孔 明, 紀(jì)中新, 彭福全, 楊 飛, 張毅敏, 晁建穎*
1.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所, 江蘇 南京 210042 2.河海大學(xué)環(huán)境學(xué)院, 江蘇 南京 210098
凹凸棒黏土對(duì)水體和底泥中Cr(Ⅵ)的吸附
孔 明1, 紀(jì)中新2, 彭福全1, 楊 飛1, 張毅敏1, 晁建穎1*
1.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所, 江蘇 南京 210042 2.河海大學(xué)環(huán)境學(xué)院, 江蘇 南京 210098
為考察凹凸棒黏土對(duì)水體和底泥中Cr(Ⅵ)污染治理與修復(fù)效果,通過(guò)實(shí)驗(yàn)室模擬試驗(yàn),運(yùn)用Langmuir和Frundlich等溫吸附模型及準(zhǔn)一級(jí)和準(zhǔn)二級(jí)動(dòng)力學(xué)模型,研究了天然凹凸棒黏土對(duì)水體中Cr(Ⅵ)的吸附特性,并研究了pH對(duì)吸附過(guò)程的影響及凹凸棒黏土對(duì)底泥中Cr(Ⅵ)金屬形態(tài)的影響,通過(guò)XRF(X-射線熒光光譜儀)和SEM(掃描電鏡)確定凹凸棒黏土的化學(xué)組成和微觀形貌結(jié)構(gòu). 結(jié)果表明:天然凹凸棒黏土內(nèi)部呈纖維狀且多孔隙,成分中含有鐵、鋁、鈣等元素,吸附后的材料中發(fā)現(xiàn)了Cr元素;Langmuir-Frundlich吸附等溫模型(R2=0.996)和準(zhǔn)一級(jí)動(dòng)力學(xué)模型(R2=0.993)較好地?cái)M合了凹凸棒黏土對(duì)Cr(Ⅵ)的吸附熱力學(xué)與動(dòng)力學(xué)過(guò)程,動(dòng)力學(xué)模擬的Cr(Ⅳ)平衡吸附量及實(shí)測(cè)值分別為1.38和1.37 mgg. 溶液pH對(duì)Cr(Ⅵ)的吸附具有影響,其最佳pH為3,此時(shí)吸附率最高,為85.80%. 研究顯示,向底泥中添加凹凸棒黏土能促使Cr形態(tài)由不穩(wěn)定態(tài)(酸溶態(tài)和鐵鋁還原態(tài)之和)向穩(wěn)定態(tài)(可氧化態(tài)和殘?jiān)鼞B(tài)之和)轉(zhuǎn)化,從而達(dá)到修復(fù)底泥中Cr(Ⅵ)污染的目的.
凹凸棒黏土; Cr(Ⅵ); 吸附; 穩(wěn)定化
Abstract: The adsorption properties of Cr(Ⅵ) in water and the effects of attapulgite on metal fractions of Cr in sediment by using natural attapulgite clay were investigated by classic models, and the basic properties of attapulgite and changes of internal structure and composition before and after adsorption were analyzed by X-ray fluorescence spectrometer (XRF) and Scanning Electron Microscope (SEM). The results indicated that the internal structure of attpulgite was observed with fibrous structure and porosity. Aluminum, calcium and other elements and Cr element were increased after adsorption. The adsorption kinetics and isotherms couldbe best fitted with the pseudo-first order kinetics (R2=0.993) model and the Langmuir-Freundlich (R2=0.996) model, respectively. The simulated amount and measured value of kinetic were 1.38 and 1.37 mg/g, respectively. The initial pH value had an influence on Cr(Ⅵ) adsorption. The optimal pH value for adsorption was 3.0, and the highest adsorption rate was 85.80%. The addition of attapulgite to the sediment may lead to the transformation of Cr fractions from the unstable fraction (acid exchangeable fraction and reducible fraction) to the stable fraction(oxidizable fraction and residual fraction).
Keywords: attapulgite; Cr(Ⅵ); adsorption; stabilization
重金屬污染是環(huán)境研究者長(zhǎng)期關(guān)注的問(wèn)題之一,工業(yè)廢水(如不銹鋼生產(chǎn)業(yè)、汽車零件制造業(yè)及電鍍業(yè)等行業(yè)產(chǎn)生的廢水)中含有較高濃度的重金屬鉻(Cr)[1],含Cr廢水大量進(jìn)入環(huán)境中容易造成Cr污染. 環(huán)境中的Cr有Cr(Ⅲ)和Cr(Ⅵ)兩種價(jià)態(tài),但通常多以毒性更大的Cr(Ⅵ)賦存[2]. Cr(Ⅵ)不僅可以直接造成水體污染,還可通過(guò)絡(luò)合、沉淀及絮凝等過(guò)程蓄積在河流、湖泊底泥中[3],并通過(guò)底泥再懸浮途徑重新釋放到上覆水體中[4],造成二次污染. 污染環(huán)境中的Cr(Ⅵ)被人或動(dòng)物吸收后,易造成致畸、致癌和致突變[5],嚴(yán)重威脅到環(huán)境安全和人體健康,因此需要關(guān)注和研究Cr(Ⅵ)的去除.
