• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Periodic Travelling Wave Solution in a Diffusive Predator-prey System

    2017-09-06 05:22:21SONGYongliXUZhou
    關(guān)鍵詞:理學(xué)院永利食餌

    SONG Yongli ,XU Zhou

    (1.School of Science, Hangzhou Normal University, Hangzhou 310036, China; 2. Department of Mathematics, Tongji University, Shanghai 200092, China)

    Periodic Travelling Wave Solution in a Diffusive Predator-prey System

    SONG Yongli1,XU Zhou2

    (1.School of Science, Hangzhou Normal University, Hangzhou 310036, China; 2. Department of Mathematics, Tongji University, Shanghai 200092, China)

    In this paper, the existence of the periodic travelling wave solution for a general diffusive predator-prey system is investigated. The condition for the occurrence of Hopf bifurcation in wave equations is provided firstly. Then, taking the diffusion coefficient as the bifurcation parameter, the critical value for the occurrence of periodic travelling wave solution is derived. Finally, the obtained theoretical results are applied to deal with a diffusive predator-prey system with herd behavior and the conditions for the occurrence of the periodic travelling wave solution are obtained. The numerical simulations are also employed to illustrate the theoretical results.

    predator-prey system; periodic travelling wave solution; Hopf bifurcation

    1 Introduction

    Predator-prey model is one of important mathematical models in the eology of populations, which is used to describe the interactions in which one species consumes all or part of another. Periodic activity generated by the predator-prey model is often observed in the nature and the distribution of populations in space is not uniform. This phenomenon is closely related to a periodic travelling wave solution in mathematics, which is a periodic function of one-dimensional space that moves with constant speed in time.

    Periodic travelling wave solution of reaction-diffusion equations were extensively studied for the so-calledλ-ωsystem (see, e.g. the review article [1]). For the predator-prey model, there are plenty of works on the travelling wave solution (see [2-4] and references therein), but there are only a few works on periodic travelling wave solution. Recenly, the existence of periodic travelling wave solution for the following predator-prey model with modified Leslie-Gower and Holling type II schemes

    (1)

    has been studied by Yafia and Aziz-Alaoui[5].

    In this paper, we study the existence of periodic travelling wave solution for a general diffusive predator-prey model as follows

    (2)

    whereu(x,t) andv(x,t) are the prey and predator populations at positionxand at timet,d1>0 andd2>0 are the diffusive coefficients of the prey and predator populations,FandGcan be chosen as different forms depending on the interaction of the prey and predator, and the species.

    Setting

    and dropping the tilde for simplification of notation, we have

    (3)

    The rest of this paper is organized as follows: In Section 2, the sufficient condition of the existence of periodic travelling wave solution for system (3) is derived. In Section 3, we apply the theoretical result obtained in Section 2 to study a predator-prey model with herd behavior in the prey species and give some numerical simulationsto illustrate the theoretical results. Finally, the paper ends by a conclusion section.

    2 Existence of Periodic Travelling Wave Solution

    (4)

    wheresis called a traveling coordinate and ′denotes the differentiation with respect tos. If system (4) has a periodic solution, then this periodic solution is called the periodic traveling wave solution of system (3) . In the following, we seek the existence of periodic solution of system (4) by Hopf bifurcation theory.

    Settingφ(s)=u′(s),ψ(s)=v′(s), system (4) can be written as a system of first order ordinary differential equation in R4

    (5)

    System (5) has a positive equilibriumE*(u*,v*,0,0). LettingU=(u,v,φ,ψ)T, then the linearized system of system (5) at the positive equilibriumE*(u*,v*,0,0) is

    (6)

    where

    The characteristic equation of (6) is

    (7)

    where

    (8)

    For the distribution of roots of Eq.(7), we have the following results.

    (9)

    with -

    (10)

    (11)

    (12)

    Lemma 2 Assume that the conditions in Lemma 1 are satisfied andd0is defined by (9). Then we have the following:

    (i) whend=d0, Eq.(7) has a pair of purely imaginary roots ±iω0, where

    (13)

    (ii) ifλ(d) is a root of Eq.(7) satisfyingλ(d0)=iω0, then (Reλ(d))′d=d0>0.

    Proof Assume thatλ=iω(ω>0) is a root of Eq.(7). Then we haveQ(iω,d)=0, i.e.,

    Separating the real and imaginary parts, we obtain

    (14)

    and

    (15)

    From (15), we have

    (16)

    Substituting (16) into Eq.(14), we obtain thatD(1+d)=0. This imples that whend=d0andω=ω0, (14) and (15) hold. Therefore, whend=d0, Eq.(7) has a pair of purely imaginary roots ±iω0.

