• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation

    2017-09-15 08:58:14WuYiquanWangZhilai
    雷達學報 2017年4期
    關鍵詞:實驗室融合方法

    Wu YiquanWang Zhilai

    ①(College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing211106,China)

    ②(Jiangsu Key Laboratory of Big Data Analysis Technology,Nanjing University of Information Science&Technology,Nanjing210044,China)

    ③(Zhejiang Province Key Laboratory for Signal Processing,Zhejiang University of Technology,Hangzhou310023,China)

    ④(Guangxi Key Lab of Multi-Source Information Mining and Security,Guangxi Normal University,Guilin541004,China)

    ⑤(Key Laboratory of Geo-Spatial Information Technology,Ministry of Land and Resources,Chengdu University of Technology,Chengdu610059,China)

    ⑥(MLR Key Laboratory of Metallogeny and Mineral Assessment Institute of Mineral Resources,Chinese Academy of Geological Sciences,Beijing100037,China)

    SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation

    Wu Yiquan*①②③④⑤⑥Wang Zhilai①

    ①(College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing211106,China)

    ②(Jiangsu Key Laboratory of Big Data Analysis Technology,Nanjing University of Information Science&Technology,Nanjing210044,China)

    ③(Zhejiang Province Key Laboratory for Signal Processing,Zhejiang University of Technology,Hangzhou310023,China)

    ④(Guangxi Key Lab of Multi-Source Information Mining and Security,Guangxi Normal University,Guilin541004,China)

    ⑤(Key Laboratory of Geo-Spatial Information Technology,Ministry of Land and Resources,Chengdu University of Technology,Chengdu610059,China)

    ⑥(MLR Key Laboratory of Metallogeny and Mineral Assessment Institute of Mineral Resources,Chinese Academy of Geological Sciences,Beijing100037,China)

    To investigate the problems of the large grayscale difference between infrared and Synthetic Aperture Radar (SAR) images and their fusion image not being fit for human visual perception,we propose a fusion method for SAR and infrared images in the complex contourlet domain based on joint sparse representation.First,we perform complex contourlet decomposition of the infrared and SAR images.Then,we employ the KSingular Value Decomposition (K-SVD) method to obtain an over-complete dictionary of the low-frequency components of the two source images.Using a joint sparse representation model,we then generate a joint dictionary.We obtain the sparse representation coefficients of the low-frequency components of the source images in the joint dictionary by the Orthogonal Matching Pursuit (OMP) method and select them using the selection maximization strategy.We then reconstruct these components to obtain the fused low-frequency components and fuse the high-frequency components using two criteria——the coefficient of visual sensitivity and the degree of energy matching.Finally,we obtain the fusion image by the inverse complex contourlet transform.Compared with the three classical fusion methods and recently presented fusion methods,e.g.,that based on the Non-Subsampled Contourlet Transform (NSCT) and another based on sparse representation,the method we propose in this paper can effectively highlight the salient features of the two source images and inherit their information to the greatest extent.

    Image fusion; Synthetic Aperture Radar (SAR) image; Infrared image; Complex contourlet transform; Joint sparse representation

    1 Introduction

    Different sensors have different descriptions for the same scene.Infrared sensors are sensitive to high heat radiation within the region.They can extract targets according to the infrared energy difference between target and background,which can pass through a certain thickness of soil layers and even concrete layers.However,compared to Synthetic Aperture Radar (SAR) imaging,infrared imaging is vulnerable to the influence of clouds,rain,and fog.SAR is an irreplaceable reconnaissance tool due to its advantages of all day,all weather,and long detection range.However,in some cases,the image information obtained by a single SAR is not enough to be used for better analysis and understanding of the target or scene[1].Therefore,combined with the advantages of SAR reconnaissance and infrared reconnaissance,the research of SAR image and infrared image fusion can greatly improve the reconnaissance efficiency.The “LANTIRN” pod on the American F-16 fighter takes infrared reconnaissance as the main means of low altitude reconnaissance,and combines it with SAR reconnaissance to play a good effect.The Ref.[2] takes the fusion between the SAR data and the infrared data as one of the core issues of missile multi-mode guidance.The fusion between infrared image and SAR image can help to output a fused image which is more suitable for human visual perception or computer processing and analysis.It can significantly improve the lack of information obtained by a single sensor,improving the clarity of the resulting image and information content,which is conducive to more accurate,more reliable,more comprehensive access to the target or scene information.It is mainly used in military operation,national defense,resource survey,and other fields.

    In recent years,the methods based on multiscale decomposition have received extensive attentions in image fusion[3–6].However,there are some drawbacks in these methods.Firstly,some multiscale decomposition tools lack of shift invariance,or some do have the shift invariance,but their computational complexities are quite high.Secondly,the low-frequency components obtained by multi-scale decomposition tools are the approximate representation of the source images,in which the number of pixel grayscales close to zero is small,as a result,the low-frequency information of the source images cannot be described sparsely,and it is not convenient to capture the salient features of the source images.Therefore,in this paper,we apply the Complex Contourlet Transform (CCT) proposed in Ref.[7]to the remote sensing image fusion.This multiscale decomposition tool is fast and shift-invariant,which can reduce the influence of the low accuracy of image registration on the fusion results.In Ref.[8],the complex contourlet transform is applied to image denoising and has achieved relatively good results,but the use of complex contourlet transform in image fusion is still in the exploratory stage.In recent years,Sparse Representation (SR) has been applied to image fusion as a new signal processing model.The image fusion method using the sparse representation model or the joint sparse representation in the Refs.[9,10]improves the image fusion effect.But the two methods directly carry out the fusion in the sparse representation domain.Considering that multi-scale decomposition tool can describe the details of the image from multiple scales,if the multi-scale decomposition tool is not used,the fusion image cannot inherit the detailed information of the source images well.In Ref.[11],a method of fusion between an infrared image and a visible image based on Non-Subsampled Contourlet Transform (NSCT) and sparse representation is proposed.However,the combined use of sparse representation and NSCT has a high computational complexity.In addition,in view of the grayscale difference between the infrared image and the SAR image and the interference of the speckle noise in SAR image,if the low-frequency component is directly fused without sparse representation,it may result in confusion of pixels and the target in the fusion image is not significant.