Cr(Ⅵ)污染廢水的處理方法主要有化學(xué)沉淀[6]、離子交換[7]、電化學(xué)還原[8]、蒸發(fā)回收[9]及吸附[10]等. 其中,吸附法因具有操作簡(jiǎn)單、成本低廉等優(yōu)點(diǎn)而得以廣泛應(yīng)用. 目前,常用的吸附材料有活性炭、工業(yè)廢棄物及天然黏土材料等,活性炭吸附性能較好但成本較高[[11]. 沸石、膨潤(rùn)土和凹凸棒黏土等天然黏土材料因廉價(jià)易得且環(huán)境友好而被廣泛的應(yīng)用在重金屬?gòu)U水吸附處理研究中.
天然凹凸棒黏土(下稱凹土)是一種2∶1(TOT)型層鏈狀海泡石族的含水富鎂、鋁的硅酸鹽黏土礦物,其晶體化學(xué)式可表示為Mg5(H2O)4[Si4O10]2(OH)2,結(jié)構(gòu)由相互平行的硅氧四面體雙鏈組成,兩條鏈則通過(guò)六配位的鎂原子相連接[12]. 凹土因具有較大的比表面積[13]和較強(qiáng)的離子交換能力,對(duì)重金屬Cr(Ⅵ)具有較好的吸附效果. 然而,目前針對(duì)凹土對(duì)重金屬Cr(Ⅵ)的吸附研究工作,主要集中于對(duì)水體中Cr(Ⅵ)的吸附研究,而對(duì)底泥中Cr(Ⅵ)的穩(wěn)定效果的研究較少,尤其缺乏對(duì)底泥中Cr(Ⅵ)的重金屬形態(tài)的影響研究. 該文開展了天然凹土對(duì)水體中Cr(Ⅵ)的吸附特征及其對(duì)底泥中Cr(Ⅵ)的重金屬形態(tài)的影響研究,分析凹土對(duì)Cr(Ⅵ)的吸附效果、機(jī)理及穩(wěn)定化程度,以期為河流或湖泊Cr(Ⅵ)污染治理與修復(fù)提供科學(xué)依據(jù).
試驗(yàn)所用凹土取自江蘇省盱眙縣,在105 ℃下干燥24 h至恒質(zhì)量,研磨粉碎后過(guò)100目(0.149 mm)篩備用. 采用SEM(掃描電鏡,Hitachi S- 3400NⅡ型)分析凹土微觀形貌結(jié)構(gòu),通過(guò)XRF(X-射線熒光光譜,ARL9800-XP型)確定其化學(xué)組成并采用比表面積分析儀(美國(guó)麥克Gemini VII 2390型)測(cè)定其比表面積. 凹凸棒黏土對(duì)Cr(Ⅵ)的吸附性能的測(cè)定采用《水和廢水監(jiān)測(cè)分析方法》中的二苯碳酰二肼分光光度法.
1.2.1吸附等溫線和吸附動(dòng)力學(xué)
準(zhǔn)確稱取0.250 0 g(±0.000 2 g)凹土于13支50 mL離心管中,加入40 mLρ〔Cr(Ⅵ)〕為0.5~600 mg/L的K2Cr2O7溶液,調(diào)節(jié)溶液pH至3,在 25 ℃ 恒溫條件下,將離心管置于160 r/min的振蕩器中振蕩反應(yīng)3 h,于 7 000 r/min下離心15 min,經(jīng)0.45 μm濾膜過(guò)濾,取上清液測(cè)得ρ〔Cr(Ⅵ)〕.
準(zhǔn)確稱取0.250 0 g(±0.000 2 g)凹土于14支50 mL離心管中,加入40 mLρ〔Cr(Ⅵ)〕為10 mg/L的K2Cr2O7溶液,調(diào)節(jié)溶液pH至3,在25 ℃恒溫條件下,將離心管置于160 r/min的振蕩器中振蕩,每隔一段時(shí)間后取樣離心并經(jīng)0.45 μm濾膜過(guò)濾,取上清液測(cè)得ρ〔Cr(Ⅵ)〕.