    Now we verify the transversality condition. Assume thatλ(d) is a root of Eq.(7) satisfyingλ(d0)=iω0. From Eq.(7), we have

    Therefore

    ByLemmas1and2,wehavethefollowingresultsonthestabilityandHopfbifurcationforsystem(5).

    Theorem1AssumethattheconditionsinLemma1aresatisfiedandd0isdefinedby(9).Thenwehavethefollowing:

    (i)thepositiveequilibriumE*ofsystem(5)isasymptoticallystablefor0d0;

    (ii)system(5)undergoesaHopfbifurcationatd=d0.

    Thefollowingresultfollowsimmediatelyfromtherelationofsolutionsbetweensystem(3)andsystem(5) .

    Theorem2AssumethattheconditionsinLemma1aresatisfiedandd0isdefinedby(9) .TheniftheHopfbifurcationofsystem(5)atd=d0issupercritical,thensystem(3)hasstableperiodictravellingwavesolutionsford>d0andsufficientlyclosetod0.

    3 Application to a Predator-prey Model with Herd Behavior

    Inthissection,weconsiderthefollowingpredator-preymodelwithherdbehaviorinthepreyspeciesundertheunboundeddomainx∈(-,+)

    (17)

    Based on the assumption that the prey exhibits herd behavior and the predator interacts with the prey along the outer corridor of the herd of prey, Braza first proposed the predator-prey model with square root functional responses[6]. Considering the spatial diffusion of populations, the model proposed by Braza[6]was extended a system with diffusion in [7], i.e., system (17). The pattern formation of system (17) has been studied in [7]. Under the bounded domain and considering Neumann boundary condition, the stability and Hopf bifurcation of system (17) has been investigated in [8]. In the following, we investigated the existence of periodic travelling wave solution induced by the diffusion for system (17) under the unbounded domainx∈(-,+)

    For biological meaning, in what follows we assume 0

    From the condition (C), we have

    (18)

    It follows from (18) that

    anda11+a22>0 iff

    Therefore, in terms of Lemma 1 and Theorem 2 , the following theorem follows immediately.

    Define the following two curves in them-θplane by

    and the curveL2is determined by the following implicit function

    In fact, the curveL2is also a Hopf bifurcation curve for the corresponding ordinary differential system of system (17) . The positive constant equilibrium (u*,v*) of the corresponding ordinary differential system of system (17) is stable in regionD1above the curveL1and unstable in the region between the curvesL0andL1.

    Fig.1 Bifurcation diagram of system (17)

    In the following, we numerically illustrate the above results. Taking (m,θ)=(0.5,0.6)∈D2and then choosingc=2, it follows from (9) that

    d0=3.6717, ω=0.0991.

    The corresponding wave system of system (17) is

    (19)

    Left: the evolution of solution of system (19) for d=3.5

    To determine the properities of the Hopf bifurcation, we have to calculate the corresponding normal form associated this Hopf bifurcation.

    In the following, we use the method developed in [9] to calculate the normal form associated the Hopf bifurcation of system (19) atd=d0=3.6717, and we use the same notations as in [9] . Whend=d0=3.6717, the characteristic values areλ1=iωwithω=0.0991,λ2=-iω,

    and

    The eigenvector associated with the characteristic valuesλ1,λ3,λ4are, respectively,

    DefineP=(Re(v1),-Im(v1),Re(v3),Re(v4)), and denote the right side of system (19) by

    Then performing the change of variables

    (20)

    At this moment, we can follow the procedure in Chapter 2 of [9] to obtain

    g11=0.3120+0.0570i,g02=0.4811+0.0078i,g20=0.2284+0.4229i,g21=-0.3158-0.1501i,

    w11=(-0.6876,-0.0010)T,w20=(-0.8295-0.0958i)T

    and

    μ2=257.9456, β2=-1.7787, τ2=6.9041.

    Thus, by the Hopf bifurcation theory in [9], we have the following results on system (19) with (m,θ)=(0.5,0.6)∈D2,c=2 andd0=3.6717 : (i) the Hopf bifurcation is supercritical and bifurcating periodic solutions exist ford>d0; (ii) the Hopf bifurcating periodic solution is orbitally stable; the period of bifurcating periodic solutions increases with the increasing ofd. Fig.3 illustrates these results ford=3.8>d0.

