| 国产片特级美女逼逼视频| 伊人久久精品亚洲午夜| 在线观看三级黄色| 亚洲美女搞黄在线观看| 亚洲精品,欧美精品| 亚洲国产最新在线播放| 久久毛片免费看一区二区三区| 草草在线视频免费看| 国产精品99久久99久久久不卡 | 亚洲情色 制服丝袜| 涩涩av久久男人的天堂| 日本av免费视频播放| 免费观看的影片在线观看| 国产精品不卡视频一区二区| 亚洲国产精品专区欧美| 欧美 日韩 精品 国产| 国产成人精品久久久久久| 日本av手机在线免费观看| 在线观看一区二区三区激情| 日韩不卡一区二区三区视频在线| 亚洲精品第二区| 99精国产麻豆久久婷婷| 视频中文字幕在线观看| 在线观看一区二区三区激情| 九九久久精品国产亚洲av麻豆| 秋霞在线观看毛片| 边亲边吃奶的免费视频| 王馨瑶露胸无遮挡在线观看| 不卡视频在线观看欧美| 午夜久久久在线观看| 亚洲人成网站在线播| 日韩人妻高清精品专区| 国产精品熟女久久久久浪| 国产探花极品一区二区| 久久午夜综合久久蜜桃| 亚洲精品久久成人aⅴ小说 | 久久久久久久国产电影| 日韩av在线免费看完整版不卡| 99久久综合免费| 另类亚洲欧美激情| 亚洲国产精品专区欧美| 女的被弄到高潮叫床怎么办| 亚洲精品,欧美精品| 99久久精品国产国产毛片| 又黄又爽又刺激的免费视频.| 天天操日日干夜夜撸| 91在线精品国自产拍蜜月| 蜜桃国产av成人99| 人成视频在线观看免费观看| 中文字幕精品免费在线观看视频 | 3wmmmm亚洲av在线观看| 水蜜桃什么品种好| 久久99一区二区三区| 亚洲精品av麻豆狂野| 久久这里有精品视频免费| 菩萨蛮人人尽说江南好唐韦庄| 成年人午夜在线观看视频| 久久久欧美国产精品| 天堂中文最新版在线下载| 人人妻人人澡人人爽人人夜夜| 亚洲av中文av极速乱| 中文字幕av电影在线播放| 日本欧美视频一区| 亚洲精品乱码久久久v下载方式| 亚洲欧美精品自产自拍| 亚洲av电影在线观看一区二区三区| 国产成人精品婷婷| 亚洲精品成人av观看孕妇| 亚洲成色77777| 一本色道久久久久久精品综合| 一边摸一边做爽爽视频免费| 十八禁网站网址无遮挡| 久久久久视频综合| 亚洲精品第二区| 色94色欧美一区二区| 夫妻午夜视频| 久久精品夜色国产| 国产精品一区二区在线观看99| 国产男人的电影天堂91| 超碰97精品在线观看| 99视频精品全部免费 在线| 日韩大片免费观看网站| 啦啦啦啦在线视频资源| 亚洲国产精品一区二区三区在线| 国产成人av激情在线播放 | 国产又色又爽无遮挡免| 久久久久精品久久久久真实原创| 在线 av 中文字幕| 在线免费观看不下载黄p国产| 国产白丝娇喘喷水9色精品| 国产高清国产精品国产三级| av视频免费观看在线观看| 黑人高潮一二区| 久久精品国产亚洲av天美| 日本av免费视频播放| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 卡戴珊不雅视频在线播放| 欧美激情 高清一区二区三区| 久久人人爽人人爽人人片va| 亚洲欧美色中文字幕在线| 少妇人妻 视频| 999精品在线视频| 日韩av在线免费看完整版不卡| 热99国产精品久久久久久7| 波野结衣二区三区在线| 国产免费视频播放在线视频| 欧美激情极品国产一区二区三区 | 欧美丝袜亚洲另类| 亚洲一区二区三区欧美精品| 免费黄色在线免费观看| 亚洲一区二区三区欧美精品| 少妇人妻精品综合一区二区| 国产永久视频网站| 精品一区二区三区视频在线| 国产成人精品无人区| 国产在视频线精品| 国产有黄有色有爽视频| 插阴视频在线观看视频| 一级毛片黄色毛片免费观看视频| 最后的刺客免费高清国语| 国产免费现黄频在线看| 午夜福利视频精品| 性高湖久久久久久久久免费观看| 久久 成人 亚洲| 日本黄色日本黄色录像| 国产av国产精品国产| 99re6热这里在线精品视频| 中文字幕最新亚洲高清| 午夜免费观看性视频| 爱豆传媒免费全集在线观看| 又黄又爽又刺激的免费视频.