1.2.2pH對(duì)Cr(Ⅵ)吸附影響
準(zhǔn)確稱取0.250 0 g(±0.000 2 g)凹土于6支50 mL離心管中,加入ρ〔Cr(Ⅵ)〕為10 mg/L、pH為2~7的K2Cr2O7溶液,置于160 r/min的振蕩器中振蕩反應(yīng)3 h,于 7 000 r/min下離心15 min,經(jīng)0.45 μm濾膜過(guò)濾,取上清液測(cè)得ρ〔Cr(Ⅵ)〕.
采集太湖貢湖灣(31°27′46″N、120°20′18″E)表層10 cm的底泥,其中w(Cr)為99.10 mg/kg. 將凹土與底泥按m(凹土)/m(底泥)分別為0%、5%、10%、15%、20%、25%、30%的比例充分混合均勻,加入40 mL去離子水,置于搖床內(nèi)(160 r/min,25 ℃),振蕩30 d后取出,經(jīng)離心(7 000 r/min)去掉上清液,將剩余殘?jiān)鼧悠防鋬龈稍飩浯? 采用HJ 491—2009《土壤總鉻的測(cè)定火焰原子吸收分光光度法》全消解方法測(cè)定底泥與穩(wěn)定30 d后的混合底泥樣品中的Cr總量. 采用BCR四步連續(xù)提取法[14]對(duì)底泥與混合底泥中Cr的化學(xué)形態(tài)進(jìn)行提取. 以F1、F2、F3及F4分別表示重金屬Cr的酸溶態(tài)、可還原態(tài)、可氧化態(tài)與殘?jiān)鼞B(tài),F(xiàn)1+F2為重金屬不穩(wěn)定態(tài),F(xiàn)3+F4代表重金屬穩(wěn)定形態(tài),w(F3+F4)/w(F1+F2)可用來(lái)評(píng)價(jià)重金屬的遷移率[15],其比值越小,遷移率越大.
原狀凹土的基本理化性質(zhì)如表1所示,凹土比表面積為246.35 m2/g,高于其他的黏土礦物[16- 17],表明其具有較大的吸附容量. XRF分析發(fā)現(xiàn),凹土的主要成分除SiO2外,還含有較高的Al2O3和Fe2O3,其含量總量為21.33%. 研究表明,凹土中的鐵和鋁等金屬成分可與羥基結(jié)合[18],以絮體和離子交換的形式對(duì)Cr(Ⅵ)進(jìn)行吸附. 此外,WANG等[19]研究認(rèn)為,凹土擁有一定的Al和Si的活性位點(diǎn),并且其結(jié)構(gòu)中存在著Al3+對(duì)Si4+以及Al3+、Fe2+對(duì)Mg2+的同晶置換現(xiàn)象,各種離子替換的綜合結(jié)果導(dǎo)致凹土帶有少量的永久性負(fù)電荷[20],使其具有較好的吸附性能.
SEM掃描結(jié)果如圖1所示,原狀凹土表面呈纖維狀結(jié)構(gòu),含有豐富的凹陷、裂縫和凸起〔見圖1(a)〕,存在較大的空隙及比表面積,因此具有較好的吸附性能. 與吸附前材料相比,吸附后的凹土表面結(jié)構(gòu)由纖維狀變成簇狀,同時(shí)其表面白色附著顆粒明顯增多〔見圖1(b)〕,表明一定量的Cr(Ⅵ)可能被吸附在材料表面結(jié)構(gòu)上.
表1 凹土的基本理化性質(zhì)
圖1 吸附前后凹土SEM掃描結(jié)果Fig.1 The results of SEM of attapulgite before and after adsorption
2.2.1吸附熱力學(xué)
凹土對(duì)Cr(Ⅵ)的等溫吸附特性曲線如圖2所示,初始ρ〔Cr(Ⅵ)〕在0~600 mg/L的范圍內(nèi),吸附率相應(yīng)地由0%增加到63.3%,其最大吸附率達(dá)84.4%. 隨著ρ〔Cr(Ⅵ)〕的增加,凹土對(duì)Cr(Ⅵ)的吸附量呈增加的趨勢(shì),當(dāng)ρ〔Cr(Ⅵ)〕達(dá)到600 mg/L時(shí),吸附量增至60.8 mg/g.