    Left: the evolution of solution of system (19) for d=3.8>d0; Right: the phase diagram in theu-v plane.Fig. 3 The equilibrium of system (19) is unstable for d>d0 and the Hopf bifurcating periodic solution is orbitally stable

    Ford=3.8, we can obtain

    It follows from [9] that the family of approximate periodic solution of system (19) withd=3.8 bifurcating from Hopf bifurcation can be represented by

    (21)

    where

    and

    This approximate periodic solution (21) can be used for the simulation of periodic travelling wave solution of system (17). Fig.4 shows the approximate periodic solution from (21) and the stable periodic solution simulated in Fig.3. These two periodic orbits are sufficiently close.

    Fig.4 Comparison of the approximate periodic solution of system (19) represented by (21) with the stable periodic solution simulated in Fig.3 for d=0.38

    It follows from Theorems 2 and 3 that if the wave system (19) has Hopf bifurcating periodic solution, then the original system (17) has periodic travelling wave solution. By the above discussion, for (m,θ)=(0.5,0.6)∈D2,c=2 andd=3.8>d0, the wave system (19) has a stable Hopf bifurcating periodic solution as shown in Fig.3. Thus, for (m,θ)=(0.5,0.6)∈D2andd=3.8>d0, the original system (17) has a periodic travelling wave solution with the wave speedc=2. Taking the initial valuesu(x,0) andv(x,0) as defined by (21) and using the periodic boundary condition, Fig.5 illustrates the existence of the periodic travelling wave solution with respect to the time and space variables.

    4 Conclusions

    In this paper, the sufficient condition for occurrence of periodic travelling wave solution is derived for the general diffusive predator-prey system. Applying the Hopf bifurcation method to the corresponding wave system and in terms of the relationship between the periodic solution of the corresponding wave system and the periodic travelling wave solution of the original diffusive system, we obtain the critical value of diffusion-induced periodic travelling wave solution, which depends on other parameters of the system.

    Then we consider the diffusive predator-prey system with herd behavior. The dynamics of the system is investigated in the parameter plane ofmandθ. Them-θplane can be divided into three regionsD1,D2andD3. There exist diffusion-induced periodic travelling wave solutions in regionsD2andD3. In regionD2, there exists periodic travelling wave solution or any given wave speedc>0. But for regionD3, there exists periodic travelling wave solution only for the wave speed large enough beyond some critical valuec0. The critical valued0of diffusion coefficient for periodic travelling wave bifurcation is determined by the other system parameters. Numerical simulations are employed to illustrate the existence of diffusion-induced periodic travelling wave solution in the diffusive predator-prey system with herd behavior.

    (A)the solution for u(x,t); (B) the projector of the solution u(x,t) on the x-t plane; (C)the solution for v(x,t); (D) the projector of the solution v(x,t) on the x-t plane. Fig.5 Periodic travelling wave solution of system (17) with (m,θ)=(0.5,0.6)∈D2 and d=3.8

    [1] SHERRATT J A, SMITH M J.Periodic travelling waves in cyclic populations: field studies and reactiondiffusion models[J]. Journal of The Royal Society Interface, 2008, 5(22): 483-505.

    [2] LI W T, WU S L. Traveling waves in a diffusive predatorprey model with Holling type-III functional response[J]. Chaos Solitons & Fractals, 2008, 37(2): 476-486.

    [3] ZHANG T, JIN Y. Traveling waves for a reaction-diffusion-advection predator-prey model[J]. Nonlinear Analysis Real World Applications, 2017, 36:203-232.

    [4] DING W, HUANG W Z. Traveling wave solutions for some classes of diffusive predator-prey models[J]. Journal of Dynamics and Differential Equations, 2016, 28(3/4): 1293-1308.

    [5] YAFIA R, AZIZ-ALAOUI M A. Existence of periodic travelling waves solutions in predator prey model with diffusion[J]. Applied Mathematical Modelling, 2013, 37(6): 3635-3644.

    [6] BRAZA P A. Predator-prey dynamics with square root functional responses[J]. Nonlinear Analysis Real World Applications, 2012, 13(4):1837-1843.

    [7] YUAN S L, XU C Q, ZHANG T H. Spatial dynamics in a predator-prey model with herd behavior[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 2013, 23(3): 033102.

    [8] XU Z, SONG Y L. Bifurcation analysis of a diffusive predatorprey system with a herd behavior and quadratic mortality[J]. Mathematical Methods in the Applied Sciences, 2015, 38(14): 2994-3006.

    [9] HASSARD B D, KAZARINOFF N D, WAN Y H. Theory and applications of Hopf bifurcation [M]. New York: Cambridge University Press, 1981.