| 亚洲国产精品专区欧美| 国产日韩欧美亚洲二区| 国产精品国产三级国产av玫瑰| 高清毛片免费看| 日本午夜av视频| 欧美亚洲日本最大视频资源| 欧美日韩精品成人综合77777| a级毛色黄片| 91午夜精品亚洲一区二区三区| 中文乱码字字幕精品一区二区三区| 免费观看av网站的网址| 女性被躁到高潮视频| 日本-黄色视频高清免费观看| 性色avwww在线观看| 黑丝袜美女国产一区| 热re99久久国产66热| 五月开心婷婷网| 一区二区三区四区激情视频| 女人久久www免费人成看片| 亚洲色图综合在线观看| 免费大片黄手机在线观看| 久久99热这里只频精品6学生| 尾随美女入室| 国产黄片视频在线免费观看| 大香蕉久久网| 王馨瑶露胸无遮挡在线观看| 国产有黄有色有爽视频| 老司机亚洲免费影院| 国产成人精品久久久久久| 2021少妇久久久久久久久久久| av.在线天堂| 一本久久精品| 亚洲欧美精品自产自拍| 下体分泌物呈黄色| 亚洲精品日韩在线中文字幕| 欧美3d第一页| 精品久久久久久久久亚洲| 欧美成人精品欧美一级黄| 国产精品一国产av| 中文字幕亚洲精品专区| 极品人妻少妇av视频| 精品亚洲乱码少妇综合久久| 一本色道久久久久久精品综合| 午夜福利视频在线观看免费| 亚州av有码| 午夜影院在线不卡| 亚洲欧洲日产国产| 日韩成人伦理影院| 一区二区三区四区激情视频| 人人妻人人澡人人爽人人夜夜| 美女内射精品一级片tv| 大陆偷拍与自拍| 国语对白做爰xxxⅹ性视频网站| 美女脱内裤让男人舔精品视频| 午夜福利影视在线免费观看| 午夜福利网站1000一区二区三区| 欧美日韩av久久| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 久久久午夜欧美精品| 在线免费观看不下载黄p国产| 亚洲精品自拍成人| 久久精品国产亚洲网站| 国产精品一国产av| 久久久久久人妻| 视频区图区小说| 狠狠精品人妻久久久久久综合| 99热国产这里只有精品6| 中文字幕免费在线视频6| 日韩精品有码人妻一区| 国产在线一区二区三区精| 精品国产一区二区久久| 老女人水多毛片| 精品久久蜜臀av无| 久久久精品免费免费高清| 国产高清国产精品国产三级| 欧美日本中文国产一区发布| 美女内射精品一级片tv| 寂寞人妻少妇视频99o| 男人爽女人下面视频在线观看| 国产精品 国内视频| 51国产日韩欧美| freevideosex欧美| 国产精品一二三区在线看| 欧美日韩在线观看h| 亚洲精品456在线播放app| 3wmmmm亚洲av在线观看| 91成人精品电影| 欧美精品国产亚洲| a级片在线免费高清观看视频| 综合色丁香网| 免费av不卡在线播放| av电影中文网址| 中文字幕人妻丝袜制服| 国产精品99久久99久久久不卡 | 中文字幕人妻熟人妻熟丝袜美| 精品午夜福利在线看| 精品视频人人做人人爽| 18禁在线播放成人免费| 色94色欧美一区二区| 春色校园在线视频观看| 亚洲av国产av综合av卡| 在线观看www视频免费| 在线观看免费日韩欧美大片 | 在线观看三级黄色| 蜜桃在线观看..| 天美传媒精品一区二区| 人人妻人人澡人人爽人人夜夜| 最近手机中文字幕大全| 美女大奶头黄色视频| 国产成人aa在线观看| 一区二区三区精品91| 91精品国产九色| 亚洲欧美成人综合另类久久久| av在线app专区| 日韩中文字幕视频在线看片| 80岁老熟妇乱子伦牲交| 免费观看性生交大片5| 伦理电影大哥的女人| 婷婷色综合www| 国产女主播在线喷水免费视频网站| 在线 av 中文字幕| 免费人妻精品一区二区三区视频| 熟妇人妻不卡中文字幕| 亚洲综合色网址| 蜜桃在线观看..