• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AVERAGING FOR MEASURE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

    2017-09-15 05:56:11LIBaolinWANGBaodi
    數(shù)學(xué)雜志 2017年5期
    關(guān)鍵詞:甘肅蘭州西北師范大學(xué)測度

    LI Bao-lin,WANG Bao-di

    (College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)

    AVERAGING FOR MEASURE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

    LI Bao-lin,WANG Bao-di

    (College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)

    In this paper,we study the averaging for measure functional dif f erential equations with inf i nite delay.By using the averaging theorem for generalized ordinary dif f erential equations, under the measure functional dif f erential equations with inf i nite delay is equivalent to the generalized ordinary dif f erential equations under some conditions,the periodic and non-periodic averaging theorem for this class of retarded functional dif f erential equations is obtained,which generalizes some related results.

    averaging methods;measure functional dif f erential equations;generalized ordinary dif f erential equations;Kurzweil-Stieltjes integral

    1 Introduction

    In paper[4],the authors stated very nice stability results of measure functional differential equations with inf i nite delay,especially proved that measure functional dif f erential equations with inf i nite delay is equivalent to the generalized ordinary dif f erential equations under some conditions.In[5]and[8],the authors described the averaging methods for generalized ordinary dif f erential equations and there were many sources described the averaging methods for ordinary dif f erential equation,such as[5,8,9].

    In the present paper,we establish an averaging result for measure functional dif f erential equations with inf i nite delay.This theorems is based on the averaging method for ordinary dif f erential equations,then we consider the classical averaging theorems for ordinary equations are concerned with the initial-value problem

    where ε>0 is a small parameter.Assume that f is T-periodic in the f i rst argument,then we can obtain an approximate of this initial-value problem by neglecting the ε2-term andtaking the averaging of f with respect to t,i.e,we consider the equation

    The proof of periodic averaging theorem,which can be traced back to paper[1,2]or[3].

    Now,we consider the measure dif f erential equations.

    Have a system described by ordinary dif f erential equation

    is acted upon by perturbation,the perturbed system is generally given by ordinary di ff erential equation of the form=f(t,x)+G(t,x).Assume the perturbation term G(t(x))is continuous or integrable and as such the state of the system changes continuously with respect to time.However some system one cannot expect the perturbations to be well-behaved. Such as the perturbations are impulsive.So we have the following equations

    where Du denotes the distributional derivative of function u.If u is a function of bounded variation,Du can be identif i ed with a Stieltjes measure and will have the ef f ect of suddenly changing the state of the system at the points of discontinuity of u.In[11],equations of form (1.2)are called measure dif f erential equations.Equation(1.2)have the special case when G was considered by Schmaedeke[11].In order to apply the methods of Riemann-Stieltjes integrals in the subsequent analysis we assumed to be a continuous function of t.In[12], the authors introduce the following functional dif f erential equation

    where xtrepresents the restriction of the function x(·)on the interval[m(t),n(t)],m and n being functions with the property m(t)≤n(t)≤t.In this case,the methods of R.S. integrals are unapplicable because of the possibility that G(t,xt)and u(t)may have common discontinuities,and Lebsgue-Stieltjes integrals are therefor used.

    Moreover,in[13],a important theorem which was considered as the main contents is as following.

    x(·)is a solution of(1.2)through(t0,x0)on an interval I with left end point t0,if and only if x(·)satisf i es the following equationsSo according to the above contents we can arrival at a conclusion measure functional differential equations with delay have the form Dx=G(s,xs)dg(s)is equivalent the following form

    In this paper,we shall consider the following initial value problem of measure dif f erential equations

    where x is an unknown function with values in Rnand the symbol xsdenotes the function xs(τ)=x(s+τ)def i ned on(-∞,0],which corresponding to the length of the delay.The integral on the right-hand side of(1.4)is the Kurzweil-Stieltjes integral with respect to a nondecreasing function g,where the function f:P×[t0,t0+σ]→Rnand a nondecreasing function g:[t0,t0+σ]→R,where

    is a Banach space satisfying conditions(H1)-(H6),t0∈R,σ>0,O?Ht0+σis a space satisfying conditions(1)-(6)of Lemma 2.7,X((-∞,0],Rn)be denoted the set of all regulated functions f:X(-∞,0]→Rn.

    Our candidate for the phase space of a measure function dif f erential equations with inf i nite delay is a linear space H0?X((-∞,0],Rn)equipped with a norm denoted by k·k?.We assume that this normed linear space H0satisf i es the following conditions

    (H1)H0is complete.

    (H2)If x∈H0and t<0,then xt∈H0.