圖2 Cr(Ⅵ)吸附等溫線Fig.2 Adsorption isotherm of Cr(Ⅵ) onto attapulgite
天然凹土中Cr的含量極少,在模型擬合的過(guò)程中,凹土自身含有的Cr可忽略不計(jì),故分別采用Langmuir吸附等溫模型〔見式(1)〕、Frundlich吸附等溫模型〔見式(2)〕和Langmuir-Frundlich吸附等溫模型〔見式(3)〕對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行擬合[21- 22].
(1)
qe=KCe1/n
(2)
(3)
式中:qe為平衡吸附量,mg/g;Ce為平衡質(zhì)量濃度,mg/L;qm為單位表面達(dá)到飽和吸附量的最大吸附量,mg/g;KL為表征吸附表面強(qiáng)度的常數(shù),L/mg;吸附系數(shù)K表示吸附能力的強(qiáng)弱,mg/g;n為Frundlich等溫模型常數(shù),1/n表示吸附量隨濃度增加的強(qiáng)度,當(dāng)1/n<1時(shí)有利于吸附.
圖3 凹土吸附等溫線模型擬合曲線Fig.3 Adsorption isothermal model fitting curve of attapulgite
吸附等溫曲線擬合結(jié)果如圖3和表2所示,Langmuir-Frundlich吸附等溫模型的擬合效果,R2(可決系數(shù))為0.996,優(yōu)于Langmuir吸附等溫模型的擬合效果(R2=0.989)和Freundlich吸附等溫模型的擬合效果(R2=0.919),即Langmuir-Frundlich吸附等溫模型能夠更好地對(duì)凹土吸附Cr(Ⅵ)的過(guò)程進(jìn)行描述,表明凹土對(duì)Cr(Ⅵ)的吸附傾向于不規(guī)則的表面
表2 凹土對(duì)Cr(Ⅵ)的吸附模型擬合參數(shù)
注:25 ℃下.
吸附[23],該結(jié)果與Bektas等[24]利用自然礦物吸附重金屬離子的研究結(jié)果相似. Langmuir-Frundlich吸附等溫模型擬合出的凹土的理論Cr(Ⅵ)最大吸附量(67.57 mg/g)較Krishna等[25]研究中膨潤(rùn)土(41.32 mg/g)和高嶺土(1.56 mg/g)要高,這說(shuō)明凹土對(duì)Cr(Ⅵ) 具有較好的吸附性能.
2.2.2吸附動(dòng)力學(xué)
凹土對(duì)Cr(Ⅵ)的吸附量隨時(shí)間變化關(guān)系如圖4所示. 由圖4可見,凹土對(duì)Cr(Ⅵ)的吸附是一個(gè)快速過(guò)程,反應(yīng)5 min的吸附量為1.30 mg/g,吸附率可達(dá)到90%以上,基本達(dá)到吸附平衡,其吸附平衡時(shí)間比已有研究中針鐵礦[26]和粉煤灰[27]的30 min平衡時(shí)間以及酸改性膨潤(rùn)土[28]的100 min吸附平衡時(shí)間較短,與Thanos等[29]利用十六烷基溴化銨改性凹土吸附Cr(Ⅵ)的平衡時(shí)間(8~10 min)相近,這表明凹土對(duì)Cr(Ⅵ)具有較高的吸附效率.
圖4 反應(yīng)時(shí)間對(duì)凹土吸附Cr(Ⅵ)的影響Fig.4 Effect of reaction time on Cr(Ⅵ) adsorption onto attpulgite
為了描述凹土對(duì)Cr(Ⅵ)的吸附動(dòng)力學(xué)特征,分別用準(zhǔn)一級(jí)動(dòng)力學(xué)模型〔見式(4)〕和準(zhǔn)二級(jí)動(dòng)力學(xué)模型〔見式(5)〕對(duì)吸附動(dòng)力學(xué)過(guò)程進(jìn)行擬合[30- 31].
ln(qe-qt)=lnqe-K1t
(4)
(5)
式中,qt為t時(shí)的吸附量,mg/g;K1為準(zhǔn)一級(jí)吸附速率常數(shù),min-1;K2為準(zhǔn)二級(jí)吸附速率常數(shù),g/(mg· min);t為吸附反應(yīng)時(shí)間,min.