    To this end,an image fusion method in CCT domain based on joint sparse representation is proposed to fuse the SAR image and the infrared image.The fused image via the proposed method combines well the advantages of the SAR and infrared images and has a better visual quality.

    2 Complex Contourlet Transform and Joint Sparse Representation

    2.1 Complex contourlet transform

    Complex contourlet transform is obtained by combining contourlet transform with double-tree complex wavelet transform.The principle of this transform is that: after the original image being decomposed by double-tree complex wavelet transform,the double-tree structure is formed.Then the 2-dimensional Directional Filter Banks(DFB) are used to separate the high-frequency components in six directions,hence the sub-bands can be expanded to the numbers of 2n.The essence of CCT is to replace the Laplacian Pyramid (LP) filter structure in the contourlet transform with the double-tree structure in the Dual-Tree Complex Wavelet Transform (DT-CWT),so as to replace the original single high-frequency component with the high-frequency components in the six directions,thus the high-frequency components can better capture the details of the image.CCT takes into account the amplitude and phase information of the original signal,and the decomposition speed is fast.Meanwhile,it retains the property of shift invariance.The principle of CCT is shown in Fig.1.

    2.2 Joint sparse representation

    By using an over-complete dictionary matrix that containsMatoms,a signal can be represented as a sparse linear combination of these atoms,thus revealing the essential features of the original image more sparsely.The mathematical definition of the sparse representation model is:

    The Joint Sparse Model (JSM) has been developed from the theory of sparse representation.Then JSM-1,JSM-2,and JSM-3 were proposed[12]in succession.These models consider that each original signal contains both a sparse portion common to all signals and a unique sparse portion of each signal.Each signal in the signal ensemblecan be expressed as:

    Fig.1 Schematic diagram of CCT

    3 Fusion Method of SAR Image and Infrared Image

    3.1 Fusion of low-frequency components

    The low-frequency components obtained by CCT are the approximate representation of the source images,but their sparseness are not enough.Considering that the acquired multisource remote sensing images are the descriptions of the same scene from different aspects,there exists a certain correlation between the low-frequency components of the two source images,i.e.there is joint sparsity between the low-frequency components of the images to be fused,while there are some differences between them.Therefore,for the fusion of low-frequency components of the original images,the joint sparse representation is implemented on them.Thus the common features and the unique features of the low-frequency components of the image to be fused are distinguished,the fusion is performed by selecting the unique features with a largerl1norm,while the common features remain unchanged.Specific steps are as follows.

    Step 1 Create the training sample set.Given the low-frequency components of the two images to be fused areL1andL2,the sliding window (the step size is 1) is used to form a series of 4×4 image blocks in a row-first manner.Then,all image blocks are reorganized into column vectorsV1,V2in a row-first manner,and the training sample set is chosen from them randomly.

    Step 2 Joint sparse representation.The matrixV1andV2obtained in Step 1 are merged into a union matrixV3.The K-SVD[13]method is used to train the samples to construct the dictionary ofV3.According to the joint sparse representation model:

    Then OMP method[14]is used to find the sparse representation coefficients for Eq.(4).

    Step 3 Fusion of sparse representation coefficients of low-frequency components.The fusionconsists of two parts: the selection of the activity evaluation index and the design of the fusion rule.Thel1norm of is used as the evaluation index of the activity degree.Let the sparse representation coefficient after fusion beSF,thenSF=,namely,the fusion is performed by selecting the unique features with a largerl1norm,while the common features remain unchanged,so the fusion vector matrix of the low-frequency components of the two source images is

    Step 4 Reconstruction.Reconstructing the low-frequency component byVFis an inverse sliding window process,namely,the column vectors of the fusion vector matrixVFare restored into the image blocks.Since the step size of the sliding window is 1,there is a partial overlap between the adjacent image blocks.Thus the overlapped parts of the adjacent image blocks are subjected to weighted averaging to obtain the fused components of the low-frequency components.

    3.2 Fusion of high-frequency components

    The high-frequency components of the image contain details of the source images,such as textures,edges.The larger the coefficients of the high-frequency components,the richer the information of the region where the central pixel is located.When the central pixel of the image local region is the target pixel,the grayscales of the local region are more discrete and the region information entropy is larger.When the central pixel of the image local region is the background pixel,the grayscales of the local region are less discrete and the region information entropy is smaller.However,when the background information remains in all directions of the high-frequency components,the region information entropy is larger,and the region energy is larger as well.It is possible to distinguish the background pixels from the target pixels using the visual sensitivity coefficient based on the fact that the human eye is more sensitive to local changes in the image[15].In addition,considering the fact that the discrete degree of the grayscales of the local area where the target pixels are located is generally larger than that of the background pixels,the fusion rule of the high-frequency component is designed by combining the advantages of the visual activity coefficients with the energy matching degree.The fusion rules of high-frequency components are designed so that the high-frequency components after fusion can better inherit the detail information of the source images and improve the visual effect.The visual sensitivity coefficientand the energy matching degreeare defined as:

    Let the energy matching degree threshold beT.When,the high-frequency components still remain the background information,then the fusion rules are as follows:

    The fused procedure of the proposed image fusion method based on CCT and joint sparse representation is shown in Fig.2.