    擴(kuò)散捕食-食餌系統(tǒng)的周期行波解

    宋永利1,徐 周2

    (1.杭州師范大學(xué)理學(xué)院,浙江 杭州 310036; 2.同濟(jì)大學(xué)數(shù)學(xué)系,上海 200092)

    研究一般的擴(kuò)散捕食-食餌系統(tǒng)中周期行波解的存在性.首先,給出了波方程組中Hopf分支發(fā)生的條件;然后,以擴(kuò)散系數(shù)為分支參數(shù),推導(dǎo)出了周期行波解發(fā)生的臨界值;最后,應(yīng)用所得的理論結(jié)果研究了一個(gè)具有群體效應(yīng)的捕食-食餌系統(tǒng),獲得了周期行波解存在的條件, 并利用數(shù)值模擬例證了所得的理論結(jié)果.

    捕食-食餌系統(tǒng);周期行波解;Hopf分支

    date:2017-06-04

    Supported by the National Natural Science Foundation of China (11571257) and the Scientific Research Start-up Foundation of Hangzhou Normal University (201603).

    SONG Yongli (1971—), male, Professor, majored in differential equations and dynamical system. E-mail: syl.mail@163.com

    10.3969/j.issn.1674-232X.2017.04.005

    O19; O29 MSC2010: 35K57; 37G15; 92B05 Article character: A

    1674-232X(2017)04-0368-10

    猜你喜歡
    理學(xué)院永利食餌
    捕食-食餌系統(tǒng)在離散斑塊環(huán)境下強(qiáng)迫波的唯一性
    昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
    昆明理工大學(xué)理學(xué)院簡(jiǎn)介
    一類具有修正的Leslie-Gower項(xiàng)的捕食-食餌模型的正解
    科技興邦 創(chuàng)新強(qiáng)國(guó)
    深圳市永利種業(yè)有限公司
    辣椒雜志(2021年4期)2021-04-14 08:28:14
    具有兩個(gè)食餌趨化項(xiàng)的一個(gè)Ronsenzwing-MacArthur捕食食餌模型的全局分歧
    畢永利教授簡(jiǎn)介
    一類帶有交叉擴(kuò)散的捕食-食餌模型的正解
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    淫妇啪啪啪对白视频| 亚洲熟妇熟女久久| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区三区四区免费观看 | 亚洲精品在线观看二区| 99热这里只有精品一区 | 一边摸一边做爽爽视频免费| 国内久久婷婷六月综合欲色啪| 精品人妻1区二区| 欧美久久黑人一区二区| 成人av在线播放网站| 亚洲av电影在线进入| 午夜视频精品福利| 成人一区二区视频在线观看| 欧美日韩福利视频一区二区| a级毛片a级免费在线| 久久国产乱子伦精品免费另类| 可以在线观看毛片的网站| 欧美人与性动交α欧美精品济南到| 国产亚洲欧美在线一区二区| 欧美日韩黄片免| 欧美一级a爱片免费观看看 | 女人爽到高潮嗷嗷叫在线视频| 无人区码免费观看不卡| 在线永久观看黄色视频| 亚洲精品中文字幕在线视频| 亚洲av成人一区二区三| 一进一出抽搐动态| 日韩欧美国产一区二区入口| 可以在线观看毛片的网站| 狂野欧美激情性xxxx| 国产精品久久久久久人妻精品电影| 丰满人妻一区二区三区视频av | 妹子高潮喷水视频| 欧美一级毛片孕妇| 久久天躁狠狠躁夜夜2o2o| 女生性感内裤真人,穿戴方法视频| 亚洲自拍偷在线| 