圖5 pH對(duì)Cr(Ⅵ)吸附效果的影響Fig.5 Effects of pH on Cr(Ⅵ) adsorption onto attpulgite
通過(guò)準(zhǔn)一級(jí)動(dòng)力學(xué)擬合曲線和準(zhǔn)二級(jí)動(dòng)力學(xué)擬合曲線得到吸附動(dòng)力學(xué)相關(guān)參數(shù),其中K1和K2分別為0.58 min-1和7.27 g/(mg·min),準(zhǔn)一級(jí)動(dòng)力學(xué)模型(R2=0.993)和準(zhǔn)二級(jí)動(dòng)力學(xué)模型(R2=0.990)均可較好地?cái)M合凹土對(duì)Cr(Ⅵ)的吸附過(guò)程. 由準(zhǔn)一級(jí)動(dòng)力學(xué)模型和準(zhǔn)二級(jí)動(dòng)力學(xué)模型得到的凹土對(duì)Cr(Ⅵ)的平衡吸附量(qe)分別為1.382與1.38 mg/g,與實(shí)測(cè)值1.37 mg/g非常接近,故凹土對(duì)Cr(Ⅵ) 的吸附過(guò)程可用以上兩個(gè)動(dòng)力學(xué)方程來(lái)描述,這與Thanos等[29]的研究中十六烷基溴化銨改性凹土的吸附動(dòng)力學(xué)擬合結(jié)果相似,有機(jī)改性凹土的平衡吸附量(3.98 mg/g)較凹土的平衡吸附量高,但二者的平衡吸附時(shí)間相近,這可能是由于十六烷基溴化銨提高了凹土的離子交換能力,并削弱了凹凸表面的靜電斥力,增加其Cr(Ⅵ)吸附量,但并未影響其Cr(Ⅵ)吸附速度.2.3pH對(duì)Cr的吸附影響
pH是影響礦物表面吸附效果的重要因子之一[32]. pH對(duì)凹土吸附Cr(Ⅵ)效果的影響如圖5所示,pH在2~7的范圍內(nèi),吸附效果總體呈先增后降的趨勢(shì),當(dāng)溶液的pH為3時(shí),凹土對(duì)Cr(Ⅵ)的吸附效果最好,其吸附率與吸附量均達(dá)到最大值;溶液的pH在3~7范圍內(nèi),凹土的吸附能力下降顯著,吸附率由85.80%降至13.61%,吸附量由1.38 mg/g減至0.22 mg/g. 這表明酸性環(huán)境有利于凹土對(duì)Cr(Ⅵ)的吸附. 在低pH條件下,溶液中Cr(Ⅵ)主要以HCrO4-、CrO42-和Cr3O102-等形式存在[33],同時(shí),酸性條件使得凹土表面Zeta電位表現(xiàn)為較強(qiáng)的正電性[34- 35],從而吸附帶負(fù)電的離子. 溶液達(dá)到中性至堿性時(shí),Cr(Ⅵ)的主要存在形式是CrO42-,并且隨著pH的增大,OH-的增多會(huì)導(dǎo)致凹土本身的電負(fù)性增大[36],進(jìn)而使得凹土與CrO42-的排斥力增大,同時(shí),OH-與CrO42-之間的競(jìng)爭(zhēng)吸附作用[37]及鉻酸鹽的羥基絡(luò)合物的生成[38]會(huì)進(jìn)一步削弱凹土對(duì)Cr(Ⅵ)的吸附能力.
底泥穩(wěn)定30 d前后的重金屬Cr形態(tài)含量見表3,穩(wěn)定30 d前后,底泥中Cr形態(tài)含量變化較小,在研究凹土對(duì)底泥重金屬Cr形態(tài)影響時(shí)可忽略不計(jì). 凹土對(duì)底泥重金屬Cr形態(tài)的影響如圖6所示,穩(wěn)定30 d 后,隨著m(凹土)/m(底泥)的增加,酸溶態(tài)Cr(F1) 所占比例逐漸減小,而殘?jiān)鼞B(tài) Cr(F4) 的比例則相應(yīng)增加. 當(dāng)m(凹土)/m(底泥)大于20%后,各形態(tài)比例基本保持不變〔見圖6(a)〕.w(F3+F4)/w(F1+F2)能夠反應(yīng)重金屬在底泥中的遷移能力,比值越高,表明其遷移能力越弱,在環(huán)境中的生態(tài)風(fēng)險(xiǎn)越低[39]. 由圖6(b)可見,w(F3+F4)/w(F1+F2)隨著m(凹土)/m(底泥)的增大而增大,當(dāng)m(凹土)/m(底泥)達(dá)到25%時(shí),w(F3+F4)/w(F1+F2)達(dá)到最大值1.79. 凹土對(duì)底泥中Cr形態(tài)影響的原因可能是由于凹土具有較強(qiáng)的堿性,添加凹土提高了底泥的pH,底泥對(duì)Cr的鈍化作用加強(qiáng)[40],促進(jìn)Cr由不穩(wěn)定態(tài)向穩(wěn)定態(tài)的轉(zhuǎn)化,降低凹土中Cr的遷移性和生物有效性[41];另一方面可能與凹土的比表面積和礦物組成有關(guān),較大的比表面積以及較高的表面電位,對(duì)重金屬Cr有一定的吸附和固定作用[42].