    (H3)There exist a locally bounded function k1:(-∞,0]→R+such that if x∈H0and t≤0,then k x(t)k≤k1(t)k x k?.

    (H4)There exist a function k2:(0,∞)→[1,∞)such that if σ>0 and x∈H0is a function whose support is contained in[-σ,0],then

    (H5)There exist a locally bounded function k3:(-∞,0]→R+such that if x∈H0and t≤0,then

    (B)There exists a function M:[t0,to+σ]→R+,which is Kurzweil-Stieltjies integrable with respect to g,such that

    whenever x∈O and[a,b]?[t0,to+σ].

    (C)There exists a function L:[t0,to+σ]→R+,which is Kurzweil-Stieltjies integrable with respect to g,such that

    whenever x,y∈O and[a,b]?[t0,to+σ](we are assuming that the integral on the right-hand side exists).

    In this paper,we using measure functional dif f erential equations with inf i nite delay can translate into generalized oridinary dif f erential equations,this prove is given in paper[4]. According to[5],the f i rst we have a conclusion of periodic averaging theorem for generalized ordinary dif f erential equations.We then show that the classical periodic averaging theorem about measure functional dif f erential equations with inf i nite delay.The next part,according to[8]we have a conclusion of Non-periodic averaging theorem about measure functional dif f erential equations with inf i nite delay.

    2 Generalized Ordinary Dif f erential Equations

    We start this section with a short summary of Kurzweil integral,which plays a crucial role in the theory of generalized ordinary dif f erential equations.

    A function δ:[a,b]→R+.A partition of interval[a,b]with division points a=α0≤α1≤···≤αk=b and tags τi∈[αi-1,αi]is called δ-f i ne if[αi-1,αi]?[τi-δ(τi),τi+ δ(τi)],i=1,2,···,k.

    A matrix-valued function U:[a,b]×[a,b]→Rn×mis called Kurzweil integrable on [a,b],if there is a matrix I∈Rn×msuch that for every ε>0,there is a gauge δ on[a,b] such that

    Lemma 2.4[6]Let B?Rn,Ω=B×[a,b].Assume that F:Ω→Rnbelong to the class F(Ω,h).Then every solution x:[α,β]→B of the generalized ordinary dif f erential equation

    is a regulated function.

    Lemma 2.5[5]Let B?Rn,Ω=B×[a,b].Assume that F:Ω→Rnbelong to the class F(Ω,h).If x,y:[a,b]→B are regulated functions,then

    This lemma was proved in[5]Lemma 5.

    Lemma 2.6[6]Let h:[a,b]→[0,+∞)be a nondecreasing left-continuous function, k>0,l≥0.Assume that ψ:[a,b]→[0,+∞)is bounded and satisf i es

    The next Theorem is very important for prove periodic averaging of measure functional dif f erential equation with inf i nite delay.This theorem was proved in[5].

    Theorem 2.7[5]Let B?Rn,Ω=B×[0,∞],ε0>0,L>0.Consider functions F:Ω→Rnand G:Ω×(0,ε0]→Rnwhich satisfy the following conditions

    (1)there exist nondecreasing left-continuous functions h1,h2:[0,∞)→[0,∞)such that F belongs to the class F(Ω,h1),and for every f i xed ε∈(0,ε0],the function(x,t)→G(x,t,ε) belongs to the class F(Ω,h2);

    (2)F(x,0)=0 and G(x,0,ε)=0 for every x∈B,ε∈(0,ε0];

    (3)there exist a number T>0 and a bounded Lipschitz-continuous function M:B→Rnsuch that F(x,t+T)-F(x,t)=M(x)for every x∈B and t∈[0,∞);

    (4)there exist a constant α>0 such that h1(iT)-h1((i-1)T)≤α for every i∈N;

    (5)there exist a constant β>0 such that

    Suppose that for every ε∈(0,ε0].The initial-value problems

    To establish the correspondence between measure functional dif f erential equations and generalized ordinary dif f erential equations,we also need a suitable space Haof regulated functions def i ned on(-∞,a],where a∈R,the next lemma shows that the spaces Hainherit all important properties of H0.

    Lemma 2.8[5]If H0?G((-∞,0],Rn)is a space satisfying conditions(H1)-(H6), then the following statements are true for every a∈R,

    (1)Hais complete.

    (2)If x∈Haand t≤a,then xt∈H0.

    (3)If t≤a and x∈Ha,then k x(t)k≤k1(t-a)k x k?.

    (4)If σ>0 and x∈Ha+σis a function whose support is contained in[a,a+σ],then

    (5)If x∈Ha+σand t≤a+σ,thenk xtk?≤k3(t-a-σ)k x k?.