女同久久另类99精品国产91| 日本一本二区三区精品| 热99re8久久精品国产| 午夜亚洲福利在线播放| 久久精品aⅴ一区二区三区四区| 亚洲色图av天堂| 中文字幕久久专区| 国产精品美女特级片免费视频播放器 | 搞女人的毛片| 欧美久久黑人一区二区| 久久久久性生活片| 人成视频在线观看免费观看| 他把我摸到了高潮在线观看| 999久久久国产精品视频| 亚洲最大成人中文| 在线播放国产精品三级| 成年人黄色毛片网站| 亚洲狠狠婷婷综合久久图片| 亚洲国产精品sss在线观看| 免费在线观看视频国产中文字幕亚洲| 精品久久久久久成人av| 一边摸一边抽搐一进一小说| 香蕉av资源在线| 亚洲全国av大片| 日本熟妇午夜| 欧美成人免费av一区二区三区| 亚洲国产欧美一区二区综合| 88av欧美| 色噜噜av男人的天堂激情| 亚洲色图av天堂| 黄色毛片三级朝国网站| 国产成人av教育| 在线观看免费视频日本深夜| 国产av又大| 亚洲av第一区精品v没综合| 久久久久久久久久黄片| 色在线成人网| 国产午夜福利久久久久久| 欧美乱码精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 三级毛片av免费| 日韩高清综合在线| 香蕉丝袜av| 亚洲18禁久久av| 精华霜和精华液先用哪个| 婷婷精品国产亚洲av| 久久久久久久久中文| 色尼玛亚洲综合影院| 免费在线观看成人毛片| 男人的好看免费观看在线视频 | 中文在线观看免费www的网站 | 久久香蕉精品热| 好看av亚洲va欧美ⅴa在| 90打野战视频偷拍视频| 欧美日韩瑟瑟在线播放| 热99re8久久精品国产| 天堂√8在线中文| 欧美日韩黄片免| 啦啦啦韩国在线观看视频| 黄频高清免费视频| 在线视频色国产色| 成人永久免费在线观看视频| 欧美成人一区二区免费高清观看 | 亚洲欧美一区二区三区黑人| 老熟妇仑乱视频hdxx| 国产麻豆成人av免费视频| 宅男免费午夜| 亚洲中文字幕一区二区三区有码在线看 | 午夜福利成人在线免费观看| 亚洲国产精品成人综合色| 草草在线视频免费看| 在线a可以看的网站| 久久人妻av系列| 成人av在线播放网站| 男女床上黄色一级片免费看| 一区二区三区激情视频| 欧美中文综合在线视频| 一本久久中文字幕| 精品乱码久久久久久99久播| 免费看a级黄色片| 亚洲国产精品合色在线| 嫁个100分男人电影在线观看| 国产亚洲欧美在线一区二区| 免费在线观看影片大全网站| 看片在线看免费视频| 久99久视频精品免费| 免费在线观看完整版高清| 亚洲av五月六月丁香网| 久久午夜综合久久蜜桃| 在线观看免费日韩欧美大片| 少妇人妻一区二区三区视频| 人人妻人人看人人澡| 女人被狂操c到高潮| 18美女黄网站色大片免费观看| 老熟妇仑乱视频hdxx| 女人爽到高潮嗷嗷叫在线视频| 久久久久国产一级毛片高清牌| 亚洲国产欧美人成| 日韩欧美国产在线观看| 麻豆国产97在线/欧美 | 91在线观看av| 可以在线观看的亚洲视频| 国产一区二区在线av高清观看| 久久精品夜夜夜夜夜久久蜜豆 | 中文亚洲av片在线观看爽| 熟妇人妻久久中文字幕3abv| 久久精品91蜜桃| 成人特级黄色片久久久久久久| 久久久久久久久免费视频了| 久久精品国产亚洲av高清一级| 动漫黄色视频在线观看| 麻豆成人av在线观看| 狂野欧美白嫩少妇大欣赏| 99国产综合亚洲精品| 久久欧美精品欧美久久欧美| 欧美激情久久久久久爽电影| 真人做人爱边吃奶动态| or卡值多少钱| 两个人的视频大全免费| 国产在线精品亚洲第一网站| 午夜精品久久久久久毛片777| 久久久精品欧美日韩精品| www日本黄色视频网| 在线观看66精品国产| 老司机深夜福利视频在线观看| 岛国在线免费视频观看| 久久亚洲精品不卡| 色综合婷婷激情| x7x7x7水蜜桃| 亚洲国产精品成人综合色| 国产真人三级小视频在线观看| 欧美精品啪啪一区二区三区| 国内久久婷婷六月综合欲色啪| 日本免费a在线| 黄色成人免费大全| svipshipincom国产片| 亚洲av熟女| 婷婷亚洲欧美| 国产99久久九九免费精品| 国产成人av教育| 黄片小视频在线播放| 99热这里只有是精品50| 免费观看人在逋| 