表3 底泥穩(wěn)定30 d前后重金屬Cr形態(tài)含量
圖6 穩(wěn)定化30 d底泥重金屬Cr形態(tài)變化Fig.6 The morphological changes of heavy metal Cr in sediments stabilized for 30 d
a) 凹土對(duì)Cr(Ⅵ)具有較好的吸附效率,其吸附等溫式更符合Langmuir-Frundlich吸附等溫模型,R2達(dá)到0.996,最大吸附量為76.5 mgg. 吸附動(dòng)力學(xué)符合準(zhǔn)一級(jí)吸附動(dòng)力學(xué)模型,R2達(dá)到0.993.
b) 凹土對(duì)Cr(Ⅵ)的吸附受到pH的影響,在pH為3的條件下,Cr(Ⅵ)吸附率與吸附量均達(dá)到最大值,分別為85.8%和1.38 mgg.
c) 向含重金屬Cr的底泥中添加凹土穩(wěn)定化30 d 后,實(shí)現(xiàn)了底泥中Cr由不穩(wěn)定形態(tài)(酸溶態(tài)和可還原態(tài))向穩(wěn)定形態(tài)(可氧化態(tài)和殘?jiān)鼞B(tài))的轉(zhuǎn)化,當(dāng)m(凹土)m(底泥)達(dá)到25%時(shí),w(F3+F4)w(F1+F2)達(dá)到最大值1.79,表明重金屬Cr的遷移率達(dá)到最小,穩(wěn)定化效果達(dá)到最好.
[1] 王劍峰,張金利,楊慶.粉煤灰對(duì)Cr(Ⅵ)的吸附特性[J].環(huán)境工程學(xué)報(bào),2014,8(11):4593- 4599. WANG Jianfeng,ZHANG Jinli,YANG Qing.Adsorption behaviors of heavy metal Cr(Ⅵ) on fly ash[J].Chinese Journal of Environmental Engineering,2014,8(11):4593- 4599.
[2] BHATTACHARYA A K,NAIYA T K,MANDAL S N,etal.Adsorption,kinetics and equilibrium studies on removal of Cr(Ⅵ) from aqueous solutions using different low-cost adsorbents[J].Chemical Engineering Journal,2008,137(3):529- 541.
[3] WEN Jia,YI Yuanjie,ZENG Guangming.Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J].Journal of Environmental Management,2016,178:63- 69.
[4] YIN Hongbin,ZHU Jincan.In situ remediation of metal contaminated lake sediment using naturally occurring,calcium-rich clay mineral-based low-cost amendment[J].Chemical Engineering Journal,2016,285:112- 120.
[5] LI Ying,YUE Qinyan,GAO Baoyu.Effect of humic acid on the Cr(Ⅵ) adsorption onto Kaolin[J].Applied Clay Science,2010,48(3):481- 484.
[6] 雷鳴,田中干也,廖柏寒,等.硫化物沉淀法處理含EDTA的重金屬?gòu)U水[J].環(huán)境科學(xué)研究,2008,21(1):150- 154. LEI Ming,TANAKA Mikiya,LIAO Bohan,etal.Treatment of heavy metals from wastewater containing EDTA with sulfide precipitation[J].Research of Environmental Sciences,2008,21(1):150- 154.
[7] AHMED S,CHUGHTAI S,KEANE M A.The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite[J].Separation & Purification Technology,1998,13(1):57- 64.
[8] 許偉,張慧敏,吳祖成.重金屬自產(chǎn)電能的電化學(xué)處理[J].電化學(xué),2013(4):345- 349. XU Wei,ZHANG Huimin,WU Zucheng.Electrochemical treatment of heavy metals with self-electricity generation[J].Journal of Electrochemistry,2013(4):345- 349.
[9] 高俊松.電去離子技術(shù)凈化電鍍漂洗水與濃縮回收重金屬[D].杭州:浙江大學(xué),2010.
[10] 鄒繼穎,劉輝.生物吸附劑對(duì)重金屬Cr(Ⅵ)吸附性能的研究[J].環(huán)境工程,2014,32(2):64- 67. ZOU Jiying,LIU Hui.Preliminary study on Cr(Ⅵ) adsorption capability of biosorbents[J].Environmental Engineering,2014,32(2):64- 67.
[11] EREN E,AFSIN B,ONAL Y.Removal of lead ions by acid activated and manganese oxide-coated bentonite[J].Journal of Hazardous Materials,2009,161(2/3):677- 685.