    (6)If x∈Ha+σ,then the function t 7→k xtk?is regulated on(-∞,a+σ].

    3 Periodic Averaging

    In this section,we use Theorem 2.7 to derive a periodic averaging theorem for measure functional dif f erential equations with inf i nite delay.

    Theorem 3.1 Given a set H0?G((-∞,0],Rn)be a Banach space satisfying conditions (H1)-(H6)t0∈R,σ>0,O?Ht0+σand P={yt:y∈O,t∈[t0,t0+σ]}?H0Consider a nondecreasing function u:[t0,t0+σ]→Rnand a function f:P×[t0,t0+σ]→Rn, assume that f is T-periodic and Lipschitz continuous in this argument.Then the measure functional dif f erential equation of the form

    is equivalent to a generalized ordinary dif f erential equation of the form

    where x takes values in O,and f:O×[t0,t0+σ]→G[-∞,t0+σ]→Rnis given by

    for every x∈O and t∈[t0,t0+σ].It will turn out that between the solution x and the solution y is described by

    where t∈[t0,t0+σ].

    This theorem was proved in[4,Theorem 3.6].

    Theorem 3.2 Assume that B?Rn,we use the symbol X([a,b],B)to denote the set of all regulated functions f:[a,b]→B.Let ε0>0,L>0,Ω=X((-∞,0),B)×[t0,∞) consider a pair of bounded Lipschitz-continuous f:Ω→Rn,g:Ω×(0,ε0]→Rn.Assume that f is T-periodic in the second argument.Def i ne f0:X→Rnby

    It follows that F belongs to the class F(X,h1).Similarly,if 0≤s1≤s2and ys,xs∈X that

    Therefore for every f i xed ε∈(0,ε0],the function(y,s)7→G(y,s,ε)belongs to the class F(X,h2).It is clear that F(y,0)=0 and G(y,0,ε)=0,since u is T-periodic.The function f is T-period in this argument and it follows that dif f erence

    does not depend on t,we can def i ne M(x)=F(y,t+T)-F(y,t).The following calculations show that M is bounded and Lipschitz-continuous

    Thus we have checked that all assumptions of Theorem 2.7 are satisf i ed.To conclude the proof,it is now sufficient to def i ne

    4 Non-Periodic Averaging

    Now we derive non-periodic averaging for measure functional dif f erential equations with inf i nite delay.

    Theorem 4.1 Consider a number r>0 and a function F:X×[0,∞]→Rnsuch that the following conditions are satisf i ed.

    1.there exists a nondecreasing function h:[0,∞]→R such that

    for every x∈X and s1,s2∈[0,∞];

    2.there exists a continuous increasing function ω:[0,∞]→R such that ω(0)=0 and

    3.there exists a number C∈R such that for every a∈[0,∞],

    4.there exists a function F0:X→Rnsuch that

    and the ordinary dif f erential equation

    Proof According to the assume of Theorem 3.2,there exist constants m,l>0 such that

    [1]Sanders J A,Verhulst F.Averaging methods in nonlinear dynamical systems[M].New York:Springer-Verlag,1985.

    [2]Sanders J A,Verhulst F,Murdock J.Averaging methods in nonlinear dynamical systems(2nd ed.)[M].New York:Spring,2007.

    [3]Verhulst F.Nonlinear dif f erential equations and dynamical systems(2nd ed.)[M].New York:Spring, 2000.

    [4]Slav′?k A.Measure functional dif f erential equations with inf i nite delay[J].Nonl.Anal,2013,79:140-155.

    [5]Mesquita J G,Slav′?k A.Periodic averaging theorems for various types of equations[J].J.Math. Ann.Appl.,2012,387:862-877.

    [6]SchwabikˇS.Generalized ordinary dif f erential equations[M].Singapore:World Sci.,1992.

    [7]Kurzweil J.Generalized ordinary dif f erential equations and continuous dependence on a parameter[J].Czechoslovak Math.J.,1957,82:418-449.

    [8]Slav′?k A.Averaging dynamic equations on time scales[J].Appl.Math.,2012,388:998-1012.

    [9]Federson M,Mesquita J G.Averaging for retarded functional dif f erential equations[J].Appl.Math., 2011,388:77-85.

    [10]SchwabikˇS.Generalized ordinary dif f erential equations[M].Singapore:World Sci.,1991.

    [11]Schmaedeke W W.Optimal control theory for nonlinear vector dif f erential equations containing measures[J].J.SIAM Control,1965,3:231-280.