天天躁狠狠躁夜夜躁狠狠躁| 50天的宝宝边吃奶边哭怎么回事| 国产精品美女特级片免费视频播放器 | 亚洲自偷自拍图片 自拍| 久99久视频精品免费| 舔av片在线| 亚洲精品中文字幕在线视频| 欧美精品啪啪一区二区三区| 黑人欧美特级aaaaaa片| 高清毛片免费观看视频网站| 麻豆国产97在线/欧美 | 久久天躁狠狠躁夜夜2o2o| 一级a爱片免费观看的视频| 婷婷精品国产亚洲av| 韩国av一区二区三区四区| √禁漫天堂资源中文www| 亚洲av熟女| 在线视频色国产色| 99久久久亚洲精品蜜臀av| 黄色a级毛片大全视频| 大型av网站在线播放| 亚洲精品美女久久av网站| 18禁观看日本| 国产乱人伦免费视频| 亚洲在线自拍视频| 97超级碰碰碰精品色视频在线观看| 午夜免费激情av| 99久久无色码亚洲精品果冻| 国产私拍福利视频在线观看| 又紧又爽又黄一区二区| 欧美绝顶高潮抽搐喷水| 怎么达到女性高潮| 好看av亚洲va欧美ⅴa在| 日本熟妇午夜| 欧美中文综合在线视频| 免费在线观看黄色视频的| www.自偷自拍.com| 成熟少妇高潮喷水视频| 久久久国产欧美日韩av| 99热这里只有是精品50| 1024手机看黄色片| 国产成+人综合+亚洲专区| 黄色a级毛片大全视频| 熟妇人妻久久中文字幕3abv| 黑人巨大精品欧美一区二区mp4| 国产一级毛片七仙女欲春2| 国产三级中文精品| 国产又色又爽无遮挡免费看| 亚洲激情在线av| 久久精品国产亚洲av高清一级| 久久久久国内视频| 哪里可以看免费的av片| 免费av毛片视频| 在线免费观看的www视频| 色噜噜av男人的天堂激情| 国产野战对白在线观看| 免费看a级黄色片| 午夜福利在线在线| 午夜福利高清视频| 成年版毛片免费区| 精品福利观看| 亚洲欧美精品综合一区二区三区| 日本熟妇午夜| 成人一区二区视频在线观看| 级片在线观看| 国产欧美日韩一区二区精品| 亚洲九九香蕉| 天堂√8在线中文| 亚洲激情在线av| 日本 av在线| 亚洲 国产 在线| 在线观看66精品国产| 久久 成人 亚洲| xxx96com| 欧美极品一区二区三区四区| 国产麻豆成人av免费视频| 两性夫妻黄色片| 一级片免费观看大全| 99久久无色码亚洲精品果冻| 中文字幕熟女人妻在线| 90打野战视频偷拍视频| 51午夜福利影视在线观看| 久久精品影院6| 国产av一区二区精品久久| 精品电影一区二区在线| 亚洲色图av天堂| 搞女人的毛片| 欧美乱码精品一区二区三区| 精品久久久久久久久久免费视频| 国产v大片淫在线免费观看| 美女高潮喷水抽搐中文字幕| 美女午夜性视频免费| 99久久精品热视频| av在线播放免费不卡| 熟女电影av网| 亚洲av五月六月丁香网| 国产伦一二天堂av在线观看| 精品高清国产在线一区| 正在播放国产对白刺激| 精品一区二区三区av网在线观看| 国产精品 欧美亚洲| 成熟少妇高潮喷水视频| av片东京热男人的天堂| 一本一本综合久久| 日本a在线网址| 黄色视频,在线免费观看| 亚洲精品粉嫩美女一区| 久久久久久久久久黄片| 亚洲,欧美精品.| 老熟妇乱子伦视频在线观看| 午夜久久久久精精品| e午夜精品久久久久久久| 黄色视频不卡| 日本精品一区二区三区蜜桃| 亚洲欧美精品综合一区二区三区| 亚洲人与动物交配视频| 国语自产精品视频在线第100页| 非洲黑人性xxxx精品又粗又长| 亚洲aⅴ乱码一区二区在线播放 | 亚洲色图av天堂| 90打野战视频偷拍视频| 99热只有精品国产| 香蕉av资源在线| 日韩欧美精品v在线| 老司机深夜福利视频在线观看| 不卡av一区二区三区| 少妇的丰满在线观看| 在线看三级毛片| 性欧美人与动物交配| 精品欧美一区二区三区在线| 亚洲avbb在线观看| 国产片内射在线| 男女那种视频在线观看| 成人一区二区视频在线观看| 久久午夜综合久久蜜桃| 国产视频内射| 成人亚洲精品av一区二区| 人妻丰满熟妇av一区二区三区| 可以在线观看毛片的网站| 91九色精品人成在线观看| 欧美日本视频| 成人精品一区二区免费| 午夜日韩欧美国产| 亚洲最大成人中文| 日本成人三级电影网站| 国内精品一区二区在线观看| 日韩有码中文字幕| 国产精品一区二区三区四区久久| 午夜影院日韩av| 