[12] 馬玉恒,方衛(wèi)民,馬小杰.凹凸棒土研究與應(yīng)用進(jìn)展[J].材料導(dǎo)報(bào),2006,20(9):43- 46. MA Yuheng,FANG Weimin,MA Xiaojie.Advances in attapulgite research and application[J].Materials Review,2006,20(9):43- 46.
[13] TAO Ling,SONG Xiaowei,YUAN Jianli,etal.Adsorption of Cr(VI) from aqueous solution by purified attapulgite[J].Advanced Materials Research,2014,1051:583- 587.
[14] WANG K H,CHUNG I J,MIN C J,etal.Deformation behavior of polyethylene/silicate nanocomposites as studied by real-time wide-angle X-ray scattering[J].Macromolecules,2002,35(14):5529- 5535.
[15] ZHANG Junping,LI An,WANG Aiqin.Study on superabsorbent composite:VI.preparation,characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite[J].Carbohydrate Polymers,2006,65(2):150- 158.
[16] XIONG Wenhui,PENG Jian.Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent[J].Water Research,2008,42(19):4869- 4877.
[17] GAN L,BOLKER A,SAGUY C,etal.The effect of grain boundaries and adsorbates on the electrical properties of hydrogenated ultra nano crystalline diamond[J].Diamond & Related Materials,2009,18(9):1118- 1122.
[18] CHIARI G,GIUSTETTO R,RICCHIARDI G.Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction[J].European Journal of Mineralogy,2003,15(1):21- 33.
[19] WANG S,BOYJOO Y,CHOUEIB A,etal.Removal of dyes from aqueous solution using fly ash and red mud[J].Water Research,2005,39(1):129- 38.
[20] GIUSTETTO R,XAMENA F X L I,RICCHIARDI G,etal.Maya blue:a computational and spectroscopic study[J].Journal of Physical Chemistry B,2005,109(41):19360- 19368.
[21] MADSEN H E L,CHRISTENSSON F,POLYAK L E,etal.Calcium phosphate crystallization under terrestrial and microgravity conditions[J].Journal of Crystal Growth,1995,152(3):191- 202.
[22] 馬鋒鋒,趙保衛(wèi),鐘金魁,等.牛糞生物炭對(duì)磷的吸附特性及其影響因素研究[J].中國(guó)環(huán)境科學(xué),2015,35(4):1156- 1163. MA Fengfeng,ZHAO Baowei,ZHONG Jinkui,etal.Characteristics phosphate adsorption onto biochars derived from dairy manure and its influencing factors[J].China Environmental Science,2015,35(4):1156- 1163.
[23] GERENTE C,LEE V K C,CLOIREC P LE,etal.Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review[J].Critical Reviews in Environmental Science & Technology,2007,37(1):41- 127.
[25] KRISHNA B S,MURTY D S R,PRAKASH B S J.Surfactant-modified clay as adsorbent for chromate[J].Applied Clay Science,2001,20(1/2):65- 71.
[26] 任天昊,楊琦,李群,等.針鐵礦對(duì)廢水中Cr(Ⅵ)的吸附[J].環(huán)境科學(xué)與技術(shù),2015,38(12Q):72- 77. REN Tianhao,YANG Qi,LI Qun,etal.Adsorption of Cr(Ⅵ) on goethite from simulated wastewater[J].Environmental Science & Technology(China),2015,38(12Q):72- 77.
[27] 王劍峰.不同吸附劑對(duì)Cr(Ⅵ)吸附特性的試驗(yàn)研究[D].大連:大連理工大學(xué),2014.
[28] 陸海軍.污染物在改良黏土襯里中運(yùn)移分析及ET封頂層特性探討[D].大連:大連理工大學(xué),2009.
[29] THANOS A G,KATSOU E,MALAMIS S,etal.Evaluation of modified mineral performance for chromate sorption from aqueous solutions[J].Chemical Engineering Journal,2012,211/212:77- 88.
[30] HUI K S,CHAO C Y H,KOT S C.Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash[J].Journal of Hazardous Materials,2005,127(1/2/3):89- 101.
[31] LIU Y,SHEN X,XIAN Q,etal.Adsorption of copper and lead in aqueous solution onto bentonite modified by 4′-methylbenzo- 15-crown- 5[J].Journal of Hazardous Materials,2006,137(2):1149- 1155.