    [12]Das P C,Sharma R R.On optimal comtrols for measure delay-dif f erential equations[J].J.SIAM Control,1971,9:43-61.

    [13]Li Baolin,Gou Haide.Bounded variation solutions for retarded functional dif f erential equations[J]. J.Math.,2015,3,567-578.

    無限滯后測度泛函微分方程的平均化

    李寶麟,王保弟

    (西北師范大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,甘肅蘭州730070)

    本文研究了無限滯后測度泛函微分方程的平均化.利用廣義常微分方程的平均化方法,在無限滯后測度泛函微分方程可以轉(zhuǎn)化為廣義常微分方程的基礎(chǔ)上,獲得了這類方程的周期和非周期平均化定理,推廣了一些相關(guān)的結(jié)果.

    平均化方法;測度泛函微分方程;廣義常微分方程;Kurzweil-Stieltjes積分

    O175.12

    A

    0255-7797(2017)05-0987-12

    ?Received date:2016-05-11Accepted date:2016-08-23

    Supported by the National Natural Science Foundation of China(11061031).

    Biography:Li Baolin(1963-),male,born at Tianshui,Gansu,professor,major in ordinary dif f erential equations and topological dynamical systems.

    2010 MR Subject Classif i cation:26A42;34A12;34K33;39A10

    猜你喜歡
    甘肅蘭州西北師范大學(xué)測度
    西北師范大學(xué)作品
    大眾文藝(2023年9期)2023-05-17 23:55:52
    大眾文藝(2022年23期)2022-12-25 03:09:24
    西北師范大學(xué)美術(shù)學(xué)院作品選登
    三個數(shù)字集生成的自相似測度的乘積譜
    R1上莫朗測度關(guān)于幾何平均誤差的最優(yōu)Vornoi分劃
    西北師范大學(xué)美術(shù)學(xué)院作品選登
    西北師范大學(xué)美術(shù)學(xué)院作品選登
    非等熵Chaplygin氣體測度值解存在性
    Cookie-Cutter集上的Gibbs測度
    甘肅蘭州卷
    亚洲专区国产一区二区| 精品少妇内射三级| 黑人巨大精品欧美一区二区mp4| 久久这里只有精品19| 欧美另类亚洲清纯唯美| 首页视频小说图片口味搜索| 桃红色精品国产亚洲av| 亚洲五月婷婷丁香| 成人黄色视频免费在线看| 中国美女看黄片| 交换朋友夫妻互换小说| 亚洲一码二码三码区别大吗| 交换朋友夫妻互换小说| 麻豆av在线久日| 电影成人av| 亚洲av国产av综合av卡| 亚洲av国产av综合av卡| 欧美日韩视频精品一区| 欧美日韩福利视频一区二区| 如日韩欧美国产精品一区二区三区| 欧美精品一区二区免费开放| 最新的欧美精品一区二区| 久久99一区二区三区| 一级片免费观看大全| 国产黄频视频在线观看| 久久天躁狠狠躁夜夜2o2o| 高清黄色对白视频在线免费看| 在线观看一区二区三区激情| 99久久人妻综合| 日韩精品免费视频一区二区三区| 欧美黑人精品巨大| 91成年电影在线观看| 成年美女黄网站色视频大全免费| 国产亚洲精品久久久久5区| 天天操日日干夜夜撸| 欧美亚洲 丝袜 人妻 在线| 18在线观看网站| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 午夜免费鲁丝| 亚洲精品久久午夜乱码| 