| 久久97久久精品| 99国产综合亚洲精品| 久久久久精品性色| 亚洲熟女精品中文字幕| 97在线人人人人妻| 国国产精品蜜臀av免费| 亚洲国产日韩一区二区| 99久久精品国产国产毛片| 男女边摸边吃奶| 欧美 日韩 精品 国产| 国产伦精品一区二区三区视频9| 久久久久久久亚洲中文字幕| 中国国产av一级| 日韩熟女老妇一区二区性免费视频| 午夜福利影视在线免费观看| 午夜日本视频在线| 国产爽快片一区二区三区| 亚洲精品色激情综合| 亚洲精华国产精华液的使用体验| 午夜福利视频精品| 成人毛片a级毛片在线播放| 国产精品久久久久久久电影| 欧美xxxx性猛交bbbb| 美女主播在线视频| 老女人水多毛片| 伦理电影免费视频| 久久久久久久久久久免费av| 国产精品久久久久久精品电影小说| 国产黄频视频在线观看| 乱人伦中国视频| 2018国产大陆天天弄谢| 国产一区二区三区综合在线观看 | 日本91视频免费播放| a级毛片免费高清观看在线播放| 亚洲在久久综合| 日韩免费高清中文字幕av| a级毛片在线看网站| 晚上一个人看的免费电影| 久久久久久伊人网av| 考比视频在线观看| 卡戴珊不雅视频在线播放| 高清黄色对白视频在线免费看| 秋霞在线观看毛片| 成人国产麻豆网| 又黄又爽又刺激的免费视频.| 九色成人免费人妻av| 91精品三级在线观看| 国模一区二区三区四区视频| 亚洲av中文av极速乱| 蜜桃久久精品国产亚洲av| 大片电影免费在线观看免费| 久久久久久久久久成人| 日韩欧美精品免费久久| 午夜日本视频在线| 精品亚洲乱码少妇综合久久| 国产亚洲最大av| 女性生殖器流出的白浆| 亚洲国产精品成人久久小说| 国产精品一国产av| 在线观看一区二区三区激情| 久久综合国产亚洲精品| 一级毛片黄色毛片免费观看视频| 99热这里只有是精品在线观看| 日本vs欧美在线观看视频| 欧美变态另类bdsm刘玥| 美女福利国产在线| 男女啪啪激烈高潮av片| 国产深夜福利视频在线观看| 激情五月婷婷亚洲| 成人免费观看视频高清| 国产精品99久久99久久久不卡 | 在线观看免费视频网站a站| 日本爱情动作片www.在线观看| av.在线天堂| 另类精品久久| 亚洲精品色激情综合| 在线精品无人区一区二区三| av电影中文网址| 日本与韩国留学比较| 亚洲人成网站在线播| 国产男女内射视频| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久久精品电影小说| 3wmmmm亚洲av在线观看| 久久这里有精品视频免费| 在线观看免费高清a一片| 日韩人妻高清精品专区| 久久久久久久久久久丰满| 成人影院久久| 全区人妻精品视频| 亚洲av综合色区一区| 亚洲国产欧美在线一区| 欧美激情 高清一区二区三区| 久久精品久久精品一区二区三区| 欧美xxⅹ黑人| 亚洲av不卡在线观看| 精品久久国产蜜桃| 国产成人精品在线电影| 国产乱来视频区| 成人国语在线视频| 国产探花极品一区二区| 国产精品久久久久久精品电影小说| 久久精品久久久久久噜噜老黄| 日韩欧美一区视频在线观看| 国产免费视频播放在线视频| 亚洲一区二区三区欧美精品| 丁香六月天网| 观看美女的网站| 午夜福利网站1000一区二区三区| 成年av动漫网址| 久久久精品94久久精品| 美女脱内裤让男人舔精品视频| 性色av一级| 中文精品一卡2卡3卡4更新| 亚洲中文av在线| 日韩 亚洲 欧美在线| 99热网站在线观看| 久久av网站| 99久国产av精品国产电影| 国产熟女午夜一区二区三区 | 免费观看无遮挡的男女| a级毛片在线看网站| av在线app专区| 视频中文字幕在线观看| 91久久精品电影网| 久久精品国产鲁丝片午夜精品| 9色porny在线观看| 男女免费视频国产| 99热这里只有精品一区| av天堂久久9| 制服丝袜香蕉在线| 久久久久久久国产电影| 制服人妻中文乱码| 精品熟女少妇av免费看| 中文字幕免费在线视频6| 搡老乐熟女国产| 制服丝袜香蕉在线| 蜜桃久久精品国产亚洲av| 亚洲国产精品一区三区| 满18在线观看网站| 久久精品国产a三级三级三级| 青青草视频在线视频观看| 91久久精品电影网| 国产日韩欧美亚洲二区| 国产黄片视频在线免费观看| 男女边摸边吃奶| 国产精品麻豆人妻色哟哟久久| 啦啦啦视频在线资源免费观看| 亚洲精品久久久久久婷婷小说| 久久国产精品男人的天堂亚洲 | 国产日韩欧美亚洲二区| 日本av手机在线免费观看| 久久免费观看电影| 丝袜喷水一区| 国精品久久久久久国模美| 久久久午夜欧美精品| 黄色欧美视频在线观看| 一区二区三区免费毛片| 亚洲色图 男人天堂 中文字幕 | 伦理电影大哥的女人|