精品久久久久久,| 日本黄大片高清| 精品一区二区三区视频在线观看免费| 成人特级黄色片久久久久久久| 国产黄片美女视频| 国产亚洲av高清不卡| 999久久久精品免费观看国产| 亚洲午夜精品一区,二区,三区| 国语自产精品视频在线第100页| 国产aⅴ精品一区二区三区波| 最近最新中文字幕大全电影3| 欧美一级a爱片免费观看看 | 国产精品精品国产色婷婷| 中文字幕熟女人妻在线| 久久人妻福利社区极品人妻图片| 国产一区二区在线观看日韩 | 香蕉av资源在线| 全区人妻精品视频| 午夜两性在线视频| 好男人电影高清在线观看| 2021天堂中文幕一二区在线观| 搡老岳熟女国产| 一二三四社区在线视频社区8| 哪里可以看免费的av片| 久久久久久久午夜电影| 亚洲精品中文字幕一二三四区| 午夜福利在线观看吧| 日日干狠狠操夜夜爽| 一个人观看的视频www高清免费观看 | 久久久久久久久久黄片| 最近最新中文字幕大全免费视频| 久久精品国产亚洲av高清一级| 黄色视频不卡| 成人av一区二区三区在线看| 日本黄色视频三级网站网址| 精品少妇一区二区三区视频日本电影| 99国产精品99久久久久| 9191精品国产免费久久| 亚洲自偷自拍图片 自拍| 亚洲精品中文字幕在线视频| 精品福利观看| 国产高清videossex| 成人国语在线视频| 亚洲欧美日韩高清在线视频| av福利片在线观看| 午夜福利18| 天堂√8在线中文| 欧美色视频一区免费| 国产精品美女特级片免费视频播放器 | 免费观看人在逋| 国产精品精品国产色婷婷| 夜夜爽天天搞| 精品欧美国产一区二区三| 免费看日本二区| 国产精品电影一区二区三区| 一本大道久久a久久精品| 亚洲成人久久性| 亚洲午夜精品一区,二区,三区| 岛国在线观看网站| 我的老师免费观看完整版| 亚洲乱码一区二区免费版| 国产精品av视频在线免费观看| 国产精品免费视频内射| 午夜两性在线视频| 18禁观看日本| 一a级毛片在线观看| 床上黄色一级片| 老司机午夜十八禁免费视频| 老司机深夜福利视频在线观看| 国产真人三级小视频在线观看| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 亚洲专区字幕在线| 国产三级在线视频| 99国产精品一区二区蜜桃av| 制服人妻中文乱码| 精品人妻1区二区| 午夜福利在线观看吧| 人人妻人人看人人澡| 12—13女人毛片做爰片一| 欧美黑人精品巨大| 叶爱在线成人免费视频播放| 亚洲18禁久久av| 午夜精品久久久久久毛片777| 成人国语在线视频| 国产片内射在线| 国产熟女xx| 精品国产超薄肉色丝袜足j| 色在线成人网| 老汉色av国产亚洲站长工具| 精品欧美国产一区二区三| 国产精品一区二区免费欧美| 亚洲一区二区三区不卡视频| 免费在线观看视频国产中文字幕亚洲| 亚洲最大成人中文| 熟女电影av网| 巨乳人妻的诱惑在线观看| 99久久精品热视频| 听说在线观看完整版免费高清| 精品欧美国产一区二区三| 在线播放国产精品三级| 激情在线观看视频在线高清| 国产三级中文精品| av欧美777| 亚洲七黄色美女视频| 久久这里只有精品19| 可以在线观看毛片的网站| 变态另类成人亚洲欧美熟女| 亚洲自拍偷在线| 三级男女做爰猛烈吃奶摸视频| 男女午夜视频在线观看| 国产精品免费一区二区三区在线| 久久中文字幕一级| 亚洲精品久久国产高清桃花| 精品一区二区三区四区五区乱码| 国产片内射在线| 成人精品一区二区免费| 亚洲专区国产一区二区| 好男人电影高清在线观看| 99国产精品一区二区三区| 亚洲av中文字字幕乱码综合| 黄色成人免费大全| 国产欧美日韩一区二区三| 日韩av在线大香蕉| 男人的好看免费观看在线视频 | 成人av在线播放网站| 脱女人内裤的视频| 久久久久久人人人人人| 亚洲精品色激情综合| 99国产综合亚洲精品| 午夜激情福利司机影院| 黄色毛片三级朝国网站| 午夜两性在线视频| 国产精品久久久久久精品电影| 免费搜索国产男女视频| 久久久国产成人精品二区| 亚洲avbb在线观看| 搞女人的毛片| 午夜福利18| 免费看美女性在线毛片视频| 后天国语完整版免费观看| 午夜久久久久精精品| 一边摸一边做爽爽视频免费| 