一区二区av电影网| 视频区图区小说| 久久久精品94久久精品| 99国产精品一区二区三区| 伊人久久大香线蕉亚洲五| av欧美777| 老司机影院毛片| 桃红色精品国产亚洲av| 制服诱惑二区| 亚洲av男天堂| 亚洲avbb在线观看| 91九色精品人成在线观看| 欧美日韩精品网址| 老司机靠b影院| 欧美 亚洲 国产 日韩一| 下体分泌物呈黄色| 无遮挡黄片免费观看| 99久久99久久久精品蜜桃| xxxhd国产人妻xxx| 91精品伊人久久大香线蕉| 中国国产av一级| 午夜久久久在线观看| 日日爽夜夜爽网站| 黄色视频,在线免费观看| 新久久久久国产一级毛片| 精品福利观看| 欧美人与性动交α欧美软件| 少妇人妻久久综合中文| 久久这里只有精品19| 国产黄频视频在线观看| 国产成人av教育| 99热国产这里只有精品6| 欧美黄色淫秽网站| 美女扒开内裤让男人捅视频| 久久国产精品人妻蜜桃| 久久久久久久精品精品| 窝窝影院91人妻| 在线观看舔阴道视频| 久久久久网色| 999久久久精品免费观看国产| 亚洲精品国产区一区二| 亚洲精品中文字幕在线视频| 自线自在国产av| 国产xxxxx性猛交| 国产精品二区激情视频| 国产精品一区二区在线观看99| 精品少妇黑人巨大在线播放| 久久精品亚洲熟妇少妇任你| 50天的宝宝边吃奶边哭怎么回事| 深夜精品福利| 超色免费av| 国产一卡二卡三卡精品| 不卡一级毛片| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产一区二区精华液| 中国美女看黄片| 亚洲男人天堂网一区| 亚洲少妇的诱惑av| 正在播放国产对白刺激| 黄色片一级片一级黄色片| 亚洲一区二区三区欧美精品| 90打野战视频偷拍视频| www.999成人在线观看| 涩涩av久久男人的天堂| 久久精品亚洲熟妇少妇任你| 国产成人免费无遮挡视频| 精品欧美一区二区三区在线| 最新的欧美精品一区二区| 最近最新中文字幕大全免费视频| 日本精品一区二区三区蜜桃| 91字幕亚洲| 热99国产精品久久久久久7| 欧美大码av| 热99re8久久精品国产| 欧美精品一区二区大全| 久久女婷五月综合色啪小说| 亚洲专区中文字幕在线| 亚洲一区中文字幕在线| www.自偷自拍.com| 亚洲国产中文字幕在线视频| 美女主播在线视频| 永久免费av网站大全| 精品少妇黑人巨大在线播放| 男女无遮挡免费网站观看| 天堂俺去俺来也www色官网| 亚洲va日本ⅴa欧美va伊人久久 | 法律面前人人平等表现在哪些方面 | 80岁老熟妇乱子伦牲交| 十八禁高潮呻吟视频| 久久人人爽人人片av| 美国免费a级毛片| 天堂8中文在线网| 免费不卡黄色视频| 欧美精品一区二区免费开放| 纵有疾风起免费观看全集完整版| 大香蕉久久网| 精品视频人人做人人爽| 国产精品影院久久| 日韩 亚洲 欧美在线| 91九色精品人成在线观看| 国产精品免费大片| 视频区图区小说| 欧美精品一区二区免费开放| 最近最新中文字幕大全免费视频| 亚洲精品美女久久av网站| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美精品自产自拍| 妹子高潮喷水视频| 黑人猛操日本美女一级片| 人人妻人人澡人人爽人人夜夜| 黑人巨大精品欧美一区二区mp4| 精品久久久久久电影网| 99精品欧美一区二区三区四区| 一区二区三区乱码不卡18| 欧美精品人与动牲交sv欧美| 成人国产一区最新在线观看| 国产片内射在线| 精品第一国产精品| 99九九在线精品视频| 亚洲国产精品成人久久小说| 亚洲成人免费电影在线观看| 国产成人欧美| 国产亚洲精品第一综合不卡| 国产成人系列免费观看| 亚洲第一青青草原| 日韩欧美免费精品| 久久九九热精品免费| 丝袜人妻中文字幕| 久久精品成人免费网站| 女警被强在线播放| 女人精品久久久久毛片| 多毛熟女@视频| 99国产精品99久久久久| 一二三四在线观看免费中文在| 久久人人97超碰香蕉20202| av视频免费观看在线观看| 亚洲精品美女久久av网站| 国产av精品麻豆| 久久天躁狠狠躁夜夜2o2o| 日韩有码中文字幕| 国产成人啪精品午夜网站| 精品国内亚洲2022精品成人 | 免费高清在线观看日韩| 日本91视频免费播放| 