    4 Experimental Results and Analysis

    To evaluate the performance of the proposed image fusion method,the SAR images and infrared images of the same scene which were from the SAHARA project of the Royal Military Academy in Belgium are fused,as shown in Figs.3(a)–3(f).Source images are in 256×256 size.The proposed image fusion method is compared with the method based on LP,the method based on Wavelet Transform (WT),the method based on NSCT,the method based on DT-CWT,and themethod based on sparse representation in Ref.[11].The experimental results by six methods are shown in Fig.4,Fig.5,and Fig.6.

    Fig.2 The procedure of the proposed image fusion method

    From Fig.4,Fig.5,and Fig.6,it can be seen that the fusion image obtained by the LP fusion method is blurred,the overall brightness is relatively dim,the image local contrast is slightly low,and the target is not too salient.The WT fusion method has improved the overall brightness in the fusion image,but the edge is still blurred,and some parts of the target and background are mixed together.The fusion image obtained by the NSCT fusion method can better retain the contours of source images,but there is still a problem that the contrast is relatively low.In addition,the overall brightness of the fusion image is relatively dark.The result of DT-CWT fusion method is slightly worse than that of NSCT fusion method.Compared with the above-mentioned four methods,the overall brightness of the fused image is further improved by the method in Ref.[11].Meantime,the contrast between the target and the background is improved.However,some obvious haloes appear in the image.For instance,there are obvious artifacts appearing in the right bottom part of Figs.4(e),5(e),and 6(e).The fusion image obtained by the method proposed in this paper has the best visual effect and no obvious artifacts.The overall brightness is more coincident with the human eye perception,and the image texture is continuous and the image details are clear.The image contrast is higher and the fused image inherits the original contour information of objects in the source images.

    Fig.3 Three groups of infrared images and SAR images

    Fig.4 Fusion results 1 by six methods

    Fig.5 Fusion results 2 by six methods

    In this paper,six objective evaluation indices[16],such as Information Entropy (IE),Mutual Information (MI),Correlation Coefficient (CC),Spatial Frequency (SF),Average Gradient (AG),Standard Deviation (SD),and running time(Time) are used to compare the experimental results of six different fusion methods.Tab.1 gives the quantitative evaluation results of the six methods.

    Fig.6 Fusion results 3 by six methods

    From the experiments,the fusion time of the proposed method compared with the fusion method in Ref.[11] is obviously reduced.Although compared with other classical fusion methods,this method has no great advantage in time,but the improvement of fusion accuracy must be at the expense of fusion time.As can be seen from Tab.1,the information entropy and standard deviation of the proposed method are always higher than those of the other five methods,while other indexes are sometimes slightly lower than other methods.It shows that the robustness and overall performance of the proposed method are the best,which is consistent with the subjective analysis.The proposed method is superior to other five methods in terms of information entropy andstandard deviation.It reflects that the fusion image contains more detail information and has a higher local contrast.Remarkably,the sparse representation fusion method in Ref.[11] has higher spatial frequency and average gradient for the fusion results of the second group of infrared image and SAR image.But actually the reason is that the method cannot discriminate the common features and the unique features of the low-frequency components of the source images,resulting in image distortion.In the proposed method,the low-frequency components of the infrared image and the SAR image are decomposed by complex contourlet transform,and the common features of the low-frequency components of the source images are distinguished from each other by the joint sparse representation.By combining the visual sensitivity coefficient and the energy matching degree to fuse the high-frequency components,the rich detail information of the two source images is captured.The fusion result can highlight the target and enhance the background,texture,and other details.On the whole,the proposed method is superior to the other five methods in the subjective visual effect and objective quantitative evaluation index.

    Tab.1 Quantitative evaluation of six fusion methods

    5 Conclusion

    A novel fusion method between the SAR and infrared image in complex contourlet domain based on joint sparse representation is proposed in this paper.The method can take full advantage of SAR and infrared image.Experimental results demonstrate that the proposed fusion method has a higher performance and a better visual quality.

    [1]Chen Lei,Yang Feng-bao,Wang Zhi-she,et al..Mixed fusion algorithm of SAR and visible images with feature level and pixel[J].Opto-Electronic Engineering,2014,41(3):55–60.

    [2]Zeng Xian-wei,Fang Yang-wang,Wu You-li,et al..A new guidance law based on information fusion and optimal control of structure stochastic jump system[C].Proceedings of 2007 IEEE International Conference on Automation and Logistics,Jinan,China,2007: 624–627.

    [3]Ye Chun-qi,Wang Bao-shu,and Miao Qi-guang.Fusion algorithm of SAR and panchromatic images based on region segmentation in NSCT domain[J].Systems Engineering and Electronics,2010,32(3): 609–613.

    [4]Xu Xing,Li Ying,Sun Jin-qiu,et al..An algorithm for image fusion based on curvelet transform[J].Journal of Northwestern Polytechnical University,2008,26(3): 395–398.

    [5]Shi Zhi,Zhang Zhuo,and Yue Yan-gang.Adaptive image fusion algorithm based on shearlet transform[J].Acta Photonica Sinica,2013,42(1): 115–120.DOI: 10.3788/gzxb.