[32] 陳升勇,王成端,李慎新.不同pH對(duì)Cr(Ⅵ)在紫色土中的吸附影響[J].環(huán)境工程,2015(S1):857- 860. CHEN Shengyong,WANG Chengduan,LI Shenxin.Study on adsorption of Cr(Ⅵ) from purple soil under the influence by different pH environment[J].Environmental Engineering,2015(S1):857- 860.
[33] GARG V K,GUPTA R,KUMAR R,etal.Adsorption of chromium from aqueous solution on treated sawdust[J].Bioresource Technology,2004,92(1):79- 81.
[34] 湯加倫.多孔凹凸棒石/蒙脫石材料的制備及性能研究[D].北京:中國(guó)地質(zhì)大學(xué)(北京),2015.
[35] 劉梅堂,韋園紅,史濟(jì)斌,等.高分子PVP吸附對(duì)膠體Zeta電位的影響[J].中國(guó)粉體技術(shù),2001,7(2):1- 4. LIU Meitang,WEI Yuanhong,SHI Jibin,etal.Effect of polymer adsorption on potential and adsorption layer thickness of Silica Gels[J].China Power Science and Technology,2001,7(2):1- 4.
[36] 陳云,于永鮮,張金利,等.鐵氧化物改性黏土對(duì)Cr(Ⅵ)的吸附性能研究[J].環(huán)境科學(xué)學(xué)報(bào),2011,31(5):905- 911. CHEN Yun,YU Yongxian,ZHANG Jinli,etal.Adsorption of Cr(Ⅵ) by iron oxide-modified clay[J].Acta Scientiae Circumstantiae,2011,31(5):905- 911.
[37] ATTIA A A,KHEDR S A,ELKHOLY S A.Adsorption of chromium ion (Ⅵ) by acid activated carbon[J].Brazilian Journal of Chemical Engineering,2010,27(1):183- 193.
[38] YUSOF A M,MALEK N A.Removal of Cr(Ⅵ) and As(Ⅴ) from aqueous solutions by HDTMA-modified zeolite Y[J].Journal of Hazardous Materials,2009,162(2/3):1019- 1024.
[39] 李晶晶,彭恩澤.綜述鉻在土壤和植物中的賦存形式及遷移規(guī)律[J].工業(yè)安全與環(huán)保,2005,31(3):31- 33. LI Jingjing,PENG Enze.Summarization on the existing from and transferring rules of chromium in soil[J].Industrial Safety and Environmental Protection,2005,31(3):31- 33.
[40] MADEJO′N E,MORA A D,FELIPE E.Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation[J].Environmental Pollution,2006,139(1):40- 52.
[41] 張鴻齡,馬國(guó)峰,劉暢,等.清淤底泥處置中添加粉煤灰/爐渣對(duì)重金屬生物有效性及毒性的影響[J].環(huán)境科學(xué)學(xué)報(bào),2017,37(1):254- 260. ZHANG Hongling,MA Guofeng,LIU Chang,etal.The effect of fly ash and alkaline slag on the heavy metals bioavailability and toxicity of dredged sediment[J].Acta Scientiae Circumstantiae,37(1):254- 260.
[42] 李振澤.土對(duì)重金屬離子的吸附解吸特性及其遷移修復(fù)機(jī)制研究[D].杭州:浙江大學(xué),2009.
?小知識(shí)?
Adsorption of Attapulgite on Cr(Ⅵ) in Water and Sediment
KONG Ming1, JI Zhongxin2, PENG Fuquan1, YANG Fei1, ZHANG Yimin1, CHAO Jianying1*
1.Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, China 2.College of Environment, Hohai University, Nanjing 210098, China
科技期刊常用量的符號(hào)、名稱及釋義
注: 源自GB 3102.8—1993《物理化學(xué)和分子物理學(xué)的量和單位》等.
X703
1001- 6929(2017)10- 1630- 07
A
10.13198/j.issn.1001- 6929.2017.02.84
2016-07-27
2017-06-13
中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)項(xiàng)目;國(guó)家水體污染控制與治理科技重大專項(xiàng)(2012ZX07101- 007)
孔明(1987-),男,山東棗莊人,kongming- 1987@163.com.
*責(zé)任作者,晁建穎(1983-),男,河北滿城人,助理研究員,博士,主要從事流域水污染控制研究,njauchao@163.com
孔明,紀(jì)中新,彭福全,等.凹凸棒黏土對(duì)水體和底泥中Cr(Ⅵ)的吸附[J].環(huán)境科學(xué)研究,2017,30(10):1630- 1636.
KONG Ming,JI Zhongxin,PENG Fuquan,etal.Adsorption of attapulgite on Cr(Ⅵ) in water and sediment[J].Research of Environmental Sciences,2017,30(10):1630- 1636.