欧美日韩一级在线毛片| 精品免费久久久久久久清纯 | 丰满迷人的少妇在线观看| av国产精品久久久久影院| 一边摸一边抽搐一进一出视频| 一区二区三区激情视频| 午夜福利视频在线观看免费| 97在线人人人人妻| 欧美激情 高清一区二区三区| 9191精品国产免费久久| 超碰成人久久| 好男人电影高清在线观看| 久久国产精品男人的天堂亚洲| 欧美在线黄色| 成年动漫av网址| 美女中出高潮动态图| 欧美激情 高清一区二区三区| 天天添夜夜摸| 美女大奶头黄色视频| 人人妻人人澡人人看| 欧美另类一区| 欧美国产精品va在线观看不卡| 97精品久久久久久久久久精品| 无遮挡黄片免费观看| 亚洲精品粉嫩美女一区| 天堂中文最新版在线下载| 欧美精品一区二区免费开放| 可以免费在线观看a视频的电影网站| 亚洲天堂av无毛| 国产精品亚洲av一区麻豆| 日日爽夜夜爽网站| 欧美乱码精品一区二区三区| 色婷婷久久久亚洲欧美| 成年人午夜在线观看视频| 啦啦啦啦在线视频资源| 久久久欧美国产精品| 女性生殖器流出的白浆| 国产黄色免费在线视频| 欧美另类亚洲清纯唯美| 黑人操中国人逼视频| 不卡一级毛片| 一区二区日韩欧美中文字幕| 亚洲中文av在线| 18在线观看网站| 男人操女人黄网站| 欧美黄色淫秽网站| 亚洲 欧美一区二区三区| 侵犯人妻中文字幕一二三四区| 日韩欧美国产一区二区入口| 在线 av 中文字幕| 亚洲精品久久午夜乱码| 欧美日韩av久久| 国产日韩欧美在线精品| 亚洲九九香蕉| 欧美日韩一级在线毛片| 脱女人内裤的视频| 国产精品一二三区在线看| 久久精品国产亚洲av香蕉五月 | 久9热在线精品视频| 高清在线国产一区| 亚洲欧美日韩高清在线视频 | 久热爱精品视频在线9| 蜜桃国产av成人99| 亚洲精品久久成人aⅴ小说| 男女之事视频高清在线观看| 中文欧美无线码| svipshipincom国产片| 中文字幕精品免费在线观看视频| 欧美+亚洲+日韩+国产| 日韩三级视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 黑人欧美特级aaaaaa片| 亚洲专区国产一区二区| 久久狼人影院| 免费看十八禁软件| 一区二区三区精品91| www.精华液| 在线观看免费高清a一片| 黄色 视频免费看| 亚洲精品一二三| 亚洲精品中文字幕一二三四区 | 亚洲精品乱久久久久久| 丰满少妇做爰视频| av在线app专区| 国产亚洲精品久久久久5区| 久久久国产一区二区| 一二三四在线观看免费中文在| 精品人妻在线不人妻| 亚洲性夜色夜夜综合| 日韩中文字幕视频在线看片| 人妻人人澡人人爽人人| 欧美日韩黄片免| 久久天堂一区二区三区四区| 亚洲一码二码三码区别大吗| 人妻久久中文字幕网| 国产精品免费视频内射| 亚洲男人天堂网一区| 亚洲熟女精品中文字幕| 免费在线观看日本一区| 交换朋友夫妻互换小说| 国产97色在线日韩免费| 一本综合久久免费| 国产xxxxx性猛交| 中国美女看黄片| 一级毛片电影观看| 日韩一区二区三区影片| 日韩精品免费视频一区二区三区| 丝袜人妻中文字幕| 亚洲情色 制服丝袜| 欧美日韩精品网址| 人妻 亚洲 视频| 欧美激情高清一区二区三区| 日韩大片免费观看网站| 美女国产高潮福利片在线看| 欧美在线黄色| 伊人亚洲综合成人网| 黑人猛操日本美女一级片| 日韩一区二区三区影片| 亚洲成av片中文字幕在线观看| 99香蕉大伊视频| 精品国产乱子伦一区二区三区 | 高清黄色对白视频在线免费看| 午夜激情久久久久久久| 久久国产精品影院| 一区福利在线观看| 男女免费视频国产| 国产男人的电影天堂91| 丝袜脚勾引网站| 深夜精品福利| 日韩制服骚丝袜av| 欧美国产精品va在线观看不卡| 国产又色又爽无遮挡免| 亚洲一卡2卡3卡4卡5卡精品中文| 美女福利国产在线| 亚洲欧美色中文字幕在线| 亚洲七黄色美女视频| 日本91视频免费播放| 人人妻,人人澡人人爽秒播| 国产精品av久久久久免费| 夜夜夜夜夜久久久久| 美女福利国产在线| 午夜精品国产一区二区电影| 久久亚洲国产成人精品v| 日韩有码中文字幕| 久久精品亚洲熟妇少妇任你| 欧美变态另类bdsm刘玥| 嫁个100分男人电影在线观看| 啦啦啦视频在线资源免费观看| 国产野战对白在线观看| 