    [6]Liu Jian,Lei Ying-jie,Xing Ya-qiong,et al..Fusion technique for SAR and gray visible image based on hidden Markov model in non-subsample shearlet transform domain[J].Control and Decision,2016,31(3): 453–457.

    [7]Chen Di-peng and Li Qi.The use of complex contourlet transform on fusion scheme[C].Proceedings of World Academy of Science,Engineering and Technology,Prague,Czech Republic,2005: 342–347.

    [8]Wu Yi-quan,Wan Hong,and Ye Zhi-long.Fabric defect image noise reduction based on complex contourlet transform and anisotropic diffusion[J].CAAI Transactions on Intelligent Systems,2013,8(3): 214–219.

    [9]Wei Qi,Bioucas-Dias J,Dobigeon N,et al..Hyperspectral and multispectral image fusion based on a sparse representation[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(7): 3658–3668.DOI: 10.1109/TGRS.2014.2381272.

    [10]Yu Nan-nan,Qiu Tian-shuang,Bi Feng,et al..Image features extraction and fusion based on joint sparse representation[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(5): 1074–1082.DOI: 10.1109/JSTSP.2011.2112332.

    [11]Wang Jun,Peng Jin-ye,Feng Xiao-yi,et al..Image fusion with nonsubsampled contourlet transform and sparse representation[J].Journal of Electronic Imaging,2013,22(4):043019.DOI: 10.1117/1.JEI.22.4.043019.

    [12]Duarte M F,Sarvotham S,Baron D,et al..Distributed compressed sensing of jointly sparse signals[C].Proceedings of Conference Record of the Thirty-Ninth Asilomar Conference on Signals,Systems and Computers Asilomar,Pacific Grove,CA,USA,2005: 1537–1541.

    [13]Aharon M,Elad M,and Bruckstein A.rmK-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11): 4311–4322.DOI: 10.1109/TSP.2006.881199.

    [14]Mallat S G and Zhang Zhi-feng.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41(12): 3397–3415.DOI: 10.1109/78.258082.

    [15]Kong Wei-wei and Lei Ying-jie.Technique for image fusion based on NSST domain and human visual characteristics[J].Journal of Harbin Engineering University,2013,34(6):777–782.

    [16]Fan Xin-nan,Zhang Ji,Li Min,et al..A multi-sensor image fusion algorithm based on local feature difference[J].Journal of Optoelectronics·Laser,2014,25(10): 2025–2032.

    Wu Yiquan (1963–),male,professor,Ph.D.supervisor,Ph.D.degree.He received the doctorate from Nanjing University of Aeronautics and Astronautics in 1998.He is now a professor,Ph.D.supervisor of Nanjing University of Aeronautics and Astronautics.His current research interests include remote sensing image processing and understanding,target detection and identification,visual detection and image measurement,video processing and intelligence analysis,etc.He has published more than 280 papers at home and abroad academic journals.

    E-mail: nuaaimage@163.com

    Wang Zhilai (1992–),male,born in Jiangxi province.He is a graduate student with department of information and communication engineering at college of electronic and information engineering in Nanjing University of Aeronautics and Astronautics.His research interest includes remote sensing image processing and machine vision,etc.

    E-mail: 1610156025@qq.com

    吳一全,王志來.基于聯合稀疏表示的復Contourlet域SAR圖像與紅外圖像融合[J].雷達學報,2017,6(4): 349–358.

    基于聯合稀疏表示的復Contourlet域SAR圖像與紅外圖像融合

    吳一全①②③④⑤⑥王志來①

    ①(南京航空航天大學電子信息工程學院 南京 211106)

    ②(南京信息工程大學江蘇省大數據分析技術重點實驗室 南京 210044)

    ③(浙江工業(yè)大學浙江省信號處理重點實驗室 杭州 310023)

    ④(廣西師范大學廣西多源信息挖掘與安全重點實驗室 桂林 541004)

    ⑤(成都理工大學國土資源部地學空間信息技術重點實驗室 成都 610059)

    ⑥(中國地質科學院礦產資源研究所國土資源部成礦作用與資源評價重點實驗室 北京 100037)

    針對紅外圖像與SAR圖像的灰度差異性大、兩者融合圖像不太符合人類視覺認知的問題,提出了一種基于聯合稀疏表示的復Contourlet域紅外圖像與SAR圖像融合方法。首先對紅外圖像與SAR圖像分別進行復Contourlet分解。然后利用K-奇異值分解(K-Singular Value Decomposition,K-SVD)方法獲得兩幅源圖像低頻分量的過完備字典,并根據聯合稀疏表示模型生成聯合字典,通過正交匹配追蹤(Orthogonal Matching Pursuit,OMP)方法求出源圖像低頻分量在聯合字典下的稀疏表示系數,接著采用選擇最大化策略對兩個低頻分量的稀疏表示系數進行選取,隨后進行稀疏表示重構獲得融合的低頻分量;對高頻分量結合視覺敏感度系數和能量匹配度兩個活躍度準則進行融合,以捕獲源圖像豐富的細節(jié)信息。最后經復Contourlet逆變換獲得融合圖像。與3種經典融合方法及近年來提出的基于非下采樣Contourlet變換(Non-Subsampled Contourlet Transform,NSCT)、基于稀疏表示的融合方法相比,該方法能夠有效突出源圖像的顯著特征,最大程度地繼承源圖像的信息。

    圖像融合;SAR圖像;紅外圖像;復Contourlet變換;聯合稀疏表示

    TP751.1

    A

    2095-283X(2017)04-0349-10

    10.12000/JR17019

    March 01,2017; Revised July 08,2017; Published online August 16,2017.