美女午夜性视频免费| av视频在线观看入口| www国产在线视频色| 日韩精品中文字幕看吧| 国产三级在线视频| 日韩欧美免费精品| e午夜精品久久久久久久| 中文在线观看免费www的网站 | 757午夜福利合集在线观看| 亚洲美女黄片视频| 国产午夜精品久久久久久| 麻豆成人午夜福利视频| 久久国产精品人妻蜜桃| 一二三四在线观看免费中文在| 99久久无色码亚洲精品果冻| bbb黄色大片| 亚洲av成人精品一区久久| 欧美三级亚洲精品| 巨乳人妻的诱惑在线观看| 亚洲精品中文字幕一二三四区| xxxwww97欧美| 亚洲精品av麻豆狂野| 999精品在线视频| 国产男靠女视频免费网站| 国产黄a三级三级三级人| 国产精品久久视频播放| 看黄色毛片网站| 丰满人妻一区二区三区视频av | 精品高清国产在线一区| 色综合亚洲欧美另类图片| 美女 人体艺术 gogo| 女同久久另类99精品国产91| 亚洲七黄色美女视频| 国产亚洲精品av在线| 中文字幕人妻丝袜一区二区| 一本精品99久久精品77| 黄色女人牲交| 国产成人aa在线观看| 天天躁夜夜躁狠狠躁躁| 在线观看免费午夜福利视频| 伊人久久大香线蕉亚洲五| 中文字幕精品亚洲无线码一区| 三级国产精品欧美在线观看 | 久久久国产成人免费| 成年版毛片免费区| 母亲3免费完整高清在线观看| 欧美日韩精品网址| 成人午夜高清在线视频| 国产免费男女视频| 日韩欧美免费精品| 757午夜福利合集在线观看| 欧美在线一区亚洲| 国产黄片美女视频| 日韩大码丰满熟妇| 精品一区二区三区视频在线观看免费| tocl精华| 国产精品亚洲一级av第二区| 亚洲av日韩精品久久久久久密| 亚洲成av人片在线播放无| 国产亚洲精品久久久久5区| 久久久久国产精品人妻aⅴ院| 香蕉丝袜av| 亚洲av中文字字幕乱码综合| 九色成人免费人妻av| 高潮久久久久久久久久久不卡| 男女做爰动态图高潮gif福利片| 熟女少妇亚洲综合色aaa.| 久久亚洲精品不卡| 校园春色视频在线观看| 国产在线观看jvid| 亚洲欧美精品综合久久99| 日韩成人在线观看一区二区三区| 亚洲人与动物交配视频| 国产精品久久久久久久电影 | 男男h啪啪无遮挡| 国产精品免费一区二区三区在线| 国产精品 欧美亚洲| 亚洲片人在线观看| 欧美一级毛片孕妇| 日韩欧美国产一区二区入口| 99在线视频只有这里精品首页| 在线观看免费视频日本深夜| 亚洲黑人精品在线| 欧美绝顶高潮抽搐喷水| 免费观看人在逋| 又黄又粗又硬又大视频| 91av网站免费观看| 亚洲成av人片在线播放无| a级毛片a级免费在线| 看黄色毛片网站| 露出奶头的视频| 国产熟女xx| 亚洲九九香蕉| 不卡av一区二区三区| 亚洲欧美一区二区三区黑人| 757午夜福利合集在线观看| av超薄肉色丝袜交足视频| av免费在线观看网站| 18禁裸乳无遮挡免费网站照片| 国产黄片美女视频| a在线观看视频网站| 欧美日韩黄片免| 狂野欧美白嫩少妇大欣赏| 午夜影院日韩av| 日本在线视频免费播放| 美女高潮喷水抽搐中文字幕| 日韩大尺度精品在线看网址| 久久久国产精品麻豆| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精华国产精华精| 999精品在线视频| 老司机午夜十八禁免费视频| 2021天堂中文幕一二区在线观| 欧美黄色淫秽网站| 亚洲自拍偷在线| 精品欧美一区二区三区在线| 国产一区二区在线观看日韩 | 亚洲欧美日韩东京热| 午夜亚洲福利在线播放| netflix在线观看网站| 久久久久久久午夜电影| 好看av亚洲va欧美ⅴa在| 一个人免费在线观看的高清视频| 日韩大尺度精品在线看网址| 久久精品综合一区二区三区| 成人欧美大片| 九色成人免费人妻av| 一级毛片女人18水好多| 日韩三级视频一区二区三区| 午夜精品一区二区三区免费看| 丰满人妻一区二区三区视频av | 欧美一区二区精品小视频在线| 国产成人av教育| 精品久久久久久,| 校园春色视频在线观看| 色综合亚洲欧美另类图片| 精品一区二区三区av网在线观看| 国产一区二区在线av高清观看| 亚洲一区二区三区不卡视频| 亚洲精品中文字幕一二三四区| 国产精品一区二区三区四区免费观看 | 国产野战对白在线观看|