国产亚洲精品久久久久5区| 欧美日韩亚洲国产一区二区在线观看 | 国产97色在线日韩免费| 天天躁日日躁夜夜躁夜夜| 无遮挡黄片免费观看| 亚洲av欧美aⅴ国产| 午夜免费鲁丝| 在线观看人妻少妇| 大型av网站在线播放| 亚洲综合色网址| 精品人妻在线不人妻| 性高湖久久久久久久久免费观看| tocl精华| 国产av国产精品国产| 一个人免费看片子| 汤姆久久久久久久影院中文字幕| 日日摸夜夜添夜夜添小说| 亚洲专区中文字幕在线| videosex国产| 欧美中文综合在线视频| 久久久久久免费高清国产稀缺| 成在线人永久免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽人人片av| www.av在线官网国产| 日韩制服骚丝袜av| 老司机亚洲免费影院| 国产又色又爽无遮挡免| 精品熟女少妇八av免费久了| 9191精品国产免费久久| h视频一区二区三区| 免费观看av网站的网址| 欧美一级毛片孕妇| 国产精品一区二区精品视频观看| 91精品三级在线观看| 午夜老司机福利片| 亚洲va日本ⅴa欧美va伊人久久 | 中文字幕人妻熟女乱码| 亚洲精品一卡2卡三卡4卡5卡 | 欧美亚洲日本最大视频资源| 丝袜美腿诱惑在线| 热re99久久国产66热| 精品一区二区三卡| 男人操女人黄网站| 九色亚洲精品在线播放| 国产精品自产拍在线观看55亚洲 | 一本一本久久a久久精品综合妖精| 国产成人精品在线电影| 人人妻人人澡人人看| 悠悠久久av| 亚洲美女黄色视频免费看| 欧美精品亚洲一区二区| 最近最新中文字幕大全免费视频| 搡老熟女国产l中国老女人| 久久av网站| 大码成人一级视频| 久久热在线av| 国产一区有黄有色的免费视频| 国产黄色免费在线视频| 亚洲 欧美一区二区三区| 久久亚洲精品不卡| 中文欧美无线码| 欧美激情久久久久久爽电影 | 十八禁高潮呻吟视频| 中文欧美无线码| 美女国产高潮福利片在线看| 性高湖久久久久久久久免费观看| 成人影院久久| tube8黄色片| 久久精品久久久久久噜噜老黄| 一二三四在线观看免费中文在| 国产精品av久久久久免费| 一级毛片精品| 宅男免费午夜| 高清在线国产一区| www.999成人在线观看| 国产成人啪精品午夜网站| 新久久久久国产一级毛片| 成人黄色视频免费在线看| 久久久久网色| 国内毛片毛片毛片毛片毛片| 亚洲欧洲日产国产| 亚洲少妇的诱惑av| 久久精品久久久久久噜噜老黄| 黄色视频在线播放观看不卡| 午夜福利免费观看在线| 久久午夜综合久久蜜桃| 国产精品久久久久久精品电影小说| 淫妇啪啪啪对白视频 | 亚洲国产成人一精品久久久| 日韩视频一区二区在线观看| 青春草亚洲视频在线观看| 亚洲国产毛片av蜜桃av| 免费人妻精品一区二区三区视频| 在线十欧美十亚洲十日本专区| 国产亚洲欧美在线一区二区| 成人三级做爰电影| 亚洲精品国产区一区二| 肉色欧美久久久久久久蜜桃| 国产99久久九九免费精品| 巨乳人妻的诱惑在线观看| 美女主播在线视频| 一边摸一边抽搐一进一出视频| 91av网站免费观看| 午夜免费鲁丝| av欧美777| 国产成人免费观看mmmm| 国产精品一二三区在线看| 一级片免费观看大全| 午夜日韩欧美国产| 久久中文看片网| 精品欧美一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| 亚洲激情五月婷婷啪啪| 一本大道久久a久久精品| 亚洲精品美女久久久久99蜜臀| 2018国产大陆天天弄谢| 韩国精品一区二区三区| 超色免费av| 美女国产高潮福利片在线看| 天天添夜夜摸| 窝窝影院91人妻| 国产精品久久久人人做人人爽| 在线亚洲精品国产二区图片欧美| tube8黄色片| 后天国语完整版免费观看| 老司机深夜福利视频在线观看 | 国产精品一区二区在线不卡| 99国产极品粉嫩在线观看| 超色免费av| 欧美精品啪啪一区二区三区 | 成人黄色视频免费在线看| 男人爽女人下面视频在线观看| 亚洲精品粉嫩美女一区| 亚洲第一欧美日韩一区二区三区 | 日韩免费高清中文字幕av| 男女床上黄色一级片免费看| 国产区一区二久久| 97精品久久久久久久久久精品| 久久中文字幕一级| 人人妻人人添人人爽欧美一区卜| videos熟女内射| 亚洲美女黄色视频免费看| 