    *Communication author: Wu Yiquan.

    E-mail: nuaaimage@163.com.

    s: The National Natural Science Foundation of China (61573183),The Open Fund of Jiangsu Key Laboratory of Big Data Analysis Technology (KXK1403),The Open Fund of Zhejiang Province Key Laboratory for Signal Processing (ZJKL_6_SP-OP 2014-02),The Open Fund of Guangxi Key Lab of Multi-Source Information Mining and Security (MIMS14-01),The Open Fund of Key Laboratory of Geo-Spatial Information Technology (KLGSIT2015-05),The Open Fund of MLR Key Laboratory of Metallogeny and Mineral Assessment Institute of Mineral Resources (ZS1406)

    10.12000/JR17019.

    Reference format:Wu Yiquan and Wang Zhilai.SAR and infrared image fusion in complex contourlet domain based on joint sparse representation[J].Journal of Radars,2017,6(4): 349–358.DOI: 10.12000/JR17019.

    猜你喜歡
    實驗室融合方法
    村企黨建聯建融合共贏
    融合菜
    從創(chuàng)新出發(fā),與高考數列相遇、融合
    《融合》
    現代出版(2020年3期)2020-06-20 07:10:34
    電競實驗室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實驗室
    電子競技(2019年21期)2019-02-24 06:55:52
    電競實驗室
    電子競技(2019年20期)2019-02-24 06:55:35
    電競實驗室
    電子競技(2019年19期)2019-01-16 05:36:09
    可能是方法不對
    用對方法才能瘦
    Coco薇(2016年2期)2016-03-22 02:42:52
    国产黄片视频在线免费观看| 精品人妻熟女av久视频| 黑人猛操日本美女一级片| 国产一区亚洲一区在线观看| 亚洲av男天堂| 全区人妻精品视频| 少妇的逼水好多| 人妻 亚洲 视频| 国产精品国产av在线观看| 日日摸夜夜添夜夜添av毛片| 精品亚洲成a人片在线观看 | 国产视频内射| 欧美日韩视频高清一区二区三区二| 亚洲一级一片aⅴ在线观看| 丰满人妻一区二区三区视频av| 日韩中文字幕视频在线看片 | 精品人妻一区二区三区麻豆| 日本黄色片子视频| 天堂8中文在线网| 国产高清国产精品国产三级 | 欧美3d第一页| 国产片特级美女逼逼视频| 久久人人爽人人片av| 2021少妇久久久久久久久久久| 能在线免费看毛片的网站| 搡女人真爽免费视频火全软件| av.在线天堂| 国产毛片在线视频| 亚洲,欧美,日韩| 伊人久久精品亚洲午夜| 亚洲最大成人中文| 狠狠精品人妻久久久久久综合| 精品久久久精品久久久| 成人18禁高潮啪啪吃奶动态图 | 欧美zozozo另类| 丰满乱子伦码专区| 七月丁香在线播放| 久久99热这里只有精品18| 日本与韩国留学比较| 岛国毛片在线播放| 夜夜爽夜夜爽视频| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久av不卡| 国产精品精品国产色婷婷| 免费大片18禁| 美女内射精品一级片tv| a 毛片基地| 激情 狠狠 欧美| 亚洲国产精品专区欧美| 国产精品福利在线免费观看| 婷婷色麻豆天堂久久| 中文欧美无线码| 最新中文字幕久久久久| 国内揄拍国产精品人妻在线| 制服丝袜香蕉在线| 五月开心婷婷网| 国产伦在线观看视频一区| 啦啦啦视频在线资源免费观看| 久久国内精品自在自线图片| 国产91av在线免费观看| 国产伦在线观看视频一区| 亚洲精品乱码久久久久久按摩| 777米奇影视久久| 亚洲婷婷狠狠爱综合网| 国产在视频线精品| 特大巨黑吊av在线直播| a级一级毛片免费在线观看| av福利片在线观看| 少妇丰满av| 免费大片18禁| 亚洲av综合色区一区| 80岁老熟妇乱子伦牲交| 亚洲电影在线观看av| 国产真实伦视频高清在线观看| 中国国产av一级| 一本一本综合久久| 国产成人精品一,二区| 少妇高潮的动态图| 自拍偷自拍亚洲精品老妇| 欧美国产精品一级二级三级 | 在线观看三级黄色| 国产男女内射视频| 亚洲va在线va天堂va国产| 特大巨黑吊av在线直播| 秋霞伦理黄片| 亚洲第一区二区三区不卡| 亚洲真实伦在线观看| av视频免费观看在线观看| 高清在线视频一区二区三区| 激情 狠狠 欧美| 一级二级三级毛片免费看| 中文精品一卡2卡3卡4更新| 搡老乐熟女国产| 亚洲婷婷狠狠爱综合网| 少妇 在线观看| 精品99又大又爽又粗少妇毛片| 国产精品一区www在线观看| 成年人午夜在线观看视频| 亚洲精品日本国产第一区| av卡一久久| 午夜福利视频精品| 日韩欧美精品免费久久| 99热全是精品| 在线观看一区二区三区激情| 99re6热这里在线精品视频| 国产有黄有色有爽视频| 少妇人妻一区二区三区视频| 日韩制服骚丝袜av| 国产一区二区三区av在线| 欧美精品一区二区免费开放| 最黄视频免费看| 男女啪啪激烈高潮av片| 欧美精品一区二区大全| 国产 一区精品| 中国三级夫妇交换| 色哟哟·www| 免费久久久久久久精品成人欧美视频 | 人妻夜夜爽99麻豆av| 日本午夜av视频| 日日撸夜夜添| 日日撸夜夜添| 亚洲综合色惰| 99热国产这里只有精品6| 亚洲欧美精品专区久久| 亚洲真实伦在线观看| 自拍偷自拍亚洲精品老妇| 久久99精品国语久久久| 国产真实伦视频高清在线观看| 又大又黄又爽视频免费| 国产欧美另类精品又又久久亚洲欧美| 最近中文字幕高清免费大全6| 国产成人免费无遮挡视频| 国产亚洲最大av| 精品久久国产蜜桃| 中文精品一卡2卡3卡4更新| 97超视频在线观看视频| 99久久中文字幕三级久久日本| 少妇丰满av| 美女主播在线视频| 黄片无遮挡物在线观看| 亚洲欧美精品专区久久| 国产精品偷伦视频观看了| 欧美bdsm另类| 国产精品av视频在线免费观看| 美女主播在线视频| 偷拍熟女少妇极品色| 亚洲四区av| 香蕉精品网在线| 大又大粗又爽又黄少妇毛片口| 十八禁网站网址无遮挡 | av专区在线播放| 国产久久久一区二区三区| 国产精品伦人一区二区| 在线观看免费视频网站a站| 日日摸夜夜添夜夜添av毛片| 欧美xxⅹ黑人| 一本色道久久久久久精品综合| 免费大片18禁| 久久 成人 亚洲| 午夜福利影视在线免费观看| av黄色大香蕉| 日日摸夜夜添夜夜添av毛片| 男女免费视频国产| 亚洲伊人久久精品综合| 亚洲欧洲日产国产| 中文字幕精品免费在线观看视频 | 偷拍熟女少妇极品色| 亚洲精品久久午夜乱码| 国内精品宾馆在线| 国产在线一区二区三区精| 亚洲性久久影院| 午夜福利在线观看免费完整高清在| 最黄视频免费看| 草草在线视频免费看| 少妇的逼好多水| 最后的刺客免费高清国语| 女性被躁到高潮视频| 一级黄片播放器| 国产色爽女视频免费观看| 伊人久久精品亚洲午夜| 午夜福利在线在线| 国产亚洲欧美精品永久| 亚洲精品国产成人久久av| 国国产精品蜜臀av免费| 免费不卡的大黄色大毛片视频在线观看| 国产精品无大码| 最黄视频免费看| 2018国产大陆天天弄谢| 你懂的网址亚洲精品在线观看| 又黄又爽又刺激的免费视频.| 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av天美| 最近最新中文字幕大全电影3| 久久婷婷青草| 日本黄色日本黄色录像| av天堂中文字幕网| 男女边摸边吃奶| 亚洲精品日韩av片在线观看| 免费久久久久久久精品成人欧美视频 | 国产黄色视频一区二区在线观看| 97精品久久久久久久久久精品| 人妻系列 视频| 香蕉精品网在线| 老熟女久久久| 国产色婷婷99| 国产精品国产av在线观看| 内射极品少妇av片p| 伦理电影大哥的女人| 欧美最新免费一区二区三区| 亚洲欧美精品自产自拍| 精品人妻偷拍中文字幕| 国产一区二区三区av在线| 精品一区二区免费观看| 亚洲av男天堂| 夫妻午夜视频| 六月丁香七月| 欧美成人午夜免费资源| 伦精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 成人国产麻豆网| 免费播放大片免费观看视频在线观看| 五月玫瑰六月丁香| 亚洲精品乱久久久久久| 日日摸夜夜添夜夜爱| 亚洲欧美日韩另类电影网站 | 免费av不卡在线播放| 欧美日韩一区二区视频在线观看视频在线| 男女啪啪激烈高潮av片| 一本色道久久久久久精品综合| 亚洲精品国产av成人精品| 免费黄频网站在线观看国产| 美女脱内裤让男人舔精品视频| 亚洲国产av新网站| 免费观看无遮挡的男女| 久久国内精品自在自线图片| 国产淫片久久久久久久久| 国产精品嫩草影院av在线观看| 亚洲av不卡在线观看| 午夜免费观看性视频| 午夜日本视频在线| 亚洲内射少妇av| 五月天丁香电影| 夜夜爽夜夜爽视频| 亚洲电影在线观看av| 久久国产乱子免费精品| 有码 亚洲区| 久久久久国产精品人妻一区二区| av专区在线播放| 色网站视频免费| 午夜福利在线在线| 大片电影免费在线观看免费| 男人爽女人下面视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 网址你懂的国产日韩在线| 最黄视频免费看| 日韩三级伦理在线观看| 国产精品人妻久久久影院| 激情五月婷婷亚洲| 欧美日韩国产mv在线观看视频 | 高清黄色对白视频在线免费看 | 日韩一本色道免费dvd| 日韩伦理黄色片| 亚洲国产欧美人成| 亚洲高清免费不卡视频| 麻豆精品久久久久久蜜桃| 国产成人精品一,二区| 黄色配什么色好看| 精品熟女少妇av免费看| 精品久久久久久久久亚洲| 日本爱情动作片www.