色老头精品视频在线观看| 91成年电影在线观看| 日本av手机在线免费观看| 两个人免费观看高清视频| 欧美人与性动交α欧美精品济南到| 97人妻天天添夜夜摸| 免费观看av网站的网址| 精品国内亚洲2022精品成人 | e午夜精品久久久久久久| 国产精品久久久久久精品古装| 狠狠狠狠99中文字幕| 亚洲中文日韩欧美视频| 免费在线观看完整版高清| 男女国产视频网站| 国产淫语在线视频| 国产国语露脸激情在线看| 一区二区三区激情视频| 免费观看人在逋| 国产精品一区二区免费欧美 | 国产精品欧美亚洲77777| 97在线人人人人妻| 精品熟女少妇八av免费久了| 国产无遮挡羞羞视频在线观看| 欧美xxⅹ黑人| 国产精品一区二区免费欧美 | 777米奇影视久久| 自线自在国产av| 最新的欧美精品一区二区| 免费日韩欧美在线观看| 天天添夜夜摸| 真人做人爱边吃奶动态| 男女床上黄色一级片免费看| 大片电影免费在线观看免费| 国产野战对白在线观看| 欧美精品一区二区免费开放| 女性被躁到高潮视频| 免费观看av网站的网址| 国产成人精品久久二区二区免费| 国产亚洲欧美在线一区二区| 高潮久久久久久久久久久不卡| 亚洲精品一二三| 高清在线国产一区| 一区福利在线观看| 高清av免费在线| 日韩 欧美 亚洲 中文字幕| 一本—道久久a久久精品蜜桃钙片| 自线自在国产av| 日本一区二区免费在线视频| 纯流量卡能插随身wifi吗| 精品熟女少妇八av免费久了| 黄网站色视频无遮挡免费观看| 男女下面插进去视频免费观看| 精品国产国语对白av| 国产亚洲欧美在线一区二区| 91精品国产国语对白视频| 国产一区二区激情短视频 | 美女高潮喷水抽搐中文字幕| 精品第一国产精品| 男女床上黄色一级片免费看| 成人18禁高潮啪啪吃奶动态图| 欧美老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久| 80岁老熟妇乱子伦牲交| 丰满人妻熟妇乱又伦精品不卡| 久久久精品免费免费高清| av一本久久久久| a级片在线免费高清观看视频| 美女扒开内裤让男人捅视频| 精品国产一区二区三区四区第35| 成年女人毛片免费观看观看9 | 一级片'在线观看视频| 国产真人三级小视频在线观看| 精品久久久久久电影网| 99国产极品粉嫩在线观看| 在线av久久热| 欧美97在线视频| 中文字幕色久视频| 亚洲全国av大片| av福利片在线| 久久久久久人人人人人| 午夜精品久久久久久毛片777| 老熟妇仑乱视频hdxx| 久久这里只有精品19| 亚洲精品国产区一区二| 午夜精品久久久久久毛片777| 成年av动漫网址| 精品久久久久久电影网| 欧美av亚洲av综合av国产av| 成年女人毛片免费观看观看9 | 国产成人av教育| 国产深夜福利视频在线观看| 国产区一区二久久| 国产xxxxx性猛交| 黑人猛操日本美女一级片| 国产伦理片在线播放av一区| 精品第一国产精品| videosex国产| 午夜福利影视在线免费观看| 男女免费视频国产| 一二三四在线观看免费中文在| 免费人妻精品一区二区三区视频| 另类精品久久| 99香蕉大伊视频| 久久久久久久大尺度免费视频| 国产精品偷伦视频观看了| 成人av一区二区三区在线看 | 亚洲av成人不卡在线观看播放网 | 乱人伦中国视频| 国产一区二区在线观看av| 搡老岳熟女国产| 中文字幕色久视频| 韩国高清视频一区二区三区| 99香蕉大伊视频| 91成人精品电影| www.精华液| 人妻一区二区av| 少妇猛男粗大的猛烈进出视频| 日韩视频一区二区在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 最新在线观看一区二区三区| 欧美av亚洲av综合av国产av| 老司机午夜福利在线观看视频 | 黄网站色视频无遮挡免费观看| 男人操女人黄网站| www.自偷自拍.com| 成年女人毛片免费观看观看9 | 这个男人来自地球电影免费观看| 激情视频va一区二区三区| 纵有疾风起免费观看全集完整版| 色婷婷久久久亚洲欧美| 亚洲一区二区三区欧美精品| 国产精品久久久久久精品古装| 国产成人av教育| 午夜影院在线不卡| 男女国产视频网站| 91精品三级在线观看| 窝窝影院91人妻| 天堂中文最新版在线下载|