在线观看| 三级国产精品片| 国产成人a区在线观看| 在线精品无人区一区二区三 | 午夜免费鲁丝| 亚洲av免费高清在线观看| 一级av片app| 日韩视频在线欧美| 人妻制服诱惑在线中文字幕| 欧美精品一区二区大全| 日韩大片免费观看网站| 久久97久久精品| 久久久色成人| 成年女人在线观看亚洲视频| 亚洲精品自拍成人| 18禁在线播放成人免费| 如何舔出高潮| 三级经典国产精品| 久久久久视频综合| 一区二区三区乱码不卡18| 久久精品夜色国产| 中文在线观看免费www的网站| 日本黄色日本黄色录像| 交换朋友夫妻互换小说| 亚洲欧美日韩无卡精品| 亚洲精品自拍成人| 一级毛片电影观看| 嫩草影院入口| 国产亚洲一区二区精品| 伦精品一区二区三区| 26uuu在线亚洲综合色| 国产精品久久久久久av不卡| 97在线人人人人妻| 黑丝袜美女国产一区| 亚洲欧洲国产日韩| av国产精品久久久久影院| 亚洲欧美一区二区三区国产| 熟妇人妻不卡中文字幕| 伦精品一区二区三区| 欧美日韩视频精品一区| 欧美日韩国产mv在线观看视频 | 日本wwww免费看| 热99国产精品久久久久久7| 另类亚洲欧美激情| 黄片无遮挡物在线观看| 亚洲精品国产色婷婷电影| 国产美女午夜福利| 国产 一区 欧美 日韩| 欧美人与善性xxx| 国产高潮美女av| 国产成人免费观看mmmm| 天天躁日日操中文字幕| 熟女人妻精品中文字幕| 亚洲第一av免费看| 在线天堂最新版资源| 黄片wwwwww| 在现免费观看毛片| 国产伦理片在线播放av一区| 久久久久精品久久久久真实原创| 亚洲四区av| 国产日韩欧美在线精品| 亚洲成人av在线免费| 久久热精品热| 97在线视频观看| 成人二区视频| 九九在线视频观看精品| 精品午夜福利在线看| 久久精品国产亚洲网站| 伦精品一区二区三区| 自拍偷自拍亚洲精品老妇| 麻豆国产97在线/欧美| 亚洲精品国产av成人精品| 伊人久久国产一区二区| 波野结衣二区三区在线| 26uuu在线亚洲综合色| 免费观看性生交大片5| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频 | av在线老鸭窝| 日韩人妻高清精品专区| 久久人人爽av亚洲精品天堂 | 高清午夜精品一区二区三区| 黄片wwwwww| 91在线精品国自产拍蜜月| 欧美3d第一页| 亚洲性久久影院| 一区二区三区精品91| 我要看日韩黄色一级片| 99热6这里只有精品| 久热这里只有精品99| 91久久精品电影网| 国产亚洲91精品色在线| a 毛片基地| 久久婷婷青草| 边亲边吃奶的免费视频| 亚洲精品国产成人久久av| 中文字幕制服av| 黑丝袜美女国产一区| 午夜激情久久久久久久| 春色校园在线视频观看| 亚洲av不卡在线观看| 亚洲最大成人中文| 只有这里有精品99| 一级毛片久久久久久久久女| 欧美成人午夜免费资源| 国产女主播在线喷水免费视频网站| 国产精品精品国产色婷婷| 亚洲av在线观看美女高潮| 国产有黄有色有爽视频| 日韩大片免费观看网站| 亚洲欧美日韩卡通动漫| 熟妇人妻不卡中文字幕| av在线蜜桃| 天美传媒精品一区二区| 久久久久久久久久久丰满| 国产免费福利视频在线观看| 国产国拍精品亚洲av在线观看| 97热精品久久久久久| 蜜桃久久精品国产亚洲av| 亚洲最大成人中文| 欧美bdsm另类| 五月天丁香电影| 免费看光身美女| 国产成人免费观看mmmm| 亚洲精品成人av观看孕妇| 五月开心婷婷网| 亚洲怡红院男人天堂| 男人和女人高潮做爰伦理| 麻豆成人av视频| 七月丁香在线播放| 下体分泌物呈黄色| 国产伦理片在线播放av一区| 观看av在线不卡| 一级毛片我不卡| 国产精品99久久久久久久久| av免费在线看不卡| 国产精品一二三区在线看| h日本视频在线播放| 大片电影免费在线观看免费| 狂野欧美白嫩少妇大欣赏| 中文字幕久久专区| 午夜福利在线在线| 国产免费视频播放在线视频| av专区在线播放| 亚洲国产av新网站| 久久久久精品性色| 色综合色国产| 久久久久久久久大av| 欧美日韩国产mv在线观看视频 | 欧美日韩在线观看h| 毛片一级片免费看久久久久| 久久这里有精品视频免费| 看非洲黑人一级黄片| 春色校园在线视频观看| 久久久欧美国产精品| 97热精品久久久久久| 日本欧美视频一区| 蜜臀久久99精品久久宅男| 在线观看免费高清a一片| 亚洲av成人精品一区久久| 亚洲精品乱码久久久久久按摩| 久久青草综合色| 精品一区二区三卡| 久久精品久久久久久噜噜老黄| 亚洲四区av| 熟女av电影| 精品国产三级普通话版| 国产亚洲精品久久久com| 欧美变态另类bdsm刘玥| 精品人妻视频免费看| 国模一区二区三区四区视频| 联通29元200g的流量卡| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久av不卡| 日韩视频在线欧美| 国产精品福利在线免费观看| 天天躁日日操中文字幕| 国产色婷婷99| 亚洲美女黄色视频免费看| 王馨瑶露胸无遮挡在线观看| 国产成人精品一,二区| 免费人妻精品一区二区三区视频| 久久国产亚洲av麻豆专区| 一级爰片在线观看| 91午夜精品亚洲一区二区三区| 青青草视频在线视频观看| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 久久人人爽av亚洲精品天堂 | 男人舔奶头视频| 男男h啪啪无遮挡| 午夜免费男女啪啪视频观看| 欧美精品国产亚洲| 国产色爽女视频免费观看| 99热国产这里只有精品6| 国产69精品久久久久777片| 国产69精品久久久久777片| 日本-黄色视频高清免费观看| 大片免费播放器 马上看| 久久国产精品大桥未久av | 国产亚洲最大av| 免费看不卡的av| 在线观看免费高清a一片| 五月天丁香电影| 免费看光身美女| 啦啦啦中文免费视频观看日本| 国产精品不卡视频一区二区| 精品一区在线观看国产| 夜夜爽夜夜爽视频| 91aial.com中文字幕在线观看| 国产真实伦视频高清在线观看| 亚洲综合精品二区| 亚洲无线观看免费| 国产精品国产三级国产av玫瑰| 婷婷色av中文字幕| 国产成人精品久久久久久| 日本爱情动作片www.在线观看| 免费少妇av软件| 亚洲天堂av无毛| 综合色丁香网| 97超碰精品成人国产| 97超视频在线观看视频| 99热这里只有是精品在线观看| 日本-黄色视频高清免费观看| 国产精品久久久久久av不卡| 免费大片黄手机在线观看| 爱豆传媒免费全集在线观看| 一个人免费看片子| 精品国产乱码久久久久久小说| 久久99热6这里只有精品| 午夜日本视频在线| 人妻少妇偷人精品九色| 久久久久久久久久人人人人人人| 亚洲精品国产色婷婷电影| 99久久人妻综合| 国产极品天堂在线| 日本一二三区视频观看| 国产精品.久久久| 免费观看性生交大片5| 日韩在线高清观看一区二区三区| 又粗又硬又长又爽又黄的视频| 久久国产精品男人的天堂亚洲 | 又大又黄又爽视频免费| 热re99久久精品国产66热6| 亚洲精品aⅴ在线观看| 一级毛片我不卡| 人妻制服诱惑在线中文字幕| 欧美一区二区亚洲| 亚洲欧美成人精品一区二区| 免费久久久久久久精品成人欧美视频 | 国产伦精品一区二区三区视频9| 午夜激情福利司机影院| 黑丝袜美女国产一区| 免费大片18禁| 日韩视频在线欧美| 99久久精品热视频| 欧美3d第一页| 国产精品一区二区性色av| 日本欧美视频一区| 美女高潮的动态| 国产探花极品一区二区| 汤姆久久久久久久影院中文字幕| 91在线精品国自产拍蜜月| 成年av动漫网址| 欧美日韩综合久久久久久| 国产精品三级大全| 久久久久久久大尺度免费视频| 性高湖久久久久久久久免费观看| 少妇人妻 视频| 99久国产av精品国产电影| 国产伦在线观看视频一区| 99热网站在线观看| 99热这里只有是精品在线观看| 黑丝袜美女国产一区| 国产精品国产三级国产av玫瑰| 国产精品国产三级国产专区5o| 亚洲国产日韩一区二区| 又粗又硬又长又爽又黄的视频| 国产乱来视频区| 看十八女毛片水多多多| 九色成人免费人妻av| 国产深夜福利视频在线观看| 久久久午夜欧美精品| 亚洲综合精品二区| 尾随美女入室| 国产亚洲91精品色在线| 亚洲人成网站在线播| 国产极品天堂在线| 亚洲精品国产av成人精品| 久久亚洲国产成人精品v| 亚州av有码| 麻豆乱淫一区二区| 成人毛片60女人毛片免费| 一二三四中文在线观看免费高清| 又黄又爽又刺激的免费视频.| 精华霜和精华液先用哪个| 建设人人有责人人尽责人人享有的 | 啦啦啦在线观看免费高清www| 妹子高潮喷水视频| 99精国产麻豆久久婷婷| 激情 狠狠 欧美| 欧美一级a爱片免费观看看| 深夜a级毛片| 麻豆乱淫一区二区| 国产免费福利视频在线观看| 一二三四中文在线观看免费高清| 国产精品国产av在线观看| 国产成人精品婷婷| 新久久久久国产一级毛片| 观看av在线不卡| 亚洲成人一二三区av| 1000部很黄的大片| 女性被躁到高潮视频| 色综合色国产| 一级二级三级毛片免费看| 欧美97在线视频| 国产精品一及| 晚上一个人看的免费电影| 亚洲真实伦在线观看| 91久久精品国产一区二区三区| 男人添女人高潮全过程视频| 日韩三级伦理在线观看| 极品少妇高潮喷水抽搐| 精品久久久久久久久亚洲| 蜜桃亚洲精品一区二区三区| 2022亚洲国产成人精品| 欧美精品亚洲一区二区| 交换朋友夫妻互换小说| 五月天丁香电影| av在线蜜桃| 在现免费观看毛片| 熟女电影av网| 王馨瑶露胸无遮挡在线观看| 国产在线免费精品| 日本爱情动作片www.在线观看| av视频免费观看在线观看| 五月玫瑰六月丁香| 国产高清三级在线| 亚洲伊人久久精品综合| 久久精品国产亚洲av天美| 婷婷色综合大香蕉| 国产精品久久久久久精品古装| 精品人妻偷拍中文字幕| 国产 精品1| 精品人妻偷拍中文字幕| a